首页 > 最新文献

Persoonia最新文献

英文 中文
Resurrecting the genus Geomorium: Systematic study of fungi in the genera Underwoodia and Gymnohydnotrya (Pezizales) with the description of three new South American species. 复活 Geomorium 属:对 Underwoodia 属和 Gymnohydnotrya 属(Pezizales)真菌的系统研究,并描述了三个南美洲新种。
IF 9.1 1区 生物学 Q1 MYCOLOGY Pub Date : 2020-06-01 Epub Date: 2019-10-31 DOI: 10.3767/persoonia.2020.44.04
N Kraisitudomsook, R A Healy, D H Pfister, C Truong, E Nouhra, F Kuhar, A B Mujic, J M Trappe, M E Smith

Molecular phylogenetic analyses have addressed the systematic position of several major Northern Hemisphere lineages of Pezizales but the taxa of the Southern Hemisphere remain understudied. This study focuses on the molecular systematics and taxonomy of Southern Hemisphere species currently treated in the genera Underwoodia and Gymnohydnotrya. Species in these genera have been identified as the monophyletic /gymnohydnotrya lineage, but no further research has been conducted to determine the evolutionary origin of this lineage or its relationship with other Pezizales lineages. Here, we present a phylogenetic study of fungal species previously described in Underwoodia and Gymnohydnotrya, with sampling of all but one described species. We revise the taxonomy of this lineage and describe three new species from the Patagonian region of South America. Our results show that none of these Southern Hemisphere species are closely related to Underwoodia columnaris, the type species of the genus Underwoodia. Accordingly, we recognize the genus Geomorium described by Spegazzini in 1922 for G. fuegianum. We propose the new family, Geomoriaceae fam. nov., to accommodate this phylogenetically and morphologically unique Southern Hemisphere lineage. Molecular dating estimated that Geomoriaceae started to diverge from its sister clade Tuberaceae c. 112 MYA, with a crown age for the family in the late Cretaceous (c. 67 MYA). This scenario fits well with a Gondwanan origin of the family before the split of Australia and South America from Antarctica during the Paleocene-Eocene boundary (c. 50 MYA).

分子系统发育分析已经解决了北半球几个主要 Pezizales 品系的系统位置问题,但对南半球类群的研究仍然不足。本研究的重点是目前归入 Underwoodia 属和 Gymnohydnotrya 属的南半球物种的分子系统学和分类学。这些属中的物种已被确定为单系/gymnohydnotrya系,但还没有进一步的研究来确定该系的进化起源或其与其他 Pezizales 系的关系。在此,我们对以前在 Underwoodia 和 Gymnohydnotrya 中描述过的真菌物种进行了系统发育研究,并对除一个物种以外的所有描述物种进行了取样。我们修订了这一系统的分类法,并描述了南美洲巴塔哥尼亚地区的三个新物种。我们的研究结果表明,这些南半球物种都与 Underwoodia 属的模式种 Underwoodia columnaris 没有密切的亲缘关系。因此,我们承认 Spegazzini 于 1922 年为 G. fuegianum 描述的 Geomorium 属。我们提议建立一个新的科--Geomoriaceae fam.据分子年代测定,Geomoriaceae 大约在 112 MYA 开始从其姊妹支系 Tuberaceae 分化而来,该科的冠年龄为晚白垩世(约 67 MYA)。这与该科起源于冈瓦纳的情况十分吻合,即在古新世-始新世边界期间(约 50 MYA)澳大利亚和南美洲从南极洲分裂之前。
{"title":"Resurrecting the genus <i>Geomorium</i>: Systematic study of fungi in the genera <i>Underwoodia</i> and <i>Gymnohydnotrya</i> (<i>Pezizales</i>) with the description of three new South American species.","authors":"N Kraisitudomsook, R A Healy, D H Pfister, C Truong, E Nouhra, F Kuhar, A B Mujic, J M Trappe, M E Smith","doi":"10.3767/persoonia.2020.44.04","DOIUrl":"10.3767/persoonia.2020.44.04","url":null,"abstract":"<p><p>Molecular phylogenetic analyses have addressed the systematic position of several major Northern Hemisphere lineages of <i>Pezizales</i> but the taxa of the Southern Hemisphere remain understudied. This study focuses on the molecular systematics and taxonomy of Southern Hemisphere species currently treated in the genera <i>Underwoodia</i> and <i>Gymnohydnotrya</i>. Species in these genera have been identified as the monophyletic /gymnohydnotrya lineage, but no further research has been conducted to determine the evolutionary origin of this lineage or its relationship with other <i>Pezizales</i> lineages. Here, we present a phylogenetic study of fungal species previously described in <i>Underwoodia</i> and <i>Gymnohydnotrya</i>, with sampling of all but one described species. We revise the taxonomy of this lineage and describe three new species from the Patagonian region of South America. Our results show that none of these Southern Hemisphere species are closely related to <i>Underwoodia columnaris</i>, the type species of the genus <i>Underwoodia</i>. Accordingly, we recognize the genus <i>Geomorium</i> described by Spegazzini in 1922 for <i>G. fuegianum.</i> We propose the new family, <i>Geomoriaceae</i> fam. nov., to accommodate this phylogenetically and morphologically unique Southern Hemisphere lineage. Molecular dating estimated that <i>Geomoriaceae</i> started to diverge from its sister clade <i>Tuberaceae</i> c. 112 MYA, with a crown age for the family in the late Cretaceous (c. 67 MYA). This scenario fits well with a Gondwanan origin of the family before the split of Australia and South America from Antarctica during the Paleocene-Eocene boundary (c. 50 MYA).</p>","PeriodicalId":20014,"journal":{"name":"Persoonia","volume":"44 ","pages":"98-112"},"PeriodicalIF":9.1,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/2b/92/per-2020-44-4.PMC7567970.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38538553","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Patterns of coevolution between ambrosia beetle mycangia and the Ceratocystidaceae, with five new fungal genera and seven new species. 真菌5新属7新种的龙花甲虫与角鼻虫科的共同进化模式。
IF 9.1 1区 生物学 Q1 MYCOLOGY Pub Date : 2020-06-01 Epub Date: 2019-07-29 DOI: 10.3767/persoonia.2020.44.02
C G Mayers, T C Harrington, H Masuya, B H Jordal, D L McNew, H-H Shih, F Roets, G J Kietzka

Ambrosia beetles farm specialised fungi in sapwood tunnels and use pocket-like organs called mycangia to carry propagules of the fungal cultivars. Ambrosia fungi selectively grow in mycangia, which is central to the symbiosis, but the history of coevolution between fungal cultivars and mycangia is poorly understood. The fungal family Ceratocystidaceae previously included three ambrosial genera (Ambrosiella, Meredithiella, and Phialophoropsis), each farmed by one of three distantly related tribes of ambrosia beetles with unique and relatively large mycangium types. Studies on the phylogenetic relationships and evolutionary histories of these three genera were expanded with the previously unstudied ambrosia fungi associated with a fourth mycangium type, that of the tribe Scolytoplatypodini. Using ITS rDNA barcoding and a concatenated dataset of six loci (28S rDNA, 18S rDNA, tef1-α, tub, mcm7, and rpl1), a comprehensive phylogeny of the family Ceratocystidaceae was developed, including Inodoromyces interjectus gen. & sp. nov., a non-ambrosial species that is closely related to the family. Three minor morphological variants of the pronotal disk mycangium of the Scolytoplatypodini were associated with ambrosia fungi in three respective clades of Ceratocystidaceae: Wolfgangiella gen. nov., Toshionella gen. nov., and Ambrosiella remansi sp. nov. Closely-related species that are not symbionts of ambrosia beetles are accommodated by Catunica adiposa gen. & comb. nov. and Solaloca norvegica gen. & comb. nov. The divergent morphology of the ambrosial genera and their phylogenetic placement among non-ambrosial genera suggest three domestication events in the Ceratocystidaceae. Estimated divergence dates for the ambrosia fungi and mycangia suggest that Scolytoplatypodini mycangia may have been the first to acquire Ceratocystidaceae symbionts and other ambrosial fungal genera emerged shortly after the evolution of new mycangium types. There is no evidence of reversion to a non-ambrosial lifestyle in the mycangial symbionts.

