Anders Granholm, Theis Lange, Michael O Harhay, Anders Perner, Morten Hylander Møller, Benjamin Skov Kaas-Hansen
It is unclear how sceptical priors impact adaptive trials. We assessed the influence of priors expressing a spectrum of scepticism on the performance of several Bayesian, multi-stage, adaptive clinical trial designs using binary outcomes under different clinical scenarios. Simulations were conducted using fixed stopping rules and stopping rules calibrated to keep type 1 error rates at approximately 5%. We assessed total sample sizes, event rates, event counts, probabilities of conclusiveness and selecting the best arm, root mean squared errors (RMSEs) of the estimated treatment effect in the selected arms, and ideal design percentages (IDPs; which combines arm selection probabilities, power, and consequences of selecting inferior arms), with RMSEs and IDPs estimated in conclusive trials only and after selecting the control arm in inconclusive trials. Using fixed stopping rules, increasingly sceptical priors led to larger sample sizes, more events, higher IDPs in simulations ending in superiority, and lower RMSEs, lower probabilities of conclusiveness/selecting the best arm, and lower IDPs when selecting controls in inconclusive simulations. With calibrated stopping rules, the effects of increased scepticism on sample sizes and event counts were attenuated, and increased scepticism increased the probabilities of conclusiveness/selecting the best arm and IDPs when selecting controls in inconclusive simulations without substantially increasing sample sizes. Results from trial designs with gentle adaptation and non-informative priors resembled those from designs with more aggressive adaptation using weakly-to-moderately sceptical priors. In conclusion, the use of somewhat sceptical priors in adaptive trial designs with binary outcomes seems reasonable when considering multiple performance metrics simultaneously.
{"title":"Effects of sceptical priors on the performance of adaptive clinical trials with binary outcomes.","authors":"Anders Granholm, Theis Lange, Michael O Harhay, Anders Perner, Morten Hylander Møller, Benjamin Skov Kaas-Hansen","doi":"10.1002/pst.2387","DOIUrl":"10.1002/pst.2387","url":null,"abstract":"<p><p>It is unclear how sceptical priors impact adaptive trials. We assessed the influence of priors expressing a spectrum of scepticism on the performance of several Bayesian, multi-stage, adaptive clinical trial designs using binary outcomes under different clinical scenarios. Simulations were conducted using fixed stopping rules and stopping rules calibrated to keep type 1 error rates at approximately 5%. We assessed total sample sizes, event rates, event counts, probabilities of conclusiveness and selecting the best arm, root mean squared errors (RMSEs) of the estimated treatment effect in the selected arms, and ideal design percentages (IDPs; which combines arm selection probabilities, power, and consequences of selecting inferior arms), with RMSEs and IDPs estimated in conclusive trials only and after selecting the control arm in inconclusive trials. Using fixed stopping rules, increasingly sceptical priors led to larger sample sizes, more events, higher IDPs in simulations ending in superiority, and lower RMSEs, lower probabilities of conclusiveness/selecting the best arm, and lower IDPs when selecting controls in inconclusive simulations. With calibrated stopping rules, the effects of increased scepticism on sample sizes and event counts were attenuated, and increased scepticism increased the probabilities of conclusiveness/selecting the best arm and IDPs when selecting controls in inconclusive simulations without substantially increasing sample sizes. Results from trial designs with gentle adaptation and non-informative priors resembled those from designs with more aggressive adaptation using weakly-to-moderately sceptical priors. In conclusion, the use of somewhat sceptical priors in adaptive trial designs with binary outcomes seems reasonable when considering multiple performance metrics simultaneously.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11438950/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140326927","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Julie Funch Furberg, Per Kragh Andersen, Thomas Scheike, Henrik Ravn
In randomised controlled trials, the outcome of interest could be recurrent events, such as hospitalisations for heart failure. If mortality rates are non-negligible, both recurrent events and competing terminal events need to be addressed when formulating the estimand and statistical analysis is no longer trivial. In order to design future trials with primary recurrent event endpoints with competing risks, it is necessary to be able to perform power calculations to determine sample sizes. This paper introduces a simulation-based approach for power estimation based on a proportional means model for recurrent events and a proportional hazards model for terminal events. The simulation procedure is presented along with a discussion of what the user needs to specify to use the approach. The method is flexible and based on marginal quantities which are easy to specify. However, the method introduces a lack of a certain type of dependence. This is explored in a sensitivity analysis which suggests that the power is robust in spite of that. Data from a randomised controlled trial, LEADER, is used as the basis for generating data for a future trial. Finally, potential power gains of recurrent event methods as opposed to first event methods are discussed.
