首页 > 最新文献

Persoonia最新文献

英文 中文
A taxogenomic view of the genus Torulaspora: an expansion from ten to twenty-two species. 虎蛛属的分类基因组学观点:从10种扩展到22种。
IF 7.3 1区 生物学 Q1 MYCOLOGY Pub Date : 2025-06-01 Epub Date: 2025-05-23 DOI: 10.3114/persoonia.2025.54.08
M R Silva, F Paraíso, J Al-Oboudi, M Abegg, A Aires, K O Barros, P H Brito, M Jarzyna, K Sylvester, Q K Langdon, D A Opulente, F Carriconde, J W Fell, T A Hofmann, M-A Lachance, J-L Legras, D Libkind, A Pontes, P Gonçalves, C A Rosa, M Groenewald, C T Hittinger, J P Sampaio

The yeast genus Torulaspora (subphylum Saccharomycotina, family Saccharomycetaceae) is mostly known from its type species, T. delbrueckii, a frequent colonizer of wine and sourdough bread fermentations. The genus currently contains 10 species that are typically found in various natural terrestrial environments in temperate and tropical climates. Here we employ taxogenomic analyses to investigate a large collection of Torulaspora strains obtained in multiple surveys we carried out in Asia, Australasia, North America, South America, and Europe, and to which we added several strains maintained in culture collections. Our analyses detected twelve novel species that are formally described here, thereby more than doubling the species diversity of Torulaspora. We also sketch a genotype-phenotype map for the genus and show how the complex relationship between key genes and the physiological traits they control both between and within species. This remarkable increase in the number of species in the genus Torulaspora highlights how limited the current inventory of fungal taxa is. It also shows how integrated taxogenomic approaches can foster the assessment of species circumscriptions in fungi. Citation: Silva MR, Paraíso F, Al-Oboudi J, Abegg M, Aires A, Barros KO, Brito PH, Jarzyna M, Sylvester K, Langdon QK, Opulente DA, Carriconde F, Fell JW, Hofmann TA, Lachance M-A, Legras J-L, Libkind D, Pontes A, Gonçalves P, Rosa CA, Groenewald M, Hittinger CT, Sampaio JP (2025). A taxogenomic view of the genus Torulaspora: an expansion from ten to twenty-two species. Persoonia 54: 265-283. doi: 10.3114/persoonia.2025.54.08.

Torulaspora酵母属(Saccharomycotina亚门,saccharomycaceae科)主要以其模式种T. delbrueckii而为人所知,T. delbrueckii是葡萄酒和酵母面包发酵的常客。该属目前包含10种,通常在温带和热带气候的各种自然陆生环境中发现。在这里,我们采用分类基因组学分析来调查我们在亚洲、澳大拉西亚、北美、南美和欧洲进行的多次调查中获得的大量Torulaspora菌株,并在培养收藏中添加了一些菌株。我们的分析发现了这里正式描述的12个新物种,从而使Torulaspora的物种多样性增加了一倍以上。我们还绘制了该属的基因型-表型图谱,并展示了关键基因与它们在物种之间和物种内控制的生理性状之间的复杂关系。Torulaspora属物种数量的显著增加突出了真菌分类群目前的库存是多么有限。它还显示了整合的分类基因组方法如何促进真菌物种界限的评估。引用本文:Silva MR, Paraíso F, Al-Oboudi J, Abegg M, Aires A, Barros KO, Brito PH, Jarzyna M, Sylvester K, Langdon QK, Opulente DA, Carriconde F, Fell JW, Hofmann TA, Lachance M-A, Legras J- l, Libkind D, Pontes A, gonalves P, Rosa CA, Groenewald M, Hittinger CT, Sampaio JP(2025)。虎蛛属的分类基因组学观点:从10种扩展到22种。《人》54:265-283。doi: 10.3114 / persoonia.2025.54.08。