Ambrosia甲虫在边木隧道中培育特殊的真菌,并使用称为菌丝的口袋状器官来携带真菌品种的繁殖体。Ambrosia真菌选择性地生长在菌丝体中,这是菌丝体共生的核心,但真菌品种与菌丝体之间的共同进化历史知之甚少。真菌科Ceratocystidaceae以前包括三个Ambrosiella属(Ambrosiella, Meredithiella和Phialophoropsis),每个属都由具有独特且相对较大的菌丝体类型的三个远亲ambrosia甲虫部落中的一个养殖。对这三个属的系统发育关系和进化历史的研究扩展了以前未研究的ambrosia真菌与第四种mycangium类型,即部落Scolytoplatypodini的关联。利用ITS rDNA条形码技术和6个位点(28S rDNA、18S rDNA、tef1-α、tub、mcm7和rpl1)的连接数据,建立了Ceratocystidaceae科的综合系统发育,包括与该科密切相关的非微生物物种Inodoromyces interjectus gen&sp . nov.。在角鼻虫科的三个分支中:Wolfgangiella gen. nov.、Toshionella gen. nov.和Ambrosiella remansi sp. 11 .。与ambrosia甲虫非共生体的密切相关的物种被Catunica adiposa gen. & comb所适应。11月和紫菜。11 .角鼻虫属的不同形态及其在非角鼻虫属中的系统发育位置表明角鼻虫科发生了三次驯化事件。据估计,ambrosia真菌和mycania的分化日期表明,Scolytoplatypodini mycania可能是最早获得Ceratocystidaceae共生体的,而其他ambrosial真菌属在新的mycanium类型进化后不久就出现了。没有证据表明菌丝共生体恢复到非微生物的生活方式。
{"title":"Patterns of coevolution between ambrosia beetle mycangia and the <i>Ceratocystidaceae</i>, with five new fungal genera and seven new species.","authors":"C G Mayers,&nbsp;T C Harrington,&nbsp;H Masuya,&nbsp;B H Jordal,&nbsp;D L McNew,&nbsp;H-H Shih,&nbsp;F Roets,&nbsp;G J Kietzka","doi":"10.3767/persoonia.2020.44.02","DOIUrl":"https://doi.org/10.3767/persoonia.2020.44.02","url":null,"abstract":"<p><p>Ambrosia beetles farm specialised fungi in sapwood tunnels and use pocket-like organs called mycangia to carry propagules of the fungal cultivars. Ambrosia fungi selectively grow in mycangia, which is central to the symbiosis, but the history of coevolution between fungal cultivars and mycangia is poorly understood. The fungal family <i>Ceratocystidaceae</i> previously included three ambrosial genera (<i>Ambrosiella</i>, <i>Meredithiella</i>, and <i>Phialophoropsis</i>), each farmed by one of three distantly related tribes of ambrosia beetles with unique and relatively large mycangium types. Studies on the phylogenetic relationships and evolutionary histories of these three genera were expanded with the previously unstudied ambrosia fungi associated with a fourth mycangium type, that of the tribe <i>Scolytoplatypodini</i>. Using ITS rDNA barcoding and a concatenated dataset of six loci (28S rDNA, 18S rDNA, <i>tef</i>1-α, <i>tub</i>, <i>mcm7</i>, and <i>rpl1</i>), a comprehensive phylogeny of the family <i>Ceratocystidaceae</i> was developed, including <i>Inodoromyces interjectus</i> gen. & sp. nov., a non-ambrosial species that is closely related to the family. Three minor morphological variants of the pronotal disk mycangium of the <i>Scolytoplatypodini</i> were associated with ambrosia fungi in three respective clades of <i>Ceratocystidaceae</i>: <i>Wolfgangiella</i> gen. nov., <i>Toshionella</i> gen. nov., and <i>Ambrosiella remansi</i> sp. nov. Closely-related species that are not symbionts of ambrosia beetles are accommodated by <i>Catunica adiposa</i> gen. & comb. nov. and <i>Solaloca norvegica</i> gen. & comb. nov. The divergent morphology of the ambrosial genera and their phylogenetic placement among non-ambrosial genera suggest three domestication events in the <i>Ceratocystidaceae</i>. Estimated divergence dates for the ambrosia fungi and mycangia suggest that <i>Scolytoplatypodini</i> mycangia may have been the first to acquire <i>Ceratocystidaceae</i> symbionts and other ambrosial fungal genera emerged shortly after the evolution of new mycangium types. There is no evidence of reversion to a non-ambrosial lifestyle in the mycangial symbionts.</p>","PeriodicalId":20014,"journal":{"name":"Persoonia","volume":"44 ","pages":"41-66"},"PeriodicalIF":9.1,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/e5/85/per-2020-44-2.PMC7567963.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38540244","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 33
A new species concept for the clinically relevant Mucor circinelloides complex. 临床相关的环形毛霉复合体的新物种概念。
IF 9.1 1区 生物学 Q1 MYCOLOGY Pub Date : 2020-06-01 Epub Date: 2019-08-29 DOI: 10.3767/persoonia.2020.44.03
L Wagner, J B Stielow, G S de Hoog, K Bensch, V U Schwartze, K Voigt, A Alastruey-Izquierdo, O Kurzai, G Walther

Mucor species are common soil fungi but also known as agents of human infections (mucormycosis) and used in food production and biotechnology. Mucor circinelloides is the Mucor species that is most frequently isolated from clinical sources. The taxonomy of Mucor circinelloides and its close relatives (Mucor circinelloides complex - MCC) is still based on morphology and mating behaviour. The aim of the present study was a revised taxonomy of the MCC using a polyphasic approach. Using a set of 100 strains molecular phylogenetic analysis of five markers (ITS, rpb1, tsr1, mcm7, and cfs, introduced here) were performed, combined with phenotypic studies, mating tests and the determination of the maximum growth temperatures. The multi-locus analyses revealed 16 phylogenetic species of which 14 showed distinct phenotypical traits and were recognised as discrete species. Five of these species are introduced as novel taxa: M. amethystinus sp. nov., M. atramentarius sp. nov., M. variicolumellatus sp. nov., M. pseudocircinelloides sp. nov., and M. pseudolusitanicus sp. nov. The former formae of M. circinelloides represent one or two separate species. In the MCC, the simple presence of well-shaped zygospores only indicates a close relation of both strains, but not necessarily conspecificity. Seven species of the MCC have been implemented in human infection: M. circinelloides, M. griseocyanus, M. janssenii, M. lusitanicus, M. ramosissimus, M. variicolumellatus, and M. velutinosus.

毛霉种是常见的土壤真菌,但也被称为人类感染(毛霉病)的病原体,并用于食品生产和生物技术。环状毛霉是最常从临床来源分离的毛霉种类。毛霉(Mucor circinelloides)及其近亲(Mucor circinelloides complex - MCC)的分类仍然基于形态学和交配行为。本研究的目的是使用多相方法对MCC进行修订分类。利用100株菌株的5个标记(ITS、rpb1、tsr1、mcm7和cfs)进行分子系统发育分析,并结合表型研究、配种试验和最高生长温度的测定。多位点分析显示,16种系统发育物种中有14种表现出明显的表型特征,被认为是离散种。其中5种是作为新分类群引进的:M. amethystinus sp. nov.、M. atramentarius sp. nov.、M. variicolumellatus sp. nov.、M. pseudoircinelloides sp. nov.和M. pseudolusitanicus sp. nov.。在MCC中,形状良好的合子孢子的简单存在仅表明两株菌株关系密切,但不一定具有同一性。7种MCC已在人类感染中实施:圆线虫、灰青杆菌、杨氏分枝杆菌、卢西塔尼分枝杆菌、拉莫西斯分枝杆菌、变异分枝杆菌和绒纹分枝杆菌。
{"title":"A new species concept for the clinically relevant <i>Mucor circinelloides</i> complex.","authors":"L Wagner,&nbsp;J B Stielow,&nbsp;G S de Hoog,&nbsp;K Bensch,&nbsp;V U Schwartze,&nbsp;K Voigt,&nbsp;A Alastruey-Izquierdo,&nbsp;O Kurzai,&nbsp;G Walther","doi":"10.3767/persoonia.2020.44.03","DOIUrl":"https://doi.org/10.3767/persoonia.2020.44.03","url":null,"abstract":"<p><p><i>Mucor</i> species are common soil fungi but also known as agents of human infections (mucormycosis) and used in food production and biotechnology. <i>Mucor circinelloides</i> is the <i>Mucor</i> species that is most frequently isolated from clinical sources. The taxonomy of <i>Mucor circinelloides</i> and its close relatives (<i>Mucor circinelloides</i> complex - MCC) is still based on morphology and mating behaviour. The aim of the present study was a revised taxonomy of the MCC using a polyphasic approach. Using a set of 100 strains molecular phylogenetic analysis of five markers (ITS, <i>rpb1</i>, <i>tsr1</i>, <i>mcm7</i>, and <i>cfs</i>, introduced here) were performed, combined with phenotypic studies, mating tests and the determination of the maximum growth temperatures. The multi-locus analyses revealed 16 phylogenetic species of which 14 showed distinct phenotypical traits and were recognised as discrete species. Five of these species are introduced as novel taxa: <i>M. amethystinus</i> sp. nov., <i>M. atramentarius</i> sp. nov., <i>M. variicolumellatus</i> sp. nov., <i>M. pseudocircinelloides</i> sp. nov., and <i>M. pseudolusitanicus</i> sp. nov. The former formae of <i>M. circinelloides</i> represent one or two separate species. In the MCC, the simple presence of well-shaped zygospores only indicates a close relation of both strains, but not necessarily conspecificity. Seven species of the MCC have been implemented in human infection: <i>M. circinelloides</i>, <i>M. griseocyanus, M. janssenii, M. lusitanicus</i>, <i>M. ramosissimus, M. variicolumellatus</i>, and <i>M. velutinosus</i>.</p>","PeriodicalId":20014,"journal":{"name":"Persoonia","volume":"44 ","pages":"67-97"},"PeriodicalIF":9.1,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3767/persoonia.2020.44.03","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38540245","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 49
Evaluating methodologies for species delimitation: the mismatch between phenotypes and genotypes in lichenized fungi (Bryoria sect. Implexae, Parmeliaceae). 评估物种划分方法:地衣化真菌(Bryoria sect. Implexae, Parmeliaceae)表型与基因型之间的不匹配。
IF 9.5 1区 生物学 Q1 MYCOLOGY Pub Date : 2019-06-01 Epub Date: 2018-08-23 DOI: 10.3767/persoonia.2019.42.04
C G Boluda, V J Rico, P K Divakar, O Nadyeina, L Myllys, R T McMullin, J C Zamora, C Scheidegger, D L Hawksworth