{"title":"Simulation-based sample size calculations of marginal proportional means models for recurrent events with competing risks.","authors":"Julie Funch Furberg, Per Kragh Andersen, Thomas Scheike, Henrik Ravn","doi":"10.1002/pst.2382","DOIUrl":"https://doi.org/10.1002/pst.2382","url":null,"abstract":"<p><p>In randomised controlled trials, the outcome of interest could be recurrent events, such as hospitalisations for heart failure. If mortality rates are non-negligible, both recurrent events and competing terminal events need to be addressed when formulating the estimand and statistical analysis is no longer trivial. In order to design future trials with primary recurrent event endpoints with competing risks, it is necessary to be able to perform power calculations to determine sample sizes. This paper introduces a simulation-based approach for power estimation based on a proportional means model for recurrent events and a proportional hazards model for terminal events. The simulation procedure is presented along with a discussion of what the user needs to specify to use the approach. The method is flexible and based on marginal quantities which are easy to specify. However, the method introduces a lack of a certain type of dependence. This is explored in a sensitivity analysis which suggests that the power is robust in spite of that. Data from a randomised controlled trial, LEADER, is used as the basis for generating data for a future trial. Finally, potential power gains of recurrent event methods as opposed to first event methods are discussed.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140175941","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fasheng Li, Beverly Nickerson, Les Van Alstine, Ke Wang
In vitro dissolution testing is a regulatory required critical quality measure for solid dose pharmaceutical drug products. Setting the acceptance criteria to meet compendial criteria is required for a product to be filed and approved for marketing. Statistical approaches for analyzing dissolution data, setting specifications and visualizing results could vary according to product requirements, company's practices, and scientific judgements. This paper provides a general description of the steps taken in the evaluation and setting of in vitro dissolution specifications at release and on stability.
{"title":"Statistical approaches to evaluate in vitro dissolution data against proposed dissolution specifications.","authors":"Fasheng Li, Beverly Nickerson, Les Van Alstine, Ke Wang","doi":"10.1002/pst.2379","DOIUrl":"https://doi.org/10.1002/pst.2379","url":null,"abstract":"<p><p>In vitro dissolution testing is a regulatory required critical quality measure for solid dose pharmaceutical drug products. Setting the acceptance criteria to meet compendial criteria is required for a product to be filed and approved for marketing. Statistical approaches for analyzing dissolution data, setting specifications and visualizing results could vary according to product requirements, company's practices, and scientific judgements. This paper provides a general description of the steps taken in the evaluation and setting of in vitro dissolution specifications at release and on stability.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2024-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140143994","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The sample size of a clinical trial has to be large enough to ensure sufficient power for achieving the aim the study. On the other side, for ethical and economical reasons it should not be larger than necessary. The sample size allocation is one of the parameters that influences the required total sample size. For two-arm superiority and non-inferiority trials with binary endpoints, we performed extensive computations over a wide range of scenarios to determine the optimal allocation ratio that minimizes the total sample size if all other parameters are fixed. The results demonstrate, that for both superiority and non-inferiority trials the optimal allocation may deviate considerably from the case of equal sample size in both groups. However, the saving in sample size when allocating the total sample size optimally as compared to balanced allocation is typically small.