{"title":"A taxogenomic view of the genus <i>Torulaspora</i>: an expansion from ten to twenty-two species.","authors":"M R Silva, F Paraíso, J Al-Oboudi, M Abegg, A Aires, K O Barros, P H Brito, M Jarzyna, K Sylvester, Q K Langdon, D A Opulente, F Carriconde, J W Fell, T A Hofmann, M-A Lachance, J-L Legras, D Libkind, A Pontes, P Gonçalves, C A Rosa, M Groenewald, C T Hittinger, J P Sampaio","doi":"10.3114/persoonia.2025.54.08","DOIUrl":"10.3114/persoonia.2025.54.08","url":null,"abstract":"<p><p>The yeast genus <i>Torulaspora</i> (subphylum <i>Saccharomycotina</i>, family <i>Saccharomycetaceae</i>) is mostly known from its type species, <i>T. delbrueckii</i>, a frequent colonizer of wine and sourdough bread fermentations. The genus currently contains 10 species that are typically found in various natural terrestrial environments in temperate and tropical climates. Here we employ taxogenomic analyses to investigate a large collection of <i>Torulaspora</i> strains obtained in multiple surveys we carried out in Asia, Australasia, North America, South America, and Europe, and to which we added several strains maintained in culture collections. Our analyses detected twelve novel species that are formally described here, thereby more than doubling the species diversity of <i>Torulaspora</i>. We also sketch a genotype-phenotype map for the genus and show how the complex relationship between key genes and the physiological traits they control both between and within species. This remarkable increase in the number of species in the genus <i>Torulaspora</i> highlights how limited the current inventory of fungal taxa is. It also shows how integrated taxogenomic approaches can foster the assessment of species circumscriptions in fungi. <b>Citation:</b> Silva MR, Paraíso F, Al-Oboudi J, Abegg M, Aires A, Barros KO, Brito PH, Jarzyna M, Sylvester K, Langdon QK, Opulente DA, Carriconde F, Fell JW, Hofmann TA, Lachance M-A, Legras J-L, Libkind D, Pontes A, Gonçalves P, Rosa CA, Groenewald M, Hittinger CT, Sampaio JP (2025). A taxogenomic view of the genus <i>Torulaspora</i>: an expansion from ten to twenty-two species. <i>Persoonia</i> <b>54</b>: 265-283. doi: 10.3114/persoonia.2025.54.08.</p>","PeriodicalId":20014,"journal":{"name":"Persoonia","volume":"54 ","pages":"265-283"},"PeriodicalIF":7.3,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12308288/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144760719","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fungal Planet description sheets: 1781-1866. 真菌星球描述表:1781-1866。