In many lichen-forming fungi, molecular phylogenetic analyses lead to the discovery of cryptic species within traditional morphospecies. However, in some cases, molecular sequence data also questions the separation of phenotypically characterised species. Here we apply an integrative taxonomy approach - including morphological, chemical, molecular, and distributional characters - to re-assess species boundaries in a traditionally speciose group of hair lichens, Bryoria sect. Implexae. We sampled multilocus sequence and microsatellite data from 142 specimens from a broad intercontinental distribution. Molecular data included DNA sequences of the standard fungal markers ITS, IGS, GAPDH, two newly tested loci (FRBi15 and FRBi16), and SSR frequencies from 18 microsatellite markers. Datasets were analysed with Bayesian and maximum likelihood phylogenetic reconstruction, phenogram reconstruction, STRUCTURE Bayesian clustering, principal coordinate analysis, haplotype network, and several different species delimitation analyses (ABGD, PTP, GMYC, and DISSECT). Additionally, past population demography and divergence times are estimated. The different approaches to species recognition do not support the monophyly of the 11 currently accepted morphospecies, and rather suggest the reduction of these to four phylogenetic species. Moreover, three of these are relatively recent in origin and cryptic, including phenotypically and chemically variable specimens. Issues regarding the integration of an evolutionary perspective into taxonomic conclusions in species complexes, which have undergone recent diversification, are discussed. The four accepted species, all epitypified by sequenced material, are Bryoria fuscescens, B. glabra, B. kockiana, and B. pseudofuscescens. Ten species rank names are reduced to synonymy. In the absence of molecular data, they can be recorded as the B. fuscescens complex. Intraspecific phenotype plasticity and factors affecting the speciation of different morphospecies in this group of Bryoria are outlined.

在许多地衣形成真菌中,分子系统发育分析导致在传统形态种中发现了隐生物种。然而,在某些情况下,分子序列数据也会对表型特征物种的分离提出质疑。在此,我们采用一种综合分类方法--包括形态、化学、分子和分布特征--来重新评估毛地黄中一个传统的物种群--Bryoria sect.Implexae。我们从洲际分布广泛的 142 个标本中采集了多焦点序列和微卫星数据。分子数据包括标准真菌标记 ITS、IGS、GAPDH、两个新测试位点(FRBi15 和 FRBi16)的 DNA 序列以及 18 个微卫星标记的 SSR 频率。对数据集进行了贝叶斯和最大似然系统发育重建、表型图重建、STRUCTURE 贝叶斯聚类、主坐标分析、单体型网络和几种不同的物种划分分析(ABGD、PTP、GMYC 和 DISSECT)。此外,还对过去种群的人口分布和分化时间进行了估计。不同的物种识别方法并不支持目前公认的 11 个形态种的单系性,而是建议将这些形态种简化为 4 个系统发育种。此外,其中 3 个物种起源较新,具有隐蔽性,包括表型和化学性质多变的标本。本文讨论了将进化观点纳入物种复合体分类结论的问题,这些物种复合体经历了近期的多样化。四个公认的物种均由测序材料确定,它们是 Bryoria fuscescens、B. glabra、B. kockiana 和 B. pseudofuscescens。有 10 个物种的名称被简化为同义词。fuscescens complex。概述了种内表型的可塑性以及影响这组 Bryoria 不同形态种的物种分化的因素。
{"title":"Evaluating methodologies for species delimitation: the mismatch between phenotypes and genotypes in lichenized fungi (<i>Bryoria</i> sect. <i>Implexae</i>, <i>Parmeliaceae</i>).","authors":"C G Boluda, V J Rico, P K Divakar, O Nadyeina, L Myllys, R T McMullin, J C Zamora, C Scheidegger, D L Hawksworth","doi":"10.3767/persoonia.2019.42.04","DOIUrl":"10.3767/persoonia.2019.42.04","url":null,"abstract":"<p><p>In many lichen-forming fungi, molecular phylogenetic analyses lead to the discovery of cryptic species within traditional morphospecies. However, in some cases, molecular sequence data also questions the separation of phenotypically characterised species. Here we apply an integrative taxonomy approach - including morphological, chemical, molecular, and distributional characters - to re-assess species boundaries in a traditionally speciose group of hair lichens, <i>Bryoria</i> sect. <i>Implexae</i>. We sampled multilocus sequence and microsatellite data from 142 specimens from a broad intercontinental distribution. Molecular data included DNA sequences of the standard fungal markers ITS, IGS, <i>GAPDH</i>, two newly tested loci (FRBi15 and FRBi16), and SSR frequencies from 18 microsatellite markers. Datasets were analysed with Bayesian and maximum likelihood phylogenetic reconstruction, phenogram reconstruction, STRUCTURE Bayesian clustering, principal coordinate analysis, haplotype network, and several different species delimitation analyses (ABGD, PTP, GMYC, and DISSECT). Additionally, past population demography and divergence times are estimated. The different approaches to species recognition do not support the monophyly of the 11 currently accepted morphospecies, and rather suggest the reduction of these to four phylogenetic species. Moreover, three of these are relatively recent in origin and cryptic, including phenotypically and chemically variable specimens. Issues regarding the integration of an evolutionary perspective into taxonomic conclusions in species complexes, which have undergone recent diversification, are discussed. The four accepted species, all epitypified by sequenced material, are <i>Bryoria fuscescens</i>, <i>B. glabra</i>, <i>B. kockiana</i>, and <i>B. pseudofuscescens</i>. Ten species rank names are reduced to synonymy. In the absence of molecular data, they can be recorded as the <i>B. fuscescens</i> complex. Intraspecific phenotype plasticity and factors affecting the speciation of different morphospecies in this group of <i>Bryoria</i> are outlined.</p>","PeriodicalId":20014,"journal":{"name":"Persoonia","volume":"42 ","pages":"75-100"},"PeriodicalIF":9.5,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/a8/05/per-42-75.PMC6712543.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10481069","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pindara revisited - evolution and generic limits in Helvellaceae. Pindara重访-海葵科植物的进化和属界。
IF 9.1 1区 生物学 Q1 MYCOLOGY Pub Date : 2019-06-01 Epub Date: 2019-04-12 DOI: 10.3767/persoonia.2019.42.07
K Hansen, T Schumacher, I Skrede, S Huhtinen, X-H Wang

The Helvellaceae encompasses taxa that produce some of the most elaborate apothecial forms, as well as hypogeous ascomata, in the class Pezizomycetes (Ascomycota). While the circumscription of the Helvellaceae is clarified, evolutionary relationships and generic limits within the family are debatable. A robust phylogeny of the Helvellaceae, using an increased number of molecular characters from the LSU rDNA, RPB2 and EF-1α gene regions (4 299 bp) and a wide representative sampling, is presented here. Helvella s.lat. was shown to be polyphyletic, because Helvella aestivalis formed a distant monophyletic group with hypogeous species of Balsamia and Barssia. All other species of Helvella formed a large group with the enigmatic Pindara (/Helvella) terrestris nested within it. The ear-shaped Wynnella constitutes an independent lineage and is recognised with the earlier name Midotis. The clade of the hypogeous Balsamia and Barssia, and H. aestivalis is coherent in the three-gene phylogeny, and considering the lack of phenotypic characters to distinguish Barssia from Balsamia we combine species of Barssia, along with H. aestivalis, in Balsamia. The closed/tuberiform, sparassoid H. astieri is shown to be a synonym of H. lactea; it is merely an incidental folded form of the saddle-shaped H. lactea. Pindara is a sister group to a restricted Helvella, i.e., excluding the /leucomelaena lineage, on a notably long branch. We recognise Pindara as a separate genus and erect a new genus Dissingia for the /leucomelaena lineage, viz. H. confusa, H. crassitunicata, H. leucomelaena and H. oblongispora. Dissingia is supported by asci that arise from simple septa; all other species of Helvellaceae have asci that arise from croziers, with one exception being the /alpina-corium lineage of Helvella s.str. This suggests ascus development from croziers is the ancestral state for the Helvellaceae and that ascus development from simple septa has evolved at least twice in the family. Our phylogeny does not determine the evolutionary relationships within Helvella s.str., but it is most parsimonious to infer that the ancestor of the helvelloids produced subsessile or shortly stipitate, cup-shaped apothecia. This shape has been maintained in some lineages of Helvella s.str. The type species of Underwoodia, Underwoodia columnaris, is a sister lineage to the rest of the Helvellaceae.