{"title":"Optimal sample size allocation for two-arm superiority and non-inferiority trials with binary endpoints.","authors":"Marietta Kirchner, Stefanie Schüpke, Meinhard Kieser","doi":"10.1002/pst.2375","DOIUrl":"https://doi.org/10.1002/pst.2375","url":null,"abstract":"<p><p>The sample size of a clinical trial has to be large enough to ensure sufficient power for achieving the aim the study. On the other side, for ethical and economical reasons it should not be larger than necessary. The sample size allocation is one of the parameters that influences the required total sample size. For two-arm superiority and non-inferiority trials with binary endpoints, we performed extensive computations over a wide range of scenarios to determine the optimal allocation ratio that minimizes the total sample size if all other parameters are fixed. The results demonstrate, that for both superiority and non-inferiority trials the optimal allocation may deviate considerably from the case of equal sample size in both groups. However, the saving in sample size when allocating the total sample size optimally as compared to balanced allocation is typically small.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140111096","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A multi-stage design for a randomized trial is to allow early termination of the study when the experimental arm is found to have low or high efficacy compared to the control during the study. In such a trial, an early stopping rule results in bias in the maximum likelihood estimator of the treatment effect. We consider multi-stage randomized trials on a dichotomous outcome, such as treatment response, and investigate the estimation of the odds ratio. Typically, randomized phase II cancer clinical trials have two-stage designs with small sample sizes, which makes the estimation of odds ratio more challenging. In this paper, we evaluate several existing estimation methods of odds ratio and propose bias-corrected estimators for randomized multi-stage trials, including randomized phase II cancer clinical trials. Through numerical studies, the proposed estimators are shown to have a smaller bias and a smaller mean squared error overall.
随机试验的多阶段设计是为了在研究过程中发现试验组与对照组相比疗效较低或较高时,允许提前终止研究。在这种试验中,提前终止规则会导致治疗效果最大似然估计值出现偏差。我们考虑了关于二分结果(如治疗反应)的多阶段随机试验,并研究了几率比的估计。通常情况下,II 期随机癌症临床试验采用两阶段设计,样本量较小,这使得几率比的估计更具挑战性。本文评估了几种现有的几率比估计方法,并提出了适用于随机多阶段试验(包括随机 II 期癌症临床试验)的偏差校正估计器。通过数值研究表明,所提出的估计方法总体上具有较小的偏差和较小的均方误差。
{"title":"Estimation of the odds ratio from multi-stage randomized trials.","authors":"Shiwei Cao, Sin-Ho Jung","doi":"10.1002/pst.2378","DOIUrl":"https://doi.org/10.1002/pst.2378","url":null,"abstract":"<p><p>A multi-stage design for a randomized trial is to allow early termination of the study when the experimental arm is found to have low or high efficacy compared to the control during the study. In such a trial, an early stopping rule results in bias in the maximum likelihood estimator of the treatment effect. We consider multi-stage randomized trials on a dichotomous outcome, such as treatment response, and investigate the estimation of the odds ratio. Typically, randomized phase II cancer clinical trials have two-stage designs with small sample sizes, which makes the estimation of odds ratio more challenging. In this paper, we evaluate several existing estimation methods of odds ratio and propose bias-corrected estimators for randomized multi-stage trials, including randomized phase II cancer clinical trials. Through numerical studies, the proposed estimators are shown to have a smaller bias and a smaller mean squared error overall.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2024-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140094414","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In a randomized controlled trial with time-to-event endpoint, some commonly used statistical tests to test for various aspects of survival differences, such as survival probability at a fixed time point, survival function up to a specific time point, and restricted mean survival time, may not be directly applicable when external data are leveraged to augment an arm (or both arms) of an RCT. In this paper, we propose a propensity score-integrated approach to extend such tests when external data are leveraged. Simulation studies are conducted to evaluate the operating characteristics of three propensity score-integrated statistical tests, and an illustrative example is given to demonstrate how these proposed procedures can be implemented.
{"title":"A propensity score-integrated approach for leveraging external data in a randomized controlled trial with time-to-event endpoints.","authors":"Wei-Chen Chen, Nelson Lu, Chenguang Wang, Heng Li, Changhong Song, Ram Tiwari, Yunling Xu, Lilly Q Yue","doi":"10.1002/pst.2377","DOIUrl":"https://doi.org/10.1002/pst.2377","url":null,"abstract":"<p><p>In a randomized controlled trial with time-to-event endpoint, some commonly used statistical tests to test for various aspects of survival differences, such as survival probability at a fixed time point, survival function up to a specific time point, and restricted mean survival time, may not be directly applicable when external data are leveraged to augment an arm (or both arms) of an RCT. In this paper, we propose a propensity score-integrated approach to extend such tests when external data are leveraged. Simulation studies are conducted to evaluate the operating characteristics of three propensity score-integrated statistical tests, and an illustrative example is given to demonstrate how these proposed procedures can be implemented.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140040067","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Carl-Fredrik Burman, Erik Hermansson, David Bock, Stefan Franzén, David Svensson
Recent years have seen an increasing interest in incorporating external control data for designing and evaluating randomized clinical trials (RCT). This may decrease costs and shorten inclusion times by reducing sample sizes. For small populations, with limited recruitment, this can be especially important. Bayesian dynamic borrowing (BDB) has been a popular choice as it claims to protect against potential prior data conflict. Digital twins (DT) has recently been proposed as another method to utilize historical data. DT, also known as PROCOVA™, is based on constructing a prognostic score from historical control data, typically using machine learning. This score is included in a pre-specified ANCOVA as the primary analysis of the RCT. The promise of this idea is power increase while guaranteeing strong type 1 error control. In this paper, we apply analytic derivations and simulations to analyze and discuss examples of these two approaches. We conclude that BDB and DT, although similar in scope, have fundamental differences which need be considered in the specific application. The inflation of the type 1 error is a serious issue for BDB, while more evidence is needed of a tangible value of DT for real RCTs.