IF 7.3 1区 生物学 Q1 MYCOLOGY Pub Date : 2025-06-01 Epub Date: 2025-07-08 DOI: 10.3114/persoonia.2025.54.10
P W Crous, D E A Catcheside, P S Catcheside, A C Alfenas, R F Alfenas, R W Barreto, T Lebel, S Balashov, J Broadbridge, Ž Jurjević, S De la Peña-Lastra, R Hoffmann, A Mateos, J Riebesehl, R G Shivas, F F Soliz Santander, Y P Tan, A Altés, D Bandini, F Carriconde, J Cazabonne, P Czachura, H Gryta, G Eyssartier, E Larsson, O L Pereira, A Rigueiro-Rodríguez, M J Wingfield, W Ahmad, S Bibi, S Denman, F Esteve-Raventós, S Hussain, T Illescas, J J Luangsa-Ard, L Möller, A Mombert, W Noisripoom, I Olariaga, F Pancorbo, A Paz, M Piątek, C Polman-Short, E Suárez, N S Afshan, H Ali, M Arzanlou, F Ayer, J Barratt, J-M Bellanger, A Bidaud, S L Bishop-Hurley, M Bohm, T Bose, E Campo, N B Chau, Ö F Çolak, T R L Cordeiro, M O Cruz, F A Custódio, A Couceiro, V Darmostuk, J D W Dearnaley, A L C M de Azevedo Santiago, L W S de Freitas, M de J Yáñez-Morales, C Domnauer, B Dentinger, K Dhileepan, J T De Souza, F Dovana, U Eberhardt, P Eisvand, A Erhard, V Fachada, A García-Martín, M Groenewald, A Hammerbacher, K Harms, S Haroon, M Haqnawaz, S Henriques, A J Hernández, L M Jacobus, D Jaen-Contreras, P Jangsantear, O Kaygusuz, R Knoppersen, T K A Kumar, M J Lynch, R Mahiques, G L Maraia, P A S Marbach, M Mehrabi-Koushki, P R Miller, S Mongkolsamrit, P-A Moreau, N H Oberlies, J A Oliveira, D Orlovich, A S Pérez-Méndez, A Pinto, H A Raja, G H Ramírez, B Raphael, A Rodrigues, H Rodrigues, D O Ramos, A Safi, S Sarwar, I Saar, R M Sánchez, J S Santana, J Scrace, L S Sales, L N P Silva, M Stryjak-Bogacka, A Tacconi, V N Thanh, A Thomas, N T Thuy, M Toome, J M Valdez-Carrazco, N I van Vuuren, J Vasey, J Vauras, C Vila-Viçosa, M Villarreal, C M Visagie, A Vizzini, E J Whiteside, J Z Groenewald

Novel species of fungi described in this study include those from various countries as follows: Argentina, Septoria reinamora on leaf spots of Mutisia spinosa. Australia, Cortinarius albofolliculus on mossy soil, Cortinarius descensoriformis among leaf litter, Cortinarius kaki among leaf litter, Cortinarius lissosporus in leaf litter, Cortinarius malogranatus in leaf litter, Cortinarius meletlac on soil in mixed forest, Cortinarius sebosioides in long decayed wood litter, Helicogermslita australiensis as an endophyte from healthy leaves of Archontophoenix cunninghamiana, Puccinia clemensiorum on culms of Eleocharis ochrostachys, Puccinia geethae on leaves of Cyperus brevifolius, Puccinia marjaniae on leaves of Nymphoides indica, Puccinia scleriae-rugosae on leaves of Scleria rugosa. Brazil, Dactylaria calliandrae on living