Helvellaceae包含产生一些最复杂的Apothecul形式的分类群,以及深生子囊菌纲(子囊菌门)。虽然海葵科的范围已经明确,但该科的进化关系和属范围仍有争议。利用LSU rDNA、RPB2和EF-1α基因区(4 299 bp)的大量分子特征和广泛的代表性采样,对三叶草科进行了强有力的系统发育研究。Helvella s.lat.被证明是多系的,因为Helvella aestivalis与地下种Balsamia和Barssia形成了一个遥远的单系群。Helvella的所有其他物种都形成了一个庞大的群体,神秘的Pindara(/Helvella)terrestris嵌套在其中。耳朵形状的Wynnella构成了一个独立的谱系,并以早期的名字Midotis而闻名。在三基因系统发育中,地下香米属和巴尔西亚属以及H.aestivalis的分支是一致的,考虑到缺乏表型特征来区分巴尔西亚和巴尔西亚,我们将巴尔西亚属的物种与H.aestival合并在巴尔西亚中。闭合的/块茎状的、裂头菌状的H.astieri被证明是H.lactea的同义词;它只是鞍形乳杆菌的偶然折叠形式。Pindara是一个限制性Helvella的姐妹群,即在一个特别长的分支上,不包括/lucomelaena谱系。我们将扁蝶属视为一个单独的属,并为/白蝶谱系建立了一个新属Dissingia,即H.confusa、H.crassitunicata、H.白蝶和H.oblongispora。由单纯隔膜引起的腹水支持Dissingia;除了Helvella s.str的/alpina corium谱系外,Helvellaceae的所有其他物种都有来自croziers的asci。这表明,从croziers发育的ascus是Helvellacae的祖先状态,从简单隔膜发育的ascu在该家族中至少进化了两次。我们的系统发育学并不能确定Helvella s.str.的进化关系,但最简单的推断是,Helvella的祖先产生了近无柄或短柄的杯状端古猿。这种形状在Helvella s.str的一些谱系中得到了保持。Underwood的模式种,柱状Underwood,是Helvella科其他物种的姐妹谱系。
{"title":"<i>Pindara</i> revisited - evolution and generic limits in <i>Helvellaceae</i>.","authors":"K Hansen,&nbsp;T Schumacher,&nbsp;I Skrede,&nbsp;S Huhtinen,&nbsp;X-H Wang","doi":"10.3767/persoonia.2019.42.07","DOIUrl":"https://doi.org/10.3767/persoonia.2019.42.07","url":null,"abstract":"<p><p>The <i>Helvellaceae</i> encompasses taxa that produce some of the most elaborate apothecial forms, as well as hypogeous ascomata, in the class <i>Pezizomycetes</i> (<i>Ascomycota</i>). While the circumscription of the <i>Helvellaceae</i> is clarified, evolutionary relationships and generic limits within the family are debatable. A robust phylogeny of the <i>Helvellaceae</i>, using an increased number of molecular characters from the LSU rDNA, <i>RPB2</i> and <i>EF-1α</i> gene regions (4 299 bp) and a wide representative sampling, is presented here. <i>Helvella</i> s.lat. was shown to be polyphyletic, because <i>Helvella aestivalis</i> formed a distant monophyletic group with hypogeous species of <i>Balsamia</i> and <i>Barssia</i>. All other species of <i>Helvella</i> formed a large group with the enigmatic <i>Pindara</i> (/<i>Helvella</i>) <i>terrestris</i> nested within it. The ear-shaped <i>Wynnella</i> constitutes an independent lineage and is recognised with the earlier name <i>Midotis</i>. The clade of the hypogeous <i>Balsamia</i> and <i>Barssia</i>, and <i>H. aestivalis</i> is coherent in the three-gene phylogeny, and considering the lack of phenotypic characters to distinguish <i>Barssia</i> from <i>Balsamia</i> we combine species of <i>Barssia</i>, along with <i>H. aestivalis</i>, in <i>Balsamia</i>. The closed/tuberiform, sparassoid <i>H. astieri</i> is shown to be a synonym of <i>H. lactea</i>; it is merely an incidental folded form of the saddle-shaped <i>H. lactea</i>. <i>Pindara</i> is a sister group to a restricted <i>Helvella</i>, i.e., excluding the /<i>leucomelaena</i> lineage, on a notably long branch. We recognise <i>Pindara</i> as a separate genus and erect a new genus <i>Dissingia</i> for the /<i>leucomelaena</i> lineage, viz. <i>H. confusa</i>, <i>H. crassitunicata</i>, <i>H. leucomelaena</i> and <i>H. oblongispora</i>. <i>Dissingia</i> is supported by asci that arise from simple septa; all other species of <i>Helvellaceae</i> have asci that arise from croziers, with one exception being the <i>/alpina-corium</i> lineage of <i>Helvella</i> s.str. This suggests ascus development from croziers is the ancestral state for the <i>Helvellaceae</i> and that ascus development from simple septa has evolved at least twice in the family. Our phylogeny does not determine the evolutionary relationships within <i>Helvella</i> s.str., but it is most parsimonious to infer that the ancestor of the helvelloids produced subsessile or shortly stipitate, cup-shaped apothecia. This shape has been maintained in some lineages of <i>Helvella</i> s.str. The type species of <i>Underwoodia</i>, <i>Underwoodia columnaris</i>, is a sister lineage to the rest of the <i>Helvellaceae</i>.</p>","PeriodicalId":20014,"journal":{"name":"Persoonia","volume":"42 ","pages":"186-204"},"PeriodicalIF":9.1,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3767/persoonia.2019.42.07","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41208784","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
Re-evaluation of Mycoleptodiscus species and morphologically similar fungi. 钩端分枝杆菌属和形态相似真菌的再评价。
IF 9.1 1区 生物学 Q1 MYCOLOGY Pub Date : 2019-06-01 Epub Date: 2019-05-03 DOI: 10.3767/persoonia.2019.42.08
M Hernández-Restrepo, J D P Bezerra, Y P Tan, N Wiederhold, P W Crous, J Guarro, J Gené

Mycoleptodiscus includes plant pathogens, animal opportunists, saprobic and endophytic fungi. The present study presents the first molecular phylogeny and revision of the genus based on four loci, including ITS, LSU, rpb2, and tef1. An extensive collection of Mycoleptodiscus cultures, including ex-type strains from the CBS, IMI, MUCL, BRIP, clinical isolates from the USA, and fresh isolates from Brazil and Spain, was studied morphologically and phylogenetically to resolve their taxonomy. The study showed that Mycoleptodiscus sensu lato is polyphyletic. Phylogenetic analysis places Mycoleptodiscus in Muyocopronales (Dothideomycetes), together with Arxiella, Leptodiscella, Muyocopron, Neocochlearomyces, and Paramycoleptodiscus. Mycoleptodiscus terrestris, the type species, and M. sphaericus are reduced to synonyms, and one new species is introduced, M. suttonii. Mycoleptodiscus atromaculans, M. coloratus, M. freycinetiae, M. geniculatus, M. indicus, M. lateralis (including M. unilateralis and M. variabilis as its synonyms) and M. taiwanensis belong to Muyocopron (Muyocopronales, Dothideomycetes), and M. affinis, and M. lunatus to Omnidemptus (Magnaporthales, Sordariomycetes). Based on phylogenetic analyses we propose Muyocopron alcornii sp. nov., a fungus associated with leaf spots on Epidendrum sp. (Orchidaceae) in Australia, Muyocopron zamiae sp. nov. associated with leaf spots on Zamia (Zamiaceae) in the USA, and Omnidemptus graminis sp. nov. isolated from a grass (Poaceae) in Spain. Furthermore, Neomycoleptodiscus venezuelense gen. & sp. nov. is introduced for a genus similar to Mycoleptodiscus in Muyocopronaceae.

分枝杆菌包括植物病原体、动物机会主义者、腐生真菌和内生真菌。本研究首次基于ITS、LSU、rpb2和tef1四个基因座对该属进行了分子系统发育和修正。对广泛收集的钩端支原体培养物,包括来自CBS、IMI、MUCL、BRIP的前型菌株、来自美国的临床分离株以及来自巴西和西班牙的新鲜分离株进行了形态学和系统发育研究,以解决其分类学问题。研究表明,感状细螺旋体是多系的。系统发育分析将细柄分枝杆菌与阿氏菌属、细柄分枝菌属、粗柄分枝杆菌属、新毛球酵母属和副细柄分枝虫属一起归入Muyocoponales(Dothieomycetes)。将模式种土分枝杆菌和球形分枝杆菌简化为同义词,并引入一个新种,即M.suttonii。萎缩分枝杆菌、科罗拉多分枝杆菌、freycinetiae分枝杆菌、膝状分枝杆菌、印度分枝杆菌、偏侧分枝杆菌(包括单侧分枝杆菌和可变分枝杆菌作为其同义词)和台湾分枝杆菌属于Muyocopron(Muyocoponales,Dothidomycetes),而亲缘分枝杆菌和轮状分枝杆菌属于Omnidemptus(Magnaporthales,Sordariomycets)。在系统发育分析的基础上,我们提出了澳大利亚的一种与表皮植物(兰科)上的叶斑有关的真菌Muyocopron alcornii sp.nov.、美国的与Zamia(Zamiaceae)上的叶斑有关的Muyocopon zamiae sp.nov..和从西班牙的一种草(Poceae)中分离的Omnidemptus graminis sp.novs。此外,将venezuelense gen.sp.nov.作为一个类似于Muyocoponaceae中Mycoleptodiscs的属引入。
{"title":"Re-evaluation of <i>Mycoleptodiscus</i> species and morphologically similar fungi.","authors":"M Hernández-Restrepo,&nbsp;J D P Bezerra,&nbsp;Y P Tan,&nbsp;N Wiederhold,&nbsp;P W Crous,&nbsp;J Guarro,&nbsp;J Gené","doi":"10.3767/persoonia.2019.42.08","DOIUrl":"https://doi.org/10.3767/persoonia.2019.42.08","url":null,"abstract":"<p><p><i>Mycoleptodiscus</i> includes plant pathogens, animal opportunists, saprobic and endophytic fungi. The present study presents the first molecular phylogeny and revision of the genus based on four loci, including ITS, LSU, <i>rpb2</i>, and <i>tef1</i>. An extensive collection of <i>Mycoleptodiscus</i> cultures, including ex-type strains from the CBS, IMI, MUCL, BRIP, clinical isolates from the USA, and fresh isolates from Brazil and Spain, was studied morphologically and phylogenetically to resolve their taxonomy. The study showed that <i>Mycoleptodiscus</i> sensu lato is polyphyletic. Phylogenetic analysis places <i>Mycoleptodiscus</i> in <i>Muyocopronales</i> (<i>Dothideomycetes</i>), together with <i>Arxiella</i>, <i>Leptodiscella</i>, <i>Muyocopron</i>, <i>Neocochlearomyces</i>, and <i>Paramycoleptodiscus</i>. <i>Mycoleptodiscus terrestris</i>, the type species, and <i>M. sphaericus</i> are reduced to synonyms, and one new species is introduced, <i>M. suttonii. Mycoleptodiscus atromaculans</i>, <i>M. coloratus</i>, <i>M. freycinetiae</i>, <i>M. geniculatus</i>, <i>M. indicus</i>, <i>M. lateralis</i> (including <i>M. unilateralis</i> and <i>M. variabilis</i> as its synonyms) and <i>M. taiwanensis</i> belong to <i>Muyocopron</i> (<i>Muyocopronales</i>, <i>Dothideomycetes</i>), and <i>M. affinis</i>, and <i>M. lunatus</i> to <i>Omnidemptus</i> (<i>Magnaporthales</i>, <i>Sordariomycetes</i>). Based on phylogenetic analyses we propose <i>Muyocopron alcornii</i> sp. nov., a fungus associated with leaf spots on <i>Epidendrum</i> sp. (<i>Orchidaceae</i>) in Australia, <i>Muyocopron zamiae</i> sp. nov. associated with leaf spots on <i>Zamia</i> (<i>Zamiaceae</i>) in the USA, and <i>Omnidemptus graminis</i> sp. nov. isolated from a grass (<i>Poaceae</i>) in Spain. Furthermore, <i>Neomycoleptodiscus venezuelense</i> gen. & sp. nov. is introduced for a genus similar to <i>Mycoleptodiscus</i> in <i>Muyocopronaceae</i>.</p>","PeriodicalId":20014,"journal":{"name":"Persoonia","volume":"42 ","pages":"205-227"},"PeriodicalIF":9.1,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3767/persoonia.2019.42.08","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41208787","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 33
A phylogenetic and taxonomic revision of sequestrate Russulaceae in Mediterranean and temperate Europe. 地中海和温带欧洲的一个孤立红菇科的系统发育和分类学修订。
IF 9.1 1区 生物学 Q1 MYCOLOGY Pub Date : 2019-06-01 Epub Date: 2019-04-05 DOI: 10.3767/persoonia.2019.42.06
J M Vidal, P Alvarado, M Loizides, G Konstantinidis, P Chachuła, P Mleczko, G Moreno, A Vizzini, M Krakhmalnyi, A Paz, J Cabero, V Kaounas, M Slavova, B Moreno-Arroyo, J Llistosella