{"title":"Digital twins and Bayesian dynamic borrowing: Two recent approaches for incorporating historical control data.","authors":"Carl-Fredrik Burman, Erik Hermansson, David Bock, Stefan Franzén, David Svensson","doi":"10.1002/pst.2376","DOIUrl":"https://doi.org/10.1002/pst.2376","url":null,"abstract":"<p><p>Recent years have seen an increasing interest in incorporating external control data for designing and evaluating randomized clinical trials (RCT). This may decrease costs and shorten inclusion times by reducing sample sizes. For small populations, with limited recruitment, this can be especially important. Bayesian dynamic borrowing (BDB) has been a popular choice as it claims to protect against potential prior data conflict. Digital twins (DT) has recently been proposed as another method to utilize historical data. DT, also known as PROCOVA™, is based on constructing a prognostic score from historical control data, typically using machine learning. This score is included in a pre-specified ANCOVA as the primary analysis of the RCT. The promise of this idea is power increase while guaranteeing strong type 1 error control. In this paper, we apply analytic derivations and simulations to analyze and discuss examples of these two approaches. We conclude that BDB and DT, although similar in scope, have fundamental differences which need be considered in the specific application. The inflation of the type 1 error is a serious issue for BDB, while more evidence is needed of a tangible value of DT for real RCTs.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140028706","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-01Epub Date: 2023-11-14DOI: 10.1002/pst.2349
Francesco Mariani, Fulvio De Santis, Stefania Gubbiotti
Non-inferiority trials compare new experimental therapies to standard ones (active control). In these experiments, historical information on the control treatment is often available. This makes Bayesian methodology appealing since it allows a natural way to exploit information from past studies. In the present paper, we suggest the use of previous data for constructing the prior distribution of the control effect parameter. Specifically, we consider a dynamic power prior that possibly allows to discount the level of borrowing in the presence of heterogeneity between past and current control data. The discount parameter of the prior is based on the Hellinger distance between the posterior distributions of the control parameter based, respectively, on historical and current data. We develop the methodology for comparing normal means and we handle the unknown variance assumption using MCMC. We also provide a simulation study to analyze the proposed test in terms of frequentist size and power, as it is usually requested by regulatory agencies. Finally, we investigate comparisons with some existing methods and we illustrate an application to a real case study.