leaf of Calliandra tweediei, Mucor cerradoensis from soil, Musicillium palmae on living leaves of unidentified palm species, Neodendryphiella agapanthi from stalks of Agapanthus praecox, Parafusicladium riodejaneiroanum on living leaves of native bamboo, Parapenidiella melastomatis on living leaves of unidentified Melastomataceae, Pararamichloridium ouropretoense on living leaves of unidentified Poaceae, Pentagonomyces endophyticus (incl. Pentagonomyces gen. nov.) as endophytic from roots of Musa acuminata, Polyschema endophytica from healthy roots of coffee plant, Purimyces endophyticus as root endophyte of Cattleya locatellii, Ramularia rhododendri on living leaves of Rhododendron sp., Staphylotrichum soli from soil, Trichoderma sexdentis from leaves inside a nest of the leaf-cutting ant Atta sexdens rubropilosa, Wiesneriomyces soli from soil. France, Cosmospora nemaniae on dead or effete stromata of Nemania cf. colliculosa, Inocybe alnobetulae in subalpine green alder stands, Stylonectria hygrophila on dead twigs of Betula pubescens. Germany, Coniochaeta corticalis from bark humus, Coniochaeta fermentaria from fermentation residues from biogas plants, Coniochaeta fibricola from softwood fibres, Coniochaeta weberae from bark humus, Inocybe canicularis on calcareous to more acidic soil with conifers. Iceland, Inocybe islandica associated with Dryas octopetala. India, Vishniacozyma indica on dead twigs. Iran, Botryotrichum lycii on rotten leaf of Lycium depressum. Italy, Cuphophyllus dolomiticus among Salix retusa, Salix reticulata and Dryas octopetala, Inocybe subentolomospora on moss with the presence of Alnus incana, Populus nigra and

本研究描述的新种真菌包括来自不同国家的:阿根廷、木刺上的Septoria reinamora。澳大利亚:苔藓土壤上的白毛囊绒蚧、凋落叶中的下降绒蚧、凋落叶中的卡基绒蚧、凋落叶中的松孢子绒蚧、凋落叶中的黑皮绒蚧、混交林土壤中的meletlac绒蚧、长腐木凋落叶中的sebosioides绒蚧、长腐木凋落叶中的内生真菌澳洲绒蚧(Archontophoenix cunninghamiana)、木犀草(Eleocharis ochrostachys)茎秆上的clemensiorum、短叶莎草叶片上的吉氏锈菌,凤头蛱蝶叶片上的马氏锈菌,凤尾蛱蝶叶片上的糙皮锈菌。巴西:采自土壤的塞拉毛霉,未鉴定的棕榈种活叶上的棕榈音乐霉,采自雷竹的Agapanthus praecox茎上的agapanhiella,采自当地竹子的活叶上的Parafusicladium riodejaneiroanum,采自未鉴定的Melastomataceae活叶上的melapenidiella,采自未鉴定的Poaceae活叶上的Parapenidiella ouropretoense,内生五孢霉属(包括五孢霉属)是尖锐木根的内生菌,咖啡植物健康根的多型内生菌,仙人掌根的内生菌Purimyces endophyticus,杜鹃花活叶上的Ramularia Rhododendron sp.,土壤中的葡萄球菌,切叶蚁巢内的木霉,土壤中的Wiesneriomyces soli。法国,Nemania Cosmospora在Nemania . collicullosa的死亡或有效的层上,Inocybe alnobetulae在亚高山绿桤木林中,styloneceria hygroberia在Betula pubescens的死枝上。德国:树皮腐殖质中的皮质Coniochaeta,沼气植物发酵残留物中的发酵Coniochaeta发酵菌,软木纤维中的纤维Coniochaeta网状Coniochaeta网状Coniochaeta网状Coniochaeta网状Coniochaeta网状Coniochaeta网状Coniochaeta网状Coniochaeta网状Coniochaeta网状Coniochaeta网状Coniochaeta网状Coniochaeta网状Coniochaeta网状Coniochaeta网状Inocybe canicularis生长在钙质到酸性较强的土壤中,有针叶树。