A comprehensive morphological and genetic study of type material and new collections of sequestrate Russulales species formerly belonging to the genera Arcangeliella, Elasmomyces, Gymnomyces, Hydnangium, Hymenogaster, Macowanites, Martellia, Secotium and Zelleromyces is here undertaken, for the purpose of providing a complete taxonomical revision of sequestrate Russulaceae species in the Mediterranean and temperate regions of Europe. As a result, seven distinct taxa in the genus Lactarius and 18 in the genus Russula are identified. Six of them are new species: L. populicola, L. subgiennensis, R. bavarica, R. candidissima, R. hobartiae and R. mediterraneensis, and seven represent new combinations: L. josserandii (≡ Zelleromyces josserandii), L. soehneri (≡ Hydnangium soehneri), R. candida (≡ Hydnangium candidum), R. cerea (≡ Hydnangium cereum), R. messapica var. messapicoides (≡ Macowanites messapicoides), R. meridionalis (≡ Zelleromyces meridionalis) and R. neuhoffii (≡ Hydnangium neuhoffii). Twenty-two of the 25 taxa are illustrated, while descriptions, microscopy images, as well as extensive information on the ecology, chorology and phylogeny for all taxa are provided. A key is further included to facilitate their identification.

本文对以前属于Arcangeliella属、Elasmomyces属、Gymnomyces属、Hynangium属、Hymenogaster属、Macowanites属、Martellia属、Secotium属和Zelleromyces系的固存红菇属物种的模式物质和新集合进行了全面的形态学和遗传学研究,目的是对欧洲地中海和温带地区的固存红菇科物种进行完整的分类修订。结果,鉴定出乳菇属7个不同的分类群和红菇属18个。其中6个为新种:L.populicola、L.subgienensis、R.bavarica、R.candissima、R.hobartiae和R.mediteranensis,7个为新组合:L.josserandii(lect Zelleromyces josserandidi)、L.soehneri(lect Hydnagium soehneris)、R.canda(lect Hydrnangium candium)、R.cerea(lect Hydnangium cereum)、R.messapica var.messapicoides(lect Macowanites messapicoides),meridionalis(lect Zelleromyces meridionalis)和R.neuhoffii(lect Hydnagium neuhoffiii)。对25个分类群中的22个进行了说明,同时提供了所有分类群的描述、显微镜图像以及关于生态学、合唱学和系统发育的广泛信息。还包括一把钥匙,以便于识别。
{"title":"A phylogenetic and taxonomic revision of sequestrate <i>Russulaceae</i> in Mediterranean and temperate Europe.","authors":"J M Vidal,&nbsp;P Alvarado,&nbsp;M Loizides,&nbsp;G Konstantinidis,&nbsp;P Chachuła,&nbsp;P Mleczko,&nbsp;G Moreno,&nbsp;A Vizzini,&nbsp;M Krakhmalnyi,&nbsp;A Paz,&nbsp;J Cabero,&nbsp;V Kaounas,&nbsp;M Slavova,&nbsp;B Moreno-Arroyo,&nbsp;J Llistosella","doi":"10.3767/persoonia.2019.42.06","DOIUrl":"https://doi.org/10.3767/persoonia.2019.42.06","url":null,"abstract":"<p><p>A comprehensive morphological and genetic study of type material and new collections of sequestrate <i>Russulales</i> species formerly belonging to the genera <i>Arcangeliella</i>, <i>Elasmomyces</i>, <i>Gymnomyces</i>, <i>Hydnangium</i>, <i>Hymenogaster</i>, <i>Macowanites</i>, <i>Martellia</i>, <i>Secotium</i> and <i>Zelleromyces</i> is here undertaken, for the purpose of providing a complete taxonomical revision of sequestrate <i>Russulaceae</i> species in the Mediterranean and temperate regions of Europe. As a result, seven distinct taxa in the genus <i>Lactarius</i> and 18 in the genus <i>Russula</i> are identified. Six of them are new species: <i>L. populicola</i>, <i>L. subgiennensis</i>, <i>R. bavarica</i>, <i>R. candidissima</i>, <i>R. hobartiae</i> and <i>R. mediterraneensis</i>, and seven represent new combinations: <i>L. josserandii</i> (≡ <i>Zelleromyces josserandii</i>), <i>L. soehneri</i> (≡ <i>Hydnangium soehneri</i>), <i>R. candida</i> (≡ <i>Hydnangium candidum</i>), <i>R. cerea</i> (≡ <i>Hydnangium cereum</i>), <i>R. messapica</i> var. <i>messapicoides</i> (≡ <i>Macowanites messapicoides</i>), <i>R. meridionalis</i> (≡ <i>Zelleromyces meridionalis</i>) and <i>R. neuhoffii</i> (≡ <i>Hydnangium neuhoffii</i>). Twenty-two of the 25 taxa are illustrated, while descriptions, microscopy images, as well as extensive information on the ecology, chorology and phylogeny for all taxa are provided. A key is further included to facilitate their identification.</p>","PeriodicalId":20014,"journal":{"name":"Persoonia","volume":"42 ","pages":"127-185"},"PeriodicalIF":9.1,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3767/persoonia.2019.42.06","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41208785","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 23
Two new classes of Ascomycota: Xylobotryomycetes and Candelariomycetes. 子囊菌门的两个新分类:木霉菌目和Candelariomycetes。
IF 9.5 1区 生物学 Q1 MYCOLOGY Pub Date : 2019-06-01 Epub Date: 2018-07-27 DOI: 10.3767/persoonia.2019.42.02
H Voglmayr, J Fournier, W M Jaklitsch

Phylogenetic analyses of a combined DNA data matrix containing nuclear small and large subunits (nSSU, nLSU) and mitochondrial small subunit (mtSSU) ribosomal RNA and the largest and second largest subunits of the RNA polymerase II (rpb1, rpb2) of representative Pezizomycotina revealed that the enigmatic genera Xylobotryum and Cirrosporium form an isolated, highly supported phylogenetic lineage within Leotiomyceta. Acknowledging their morphological and phylogenetic distinctness, we describe the new class Xylobotryomycetes, containing the new order Xylobotryales with the two new families Xylobotryaceae and Cirrosporiaceae. The two currently accepted species of Xylobotryum, X. andinum and X. portentosum, are described and illustrated by light and scanning electron microscopy. The generic type species X. andinum is epitypified with a recent collection for which a culture and sequence data are available. Acknowledging the phylogenetic distinctness of Candelariomycetidae from Lecanoromycetes revealed in previous and the current phylogenetic analyses, the new class Candelariomycetes is proposed.