{"title":"A dynamic power prior approach to non-inferiority trials for normal means.","authors":"Francesco Mariani, Fulvio De Santis, Stefania Gubbiotti","doi":"10.1002/pst.2349","DOIUrl":"10.1002/pst.2349","url":null,"abstract":"<p><p>Non-inferiority trials compare new experimental therapies to standard ones (active control). In these experiments, historical information on the control treatment is often available. This makes Bayesian methodology appealing since it allows a natural way to exploit information from past studies. In the present paper, we suggest the use of previous data for constructing the prior distribution of the control effect parameter. Specifically, we consider a dynamic power prior that possibly allows to discount the level of borrowing in the presence of heterogeneity between past and current control data. The discount parameter of the prior is based on the Hellinger distance between the posterior distributions of the control parameter based, respectively, on historical and current data. We develop the methodology for comparing normal means and we handle the unknown variance assumption using MCMC. We also provide a simulation study to analyze the proposed test in terms of frequentist size and power, as it is usually requested by regulatory agencies. Finally, we investigate comparisons with some existing methods and we illustrate an application to a real case study.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"107591987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-01Epub Date: 2023-10-23DOI: 10.1002/pst.2344
Richard O Montes
Tolerance intervals from quality attribute measurements are used to establish specification limits for drug products. Some attribute measurements may be below the reporting limits, that is, left-censored data. When data has a long, right-skew tail, a gamma distribution may be applicable. This paper compares maximum likelihood estimation (MLE) and Bayesian methods to estimate shape and scale parameters of censored gamma distributions and to calculate tolerance intervals under varying sample sizes and extents of censoring. The noninformative reference prior and the maximal data information prior (MDIP) are used to compare the impact of prior choice. Metrics used are bias and root mean square error for the parameter estimation and average length and confidence coefficient for the tolerance interval evaluation. It will be shown that Bayesian method using a reference prior overall performs better than MLE for the scenarios evaluated. When sample size is small, the Bayesian method using MDIP yields conservatively too wide tolerance intervals that are unsuitable basis for specification setting. The metrics for all methods worsened with increasing extent of censoring but improved with increasing sample size, as expected. This study demonstrates that although MLE is relatively simple and available in user-friendly statistical software, it falls short in accurately and precisely producing tolerance limits that maintain the stated confidence depending on the scenario. The Bayesian method using noninformative prior, even though computationally intensive and requires considerable statistical programming, produces tolerance limits which are practically useful for specification setting. Real-world examples are provided to illustrate the findings from the simulation study.
{"title":"Frequentist and Bayesian tolerance intervals for setting specification limits for left-censored gamma distributed drug quality attributes.","authors":"Richard O Montes","doi":"10.1002/pst.2344","DOIUrl":"10.1002/pst.2344","url":null,"abstract":"<p><p>Tolerance intervals from quality attribute measurements are used to establish specification limits for drug products. Some attribute measurements may be below the reporting limits, that is, left-censored data. When data has a long, right-skew tail, a gamma distribution may be applicable. This paper compares maximum likelihood estimation (MLE) and Bayesian methods to estimate shape and scale parameters of censored gamma distributions and to calculate tolerance intervals under varying sample sizes and extents of censoring. The noninformative reference prior and the maximal data information prior (MDIP) are used to compare the impact of prior choice. Metrics used are bias and root mean square error for the parameter estimation and average length and confidence coefficient for the tolerance interval evaluation. It will be shown that Bayesian method using a reference prior overall performs better than MLE for the scenarios evaluated. When sample size is small, the Bayesian method using MDIP yields conservatively too wide tolerance intervals that are unsuitable basis for specification setting. The metrics for all methods worsened with increasing extent of censoring but improved with increasing sample size, as expected. This study demonstrates that although MLE is relatively simple and available in user-friendly statistical software, it falls short in accurately and precisely producing tolerance limits that maintain the stated confidence depending on the scenario. The Bayesian method using noninformative prior, even though computationally intensive and requires considerable statistical programming, produces tolerance limits which are practically useful for specification setting. Real-world examples are provided to illustrate the findings from the simulation study.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49691915","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-01Epub Date: 2023-11-02DOI: 10.1002/pst.2346
Andrew P Grieve
In this article, I extend the use of probability of success calculations, previously developed for fixed sample size studies to group sequential designs (GSDs) both for studies planned to be analyzed by standard frequentist techniques or Bayesian approaches. The structure of GSDs lends itself to sequential learning which in turn allows us to consider how knowledge about the result of an interim analysis can influence our assessment of the study's probability of success. In this article, I build on work by Temple and Robertson who introduced the idea of conditional probability of success, an idea which I also treated in a recent monograph.
{"title":"Probability of success and group sequential designs.","authors":"Andrew P Grieve","doi":"10.1002/pst.2346","DOIUrl":"10.1002/pst.2346","url":null,"abstract":"<p><p>In this article, I extend the use of probability of success calculations, previously developed for fixed sample size studies to group sequential designs (GSDs) both for studies planned to be analyzed by standard frequentist techniques or Bayesian approaches. The structure of GSDs lends itself to sequential learning which in turn allows us to consider how knowledge about the result of an interim analysis can influence our assessment of the study's probability of success. In this article, I build on work by Temple and Robertson who introduced the idea of conditional probability of success, an idea which I also treated in a recent monograph.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71425793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}