冰岛,Inocybe岛,与Dryas octopetala有关。印度,死枝上的Vishniacozyma indica。伊朗,枸杞子腐叶上的枸杞子。在意大利,黑柳、白杨和八爪树中发现白云斑丘柏;在马来西亚,白杨、黑杨树和柳属的苔藓上发现隐孢子虫;在白叶桉的叶斑上发现黑叶斑丘柏。墨西哥,炭疽病菌,产自美洲波斯的果实。哈斯。新喀里多尼亚(法国),Cortinarius caeloculus, Cortinarius luteigemellus和Cortinarius perpensus在土壤假山毛榉aequilateralis。新西兰,家苹果枝上的胞孢子。巴基斯坦,腐殖质土壤上的卡利梭菌,针叶林凋落物上的淡紫色肠虫,亚热带阔叶林凋落物上的脱色拉卡菌。波兰,落叶落叶松树脂。栎叶烟霉群落分离的谜状结核杆菌。葡萄牙,Clavulus hemisphaericus(包括Clavulus。11月)将军在长满青苔的山坡和月桂树叶,Entoloma daegae桑迪,花岗质土壤,Hygrocybe aurantiocitrina月桂树下森林,Hygrocybe sanguineolutea群居在月桂森林,Hygrocybe vulcanica月桂森林地区长满青苔的地区,Pachyphlodes algarvensis在沙质土壤岩蔷薇salvifolius, Quercus木栓和松果体pinea。南非:足扁豆(podalyia calyptrata)叶片上的足扁桃蚜(amysphahaella poalytrata);桉红担子菌(Gonipterus sp.)肠道上的桉红担子菌(Erythrobasidium eucalyptus);柽柳(Gonioma kamassi)叶片上的扁桃蚜(letendraae goniumbrabeji)和星状叶扁桃蚜(Sphaerulina brabeji)树枝上的扁桃蚜(letendraae goniomia sticbotrys conicsia elongata)死花头上的圆锥虫(stachytrys conconsia ignescens);西班牙,冬青栎和火种栎下土壤中的褐皮线虫,冬青栎禾草和落叶中的松叶线虫,冬青栎亚种下沙质土壤中的次粗叶线虫。白桦和松柏,短毛桦和黄柳枯叶上的金针菇,白桦和黄柳枯叶上的金针菇,白松柏和圆叶松黏土和壤土上的比目鱼,月桂林中的冠状柽柳。瑞士,在非常潮湿的酸性土壤的沼泽中与柳属和桦树属的Inocybe minata。泰国,khonsanitia对蚧虫(瓢虫科),Petchiella膜翅虫对巢中膜翅目昆虫的蛹(膜翅目)。特立尼达和多巴哥,马拉瓦新devriesia maravalensis来自办公室拭子。红松属黑栎属。英属英属紫金花活叶上的短叶芽孢副芽孢菌(包括短叶芽孢副芽孢菌gen. 11 .)。 乌克兰,陆生天竺葵菌体上的天竺葵。美国,淡水溪流中淹没的木材上的印度Atromagnispora(包括Atromagnispora gener11 .),杂物间(沉降板)中的密歇根胞孢子虫,空气中(沉降板)中的aerexophiala aeris,混合松木阔叶林中的美洲红杉,卧室空气中的宾夕法尼亚州Lorrainsmithia, lyse buffer中的马萨诸塞州superstratyces。越南,干鳀鱼上的halopisaspergillus comsonnii。DNA条形码支持形态和培养特征。引用:Crous PW, Catcheside DEA、Catcheside PS Alfenas AC, Alfenas射频,Barreto RW,叔叔是T, Balashov年代,Broadbridge J, JurjevićŽ,De la Pena-Lastra年代,霍夫曼R,马特奥,Riebesehl J,湿婆RG, Soliz桑坦德FF,谭YP, alt,电影D, F Carriconde, Cazabonne J, Czachura P, Gryta H, Eyssartier G,拉尔森E,佩雷拉OL, Rigueiro-Rodriguez,温菲尔德MJ, Ahmad W,比比,Denman年代,Esteve-Raventos F,侯赛因年代,Illescas T, Luangsa-ard JJ,穆勒L, Mombert, Noisripoom W, Olariaga我,Pancorbo F,巴斯,πątek M, Polman-Short C,苏亚雷斯E, Afshan NS,阿里•H Arzanlou M,艾耶尔F, Barratt J, Bellanger J-M, Bidaud, Bishop-Hurle
{"title":"Fungal Planet description sheets: 1781-1866.","authors":"P W Crous, D E A Catcheside, P S Catcheside, A C Alfenas, R F Alfenas, R W Barreto, T Lebel, S Balashov, J Broadbridge, Ž Jurjević, S De la Peña-Lastra, R Hoffmann, A Mateos, J Riebesehl, R G Shivas, F F Soliz Santander, Y P Tan, A Altés, D Bandini, F Carriconde, J Cazabonne, P Czachura, H Gryta, G Eyssartier, E Larsson, O L Pereira, A Rigueiro-Rodríguez, M J Wingfield, W Ahmad, S Bibi, S Denman, F Esteve-Raventós, S Hussain, T Illescas, J J Luangsa-Ard, L Möller, A Mombert, W Noisripoom, I Olariaga, F Pancorbo, A Paz, M Piątek, C Polman-Short, E Suárez, N S Afshan, H Ali, M Arzanlou, F Ayer, J Barratt, J-M Bellanger, A Bidaud, S L Bishop-Hurley, M Bohm, T Bose, E