对包含核小亚基和大亚基(nSSU,nLSU)和线粒体小亚基(mtSSU)核糖体RNA以及代表性的皮霉菌门的RNA聚合酶II的最大亚基和第二大亚基的组合DNA数据矩阵的系统发育分析显示,神秘的木霉属和环孢菌属形成分离的,Leotiomyceta内高度支持的系统发育谱系。认识到它们在形态和系统发育上的独特性,我们描述了新的木霉纲,包括木霉目和两个新的科木霉科和环孢菌科。光镜和扫描电子显微镜描述并说明了目前公认的两种Xylobotryum,X.andinum和X.portentosum。属型物种X.andinum是最近的一个集合的表型,其培养物和序列数据是可用的。认识到Candelariomyceteae与Lecanoromycetes在以前和现在的系统发育分析中所揭示的系统发育差异,提出了新的Candelariomoycetes纲。
{"title":"Two new classes of <i>Ascomycota</i>: <i>Xylobotryomycetes</i> and <i>Candelariomycetes</i>.","authors":"H Voglmayr, J Fournier, W M Jaklitsch","doi":"10.3767/persoonia.2019.42.02","DOIUrl":"10.3767/persoonia.2019.42.02","url":null,"abstract":"<p><p>Phylogenetic analyses of a combined DNA data matrix containing nuclear small and large subunits (nSSU, nLSU) and mitochondrial small subunit (mtSSU) ribosomal RNA and the largest and second largest subunits of the RNA polymerase II (<i>rpb1</i>, <i>rpb2</i>) of representative <i>Pezizomycotina</i> revealed that the enigmatic genera <i>Xylobotryum</i> and <i>Cirrosporium</i> form an isolated, highly supported phylogenetic lineage within <i>Leotiomyceta</i>. Acknowledging their morphological and phylogenetic distinctness, we describe the new class <i>Xylobotryomycetes</i>, containing the new order <i>Xylobotryales</i> with the two new families <i>Xylobotryaceae</i> and <i>Cirrosporiaceae</i>. The two currently accepted species of <i>Xylobotryum</i>, <i>X. andinum</i> and <i>X. portentosum</i>, are described and illustrated by light and scanning electron microscopy. The generic type species <i>X. andinum</i> is epitypified with a recent collection for which a culture and sequence data are available. Acknowledging the phylogenetic distinctness of <i>Candelariomycetidae</i> from <i>Lecanoromycetes</i> revealed in previous and the current phylogenetic analyses, the new class <i>Candelariomycetes</i> is proposed.</p>","PeriodicalId":20014,"journal":{"name":"Persoonia","volume":"42 ","pages":"36-49"},"PeriodicalIF":9.5,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/e5/eb/per-42-36.PMC6712537.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41208788","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fungal Planet description sheets: 868-950. 真菌星球描述表:868-950。
IF 9.5 1区 生物学 Q1 MYCOLOGY Pub Date : 2019-06-01 Epub Date: 2019-07-19 DOI: 10.3767/persoonia.2019.42.11
P W Crous, A J Carnegie, M J Wingfield, R Sharma, G Mughini, M E Noordeloos, A Santini, Y S Shouche, J D P Bezerra, B Dima, V Guarnaccia, I Imrefi, Ž Jurjević, D G Knapp, G M Kovács, D Magistà, G Perrone, T Rämä, Y A Rebriev, R G Shivas, S M Singh, C M Souza-Motta, R Thangavel, N N Adhapure, A V Alexandrova, A C Alfenas, R F Alfenas, P Alvarado, A L Alves, D A Andrade, J P Andrade, R N Barbosa, A Barili, C W Barnes, I G Baseia, J-M Bellanger, C Berlanas, A E Bessette, A R Bessette, A Yu Biketova, F S Bomfim, T E Brandrud, K Bransgrove, A C Q Brito, J F Cano-Lira, T Cantillo, A D Cavalcanti, R Cheewangkoon, R S Chikowski, C Conforto, T R L Cordeiro, J D Craine, R Cruz, U Damm, R J V de Oliveira, J T de Souza, H G de Souza, J D W Dearnaley, R A Dimitrov, F Dovana, A Erhard, F Esteve-Raventós, C R Félix, G Ferisin, R A Fernandes, R J Ferreira, L O Ferro, C N Figueiredo, J L Frank, K T L S Freire, D García, J Gené, A Gêsiorska, T B Gibertoni, R A G Gondra, D E Gouliamova, D Gramaje, F Guard, L F P Gusmão, S Haitook, Y Hirooka, J Houbraken, V Hubka, A Inamdar, T Iturriaga, I Iturrieta-González, M Jadan, N Jiang, A Justo, A V Kachalkin, V I Kapitonov, M Karadelev, J Karakehian, T Kasuya, I Kautmanová, J Kruse, I Kušan, T A Kuznetsova, M F Landell, K-H Larsson, H B Lee, D X Lima, C R S Lira, A R Machado, H Madrid, O M C Magalhães, H Majerova, E F Malysheva, R R Mapperson, P A S Marbach, M P Martín, A Martín-Sanz, N Matočec, A R McTaggart, J F Mello, R F R Melo, A Mešić, S J Michereff, A N Miller, A Minoshima, L Molinero-Ruiz, O V Morozova, D Mosoh, M Nabe, R Naik, K Nara, S S Nascimento, R P Neves, I Olariaga, R L Oliveira, T G L Oliveira, T Ono, M E Ordoñez, A de M Ottoni, L M Paiva, F Pancorbo, B Pant, J Pawłowska, S W Peterson, D B Raudabaugh, E Rodríguez-Andrade, E Rubio, K Rusevska, A L C M A Santiago, A C S Santos, C Santos, N A Sazanova, S Shah, J Sharma, B D B Silva, J L Siquier, M S Sonawane, A M Stchigel, T Svetasheva, N Tamakeaw, M T Telleria, P V Tiago, C M Tian, Z Tkalčec, M A Tomashevskaya, H H Truong, M V Vecherskii, C M Visagie, A Vizzini, N Yilmaz, I V Zmitrovich, E A Zvyagina, T Boekhout, T Kehlet, T Læssøe, J Z Groenewald
<p><p>Novel species of fungi described in this study include those from various countries as follows: <b>Australia</b>, <i>Chaetomella pseudocircinoseta</i> and <i>Coniella pseudodiospyri</i> on <i>Eucalyptus microcorys</i> leaves, <i>Cladophialophora eucalypti</i>, <i>Teratosphaeria dunnii</i> and <i>Vermiculariopsiella dunnii</i> on <i>Eucalyptus dunnii</i> leaves, <i>Cylindrium grande</i> and <i>Hypsotheca eucalyptorum</i> on <i>Eucalyptus grandis</i> leaves, <i>Elsinoe salignae</i> on <i>Eucalyptus saligna</i> leaves, <i>Marasmius lebeliae</i> on litter of regenerating subtropical rainforest, <i>Phialoseptomonium eucalypti</i> (incl. <i>Phialoseptomonium</i> gen. nov.) on <i>Eucalyptus grandis</i> × <i>camaldulensis</i> leaves, <i>Phlogicylindrium pawpawense</i> on <i>Eucalyptus tereticornis</i> leaves, <i>Phyllosticta longicauda</i> as an endophyte from healthy <i>Eustrephus latifolius</i> leaves, <i>Pseudosydowia eucalyptorum</i> on <i>Eucalyptus</i> sp. leaves, <i>Saitozyma wallum</i> on <i>Banksia aemula</i> leaves, <i>Teratosphaeria henryi</i> on <i>Corymbia henryi</i> leaves<i>.</i> <b>Brazil</b>, <i>Aspergillus bezerrae</i>, <i>Backusella azygospora</i>, <i>Mariannaea terricola</i> and <i>Talaromyces pernambucoensis</i> from soil, <i>Calonectria matogrossensis</i> on <i>Eucalyptus urophylla</i> leaves, <i>Calvatia brasiliensis</i> on soil, <i>Carcinomyces nordestinensis</i> on <i>Bromelia antiacantha</i> leaves, <i>Dendryphiella stromaticola</i> on small branches of an unidentified plant, <i>Nigrospora brasiliensis</i> on <i>Nopalea cochenillifera</i> leaves, <i>Penicillium alagoense</i> as a leaf endophyte on a <i>Miconia</i> sp., <i>Podosordaria nigrobrunnea</i> on dung, <i>Spegazzinia bromeliacearum</i> as a leaf endophyte on <i>Tilandsia catimbauensis</i>, <i>Xylobolus brasiliensis</i> on decaying wood. <b>Bulgaria</b>, <i>Kazachstania molopis</i> from the gut of the beetle <i>Molops piceus.</i> <b>Croatia</b>, <i>Mollisia endocrystallina</i> from a fallen decorticated <i>Picea abies</i> tree trunk<i>.</i> <b>Ecuador</b>, <i>Hygrocybe rodomaculata</i> on soil. <b>Hungary</b>, <i>Alfoldia vorosii</i> (incl. <i>Alfoldia</i> gen. nov.) from <i>Juniperus communis</i> roots, <i>Kiskunsagia ubrizsyi</i> (incl. <i>Kiskunsagia</i> gen. nov.) from <i>Fumana procumbens</i> roots<i>.</i> <b>India</b>, <i>Aureobasidium tremulum</i> as laboratory contaminant, <i>Leucosporidium himalayensis</i> and <i>Naganishia indica</i> from windblown dust on glaciers. <b>Italy</b>, <i>Neodevriesia cycadicola</i> on <i>Cycas</i> sp. leaves, <i>Pseudocercospora pseudomyrticola</i> on <i>Myrtus communis</i> leaves, <i>Ramularia pistaciae</i> on <i>Pistacia lentiscus</i> leaves, <i>Neognomoniopsis quercina</i> (incl. <i>Neognomoniopsis</i> gen. nov.) on <i>Quercus ilex</i> leaves<i>.</i> <b>Japan</b>, <i>Diaporthe fructicola</i> on <i>Passiflora edulis</i> × <i>P</i>. <i>edulis</i> f. <i>flavicarpa</i> fruit, <i>Entoloma nipponicum</i> on leaf litter in a mixed
本研究中描述的真菌新种包括来自不同国家的真菌:澳大利亚、桉树微孔叶上的Chaetomella pseudo-circinoseta和Coniella pseudo diospyri,桉树叶上的Cladophalophora eucalypti、Teratospeeria dunnii和Vermiculariopsiella dunnii,巨桉叶上的Cylindrium grande和Hypsotheca eucalyptorum,沙林桉叶上的沙林Elsinoe salignae,再生亚热带雨林枯枝落叶上的Marasmius lebelia,巨桉×camaldulensis叶上的Eucalyptus septomonium eucalypti(包括Phialosemptomonium gen.nov,Eucalyptus sp.叶片上的Pseudosydowia eucalyptorum,Banksia aemula叶片上的Saitozyma wallum,Corymbia henryi叶片上的Teratospharia henryi。巴西,土壤中的bezerrae曲霉、Backusella azygospora、Mariannaea terricola和Talaromyces pernambucoensis,尾叶桉叶上的Calonectria matogrosensis,土壤上的Calvatia brasiliensis,反斑蝥叶上的nordestinensis Carcinomyces,未知植物小枝条上的Dendrypiella stromaticola,阿氏青霉菌(Penicillium alagoense)是Miconia sp.上的叶内生菌,粪便上的黑腐木(Podosordararia nigrobrunnea。保加利亚,Kazachstania molopis来自甲虫Molops piceus的肠道。克罗地亚,从一棵倒下的剥皮云杉树干上摘下的内结晶Mollisia。厄瓜多尔,土壤上的杆蛙。匈牙利,来自Juniperus commons根的Alfoldia vorosii(包括Alfoldia gen.nov.),来自Fumana procumbens根的Kiskunsagia ubizyi(包括Kiskunsgia gen.nov..)。印度,tremulum Aureobasidium作为实验室污染物,himalayensis Leucosporidium和Naganishia indica来自冰川上被风吹的灰尘。意大利,苏铁属叶片上的Neodevriesia cycadicola,杨梅叶上的Pseudocercospora pseudo-myrticola,黄连木叶上的Ramularia pisciae,Quercus ilex叶上的Neognomoniopsis quercina(包括Neognomoninopsis gen.nov.)。日本,西番莲×黄果的果实,柳杉和宏碁混合林中落叶层上的日本Entoloma niponicum。马其顿,Astraeus macedonicus在土壤上。马来西亚,Eucalyptus sp.嫩枝上的Fusicladium eucalyptinum,尾叶桉叶上的Neoacrodotilla eucalypti(包括Neoacroditilla gen.nov.)。莫桑比克,戈龙戈氏Meliola在死的中翅目小叶上。尼泊尔,来自于Dendriobium lognicornu根的Coniochaeta dendrobiicola。新西兰,性新冠病毒和新冠病毒Thozetella。挪威,岩石海岸线上一块木板上的Calophoma sandfjordenica,土壤上的Clavaria parvispora,樟子松漂流木上的Didymela finnmarkica。波兰,Sugiyamaella锥虫来自土壤。葡萄牙,来自Acca sellowiana的Colletotrichum feijoicola。俄罗斯,毛白杨碎屑上的Crepidotus tobolensis,土壤上的Entoloma ekaterinae,Entolomae erhardii和Suillus gastroflavus,Picea abies树皮下Ips版画画廊中的Nakazawaea ambrosiae。斯洛文尼亚,长在阔叶树枝条上的长毛龙。南非,Anungitiomyces stellenboschiensis(包括Anungitimoyces gen.nov.)和Niesslia stellenbroschiana在桉树属(Eucalyptus sp.)叶片上,Beltraniella pseudoportoricensis在镰形罗汉松(Podocarpus falcatus)落叶层上,Corynespora encephallarti在Encephalartos sp.叶片上,Cytospora pavettae在Paveta revoluta叶片上,Helmintosporia erytrinicola在Erythrina humana叶片上,Syzygium sp.树皮溃疡上的Helminthosporium syzygii,芦荟叶片上的Libertasomyces aloeticus,Musa sp.果实上的月青霉菌,Lauridia tetragona叶片上的Phyllosticta lauridie,Bolusanthus specialus叶片上的Pseudotruncatelaceae fam.nov.和Dactylella bolusanthi。西班牙,Apenidiella foetida在淹没的植物残骸上,Inocybe grammatoides在Quercus ilex亚种上。冬青林腐殖质,土壤上的Ossicaulis salomii,土壤中的Phialemonium guarroi。泰国,色蝶叶上的色蝶泛孢菌。乌克兰,来自向日葵茎的向日葵Cadphora helianthi。美国,湿地松、福氏菌、美洲青霉和明尼苏达青霉下土壤上的假皮诺杆菌。越南,土地上的越南番茄。DNA条形码支持形态和培养特征。
{"title":"Fungal Planet description sheets: 868-950.","authors":"P W Crous, A J Carnegie, M J Wingfield, R Sharma, G Mughini, M E Noordeloos, A Santini, Y S Shouche, J D P Bezerra, B Dima, V Guarnaccia, I Imrefi, Ž Jurjević, D G Knapp, G M Kovács, D Magistà, G Perrone, T Rämä, Y A Rebriev, R G Shivas, S M Singh, C M Souza-Motta, R Thangavel, N N Adhapure, A V Alexandrova, A C Alfenas, R F Alfenas, P Alvarado, A L Alves, D A Andrade, J P Andrade, R N Barbosa, A Barili, C W Barnes, I G Baseia, J-M Bellanger, C Berlanas, A E Bessette, A R Bessette, A Yu Biketova, F S Bomfim, T E Brandrud, K Bransgrove, A C Q Brito, J F Cano-Lira, T Cantillo, A D Cavalcanti, R Cheewangkoon, R S Chikowski, C Conforto, T R L Cordeiro, J D Craine, R Cruz, U Damm, R J V de Oliveira, J T de Souza, H G de Souza, J D W Dearnaley, R A Dimitrov, F Dovana, A Erhard, F Esteve-Raventós, C R Félix, G Ferisin, R A Fernandes, R J Ferreira, L O Ferro, C N Figueiredo, J L Frank, K T L S Freire, D García, J Gené, A Gêsiorska, T B Gibertoni, R A G Gondra, D E Gouliamova, D Gramaje, F Guard, L F P Gusmão, S Haitook, Y Hirooka, J Houbraken, V Hubka, A Inamdar, T Iturriaga, I Iturrieta-González, M Jadan, N Jiang, A Justo, A V Kachalkin, V I Kapitonov, M Karadelev, J Karakehian, T Kasuya, I Kautmanová, J Kruse, I Kušan, T A Kuznetsova, M F Landell, K-H Larsson, H B Lee, D X Lima, C R S Lira, A R Machado, H Madrid, O M C Magalhães, H Majerova, E F Malysheva, R R Mapperson, P A S Marbach, M P Martín, A Martín-Sanz, N Matočec, A R McTaggart, J F Mello, R F R Melo, A Mešić, S J Michereff, A N Miller, A Minoshima, L Molinero-Ruiz, O V Morozova, D Mosoh, M Nabe, R Naik, K Nara, S S Nascimento, R P Neves, I Olariaga, R L Oliveira, T G L Oliveira, T Ono, M E Ordoñez, A de M Ottoni, L M Paiva, F Pancorbo, B Pant, J Pawłowska, S W Peterson, D B Raudabaugh, E Rodríguez-Andrade, E Rubio, K Rusevska, A L C M A Santiago, A C S Santos, C Santos, N A Sazanova, S Shah, J Sharma, B D B Silva, J L Siquier, M S Sonawane, A M Stchigel, T Svetasheva, N Tamakeaw, M T Telleria, P V Tiago, C M Tian, Z Tkalčec, M A Tomashevskaya, H H Truong, M V Vecherskii, C M Visagie, A Vizzini, N Yilmaz, I V Zmitrovich, E A Zvyagina, T Boekhout, T Kehlet, T Læssøe, J Z Groenewald","doi":"10.3767/persoonia.2019.42.11","DOIUrl":"10.3767/persoonia.2019.42.11","url":null,"abstract":"&lt;p&gt;&lt;p&gt;Novel species of fungi described in this study include those from various countries as follows: &lt;b&gt;Australia&lt;/b&gt;, &lt;i&gt;Chaetomella pseudocircinoseta&lt;/i&gt; and &lt;i&gt;Coniella pseudodiospyri&lt;/i&gt; on &lt;i&gt;Eucalyptus microcorys&lt;/i&gt; leaves, &lt;i&gt;Cladophialophora eucalypti&lt;/i&gt;, &lt;i&gt;Teratosphaeria dunnii&lt;/i&gt; and &lt;i&gt;Vermiculariopsiella dunnii&lt;/i&gt; on &lt;i&gt;Eucalyptus dunnii&lt;/i&gt; leaves, &lt;i&gt;Cylindrium grande&lt;/i&gt; and &lt;i&gt;Hypsotheca eucalyptorum&lt;/i&gt; on &lt;i&gt;Eucalyptus grandis&lt;/i&gt; leaves, &lt;i&gt;Elsinoe salignae&lt;/i&gt; on &lt;i&gt;Eucalyptus saligna&lt;/i&gt; leaves, &lt;i&gt;Marasmius lebeliae&lt;/i&gt; on litter of regenerating subtropical rainforest, &lt;i&gt;Phialoseptomonium eucalypti&lt;/i&gt; (incl. &lt;i&gt;Phialoseptomonium&lt;/i&gt; gen. nov.) on &lt;i&gt;Eucalyptus grandis&lt;/i&gt; × &lt;i&gt;camaldulensis&lt;/i&gt; leaves, &lt;i&gt;Phlogicylindrium pawpawense&lt;/i&gt; on &lt;i&gt;Eucalyptus tereticornis&lt;/i&gt; leaves, &lt;i&gt;Phyllosticta longicauda&lt;/i&gt; as an endophyte from healthy &lt;i&gt;Eustrephus latifolius&lt;/i&gt; leaves, &lt;i&gt;Pseudosydowia eucalyptorum&lt;/i&gt; on &lt;i&gt;Eucalyptus&lt;/i&gt; sp. leaves, &lt;i&gt;Saitozyma wallum&lt;/i&gt; on &lt;i&gt;Banksia aemula&lt;/i&gt; leaves, &lt;i&gt;Teratosphaeria henryi&lt;/i&gt; on &lt;i&gt;Corymbia henryi&lt;/i&gt; leaves&lt;i&gt;.&lt;/i&gt; &lt;b&gt;Brazil&lt;/b&gt;, &lt;i&gt;Aspergillus bezerrae&lt;/i&gt;, &lt;i&gt;Backusella azygospora&lt;/i&gt;, &lt;i&gt;Mariannaea terricola&lt;/i&gt; and &lt;i&gt;Talaromyces pernambucoensis&lt;/i&gt; from soil, &lt;i&gt;Calonectria matogrossensis&lt;/i&gt; on &lt;i&gt;Eucalyptus urophylla&lt;/i&gt; leaves, &lt;i&gt;Calvatia brasiliensis&lt;/i&gt; on soil, &lt;i&gt;Carcinomyces nordestinensis&lt;/i&gt; on &lt;i&gt;Bromelia antiacantha&lt;/i&gt; leaves, &lt;i&gt;Dendryphiella stromaticola&lt;/i&gt; on small branches of an unidentified plant, &lt;i&gt;Nigrospora brasiliensis&lt;/i&gt; on &lt;i&gt;Nopalea cochenillifera&lt;/i&gt; leaves, &lt;i&gt;Penicillium alagoense&lt;/i&gt; as a leaf endophyte on a &lt;i&gt;Miconia&lt;/i&gt; sp., &lt;i&gt;Podosordaria nigrobrunnea&lt;/i&gt; on dung, &lt;i&gt;Spegazzinia bromeliacearum&lt;/i&gt; as a leaf endophyte on &lt;i&gt;Tilandsia catimbauensis&lt;/i&gt;, &lt;i&gt;Xylobolus brasiliensis&lt;/i&gt; on decaying wood. &lt;b&gt;Bulgaria&lt;/b&gt;, &lt;i&gt;Kazachstania molopis&lt;/i&gt; from the gut of the beetle &lt;i&gt;Molops piceus.&lt;/i&gt; &lt;b&gt;Croatia&lt;/b&gt;, &lt;i&gt;Mollisia endocrystallina&lt;/i&gt; from a fallen decorticated &lt;i&gt;Picea abies&lt;/i&gt; tree trunk&lt;i&gt;.&lt;/i&gt; &lt;b&gt;Ecuador&lt;/b&gt;, &lt;i&gt;Hygrocybe rodomaculata&lt;/i&gt; on soil. &lt;b&gt;Hungary&lt;/b&gt;, &lt;i&gt;Alfoldia vorosii&lt;/i&gt; (incl. &lt;i&gt;Alfoldia&lt;/i&gt; gen. nov.) from &lt;i&gt;Juniperus communis&lt;/i&gt; roots, &lt;i&gt;Kiskunsagia ubrizsyi&lt;/i&gt; (incl. &lt;i&gt;Kiskunsagia&lt;/i&gt; gen. nov.) from &lt;i&gt;Fumana procumbens&lt;/i&gt; roots&lt;i&gt;.&lt;/i&gt; &lt;b&gt;India&lt;/b&gt;, &lt;i&gt;Aureobasidium tremulum&lt;/i&gt; as laboratory contaminant, &lt;i&gt;Leucosporidium himalayensis&lt;/i&gt; and &lt;i&gt;Naganishia indica&lt;/i&gt; from windblown dust on glaciers. &lt;b&gt;Italy&lt;/b&gt;, &lt;i&gt;Neodevriesia cycadicola&lt;/i&gt; on &lt;i&gt;Cycas&lt;/i&gt; sp. leaves, &lt;i&gt;Pseudocercospora pseudomyrticola&lt;/i&gt; on &lt;i&gt;Myrtus communis&lt;/i&gt; leaves, &lt;i&gt;Ramularia pistaciae&lt;/i&gt; on &lt;i&gt;Pistacia lentiscus&lt;/i&gt; leaves, &lt;i&gt;Neognomoniopsis quercina&lt;/i&gt; (incl. &lt;i&gt;Neognomoniopsis&lt;/i&gt; gen. nov.) on &lt;i&gt;Quercus ilex&lt;/i&gt; leaves&lt;i&gt;.&lt;/i&gt; &lt;b&gt;Japan&lt;/b&gt;, &lt;i&gt;Diaporthe fructicola&lt;/i&gt; on &lt;i&gt;Passiflora edulis&lt;/i&gt; × &lt;i&gt;P&lt;/i&gt;. &lt;i&gt;edulis&lt;/i&gt; f. &lt;i&gt;flavicarpa&lt;/i&gt; fruit, &lt;i&gt;Entoloma nipponicum&lt;/i&gt; on leaf litter in a mixed ","PeriodicalId":20014,"journal":{"name":"Persoonia","volume":"42 ","pages":"291-473"},"PeriodicalIF":9.5,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/60/33/per-42-291.PMC6712538.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41208786","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fusarium incarnatum-equiseti complex from China. 中国的 Fusarium incarnatum-equiseti complex。
IF 9.1 1区 生物学 Q1 MYCOLOGY Pub Date : 2019-01-01 Epub Date: 2019-06-05 DOI: 10.3767/persoonia.2019.43.03
M M Wang, Q Chen, Y Z Diao, W J Duan, L Cai

The Fusarium incarnatum-equiseti species complex (FIESC) is shown to encompass 33 phylogenetic species, across a wide range of habitats/hosts around the world. Here, 77 pathogenic and endophytic FIESC strains collected from China were studied to investigate the phylogenetic relationships within FIESC, based on a polyphasic approach combining morphological characters, multi-locus phylogeny and distribution patterns. The importance of standardised cultural methods to the identification and classification of taxa in the FIESC is highlighted. Morphological features of macroconidia, including the shape, size and septum number, were considered as diagnostic characters within the FIESC. A multi-locus dataset encompassing the 5.8S nuclear ribosomal gene with the two flanking internal transcribed spacers (ITS), translation elongation factor (EF-1α), calmodulin (CAM), partial RNA polymerase largest subunit (RPB1) and partial RNA polymerase second largest subunit (RPB2), was generated to distinguish species within the FIESC. Nine novel species were identified and described. The RPB2 locus is demonstrated to be a primary barcode with high success rate in amplification, and to have the best species delimitation compared to the other four tested loci.

研究表明,在世界各地广泛的栖息地/寄主中,Fusarium incarnatum-equiseti 物种复合体(FIESC)包括 33 个系统发育物种。本文研究了从中国采集的 77 株致病性和内生性 FIESC 菌株,基于形态特征、多焦点系统发育和分布模式相结合的多相方法,探讨了 FIESC 内部的系统发育关系。研究强调了标准化文化方法对 FIESC 分类群鉴定和分类的重要性。大锥体的形态特征(包括形状、大小和隔膜数量)被视为 FIESC 中的诊断特征。多焦点数据集包括 5.8S 核糖体基因及两个侧翼内部转录间隔(ITS)、翻译延伸因子(EF-1α)、钙调素(CAM)、部分 RNA 聚合酶最大亚基(RPB1)和部分 RNA 聚合酶第二大亚基(RPB2),用于区分 FIESC 中的物种。发现并描述了九个新物种。结果表明,RPB2 基因座是一个主要的条形码,扩增成功率高,与其他四个测试基因座相比,其物种划分效果最好。
{"title":"<i>Fusarium incarnatum-equiseti</i> complex from China.","authors":"M M Wang, Q Chen, Y Z Diao, W J Duan, L Cai","doi":"10.3767/persoonia.2019.43.03","DOIUrl":"10.3767/persoonia.2019.43.03","url":null,"abstract":"<p><p>The <i>Fusarium incarnatum-equiseti</i> species complex (FIESC) is shown to encompass 33 phylogenetic species, across a wide range of habitats/hosts around the world. Here, 77 pathogenic and endophytic FIESC strains collected from China were studied to investigate the phylogenetic relationships within FIESC, based on a polyphasic approach combining morphological characters, multi-locus phylogeny and distribution patterns. The importance of standardised cultural methods to the identification and classification of taxa in the FIESC is highlighted. Morphological features of macroconidia, including the shape, size and septum number, were considered as diagnostic characters within the FIESC. A multi-locus dataset encompassing the 5.8S nuclear ribosomal gene with the two flanking internal transcribed spacers (ITS), translation elongation factor (<i>EF-1α</i>), calmodulin (<i>CAM</i>), partial RNA polymerase largest subunit (<i>RPB1</i>) and partial RNA polymerase second largest subunit (<i>RPB2</i>), was generated to distinguish species within the FIESC. Nine novel species were identified and described. The <i>RPB2</i> locus is demonstrated to be a primary barcode with high success rate in amplification, and to have the best species delimitation compared to the other four tested loci.</p>","PeriodicalId":20014,"journal":{"name":"Persoonia","volume":"43 ","pages":"70-89"},"PeriodicalIF":9.1,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/9f/21/per-43-70.PMC7085858.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37774100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Persoonia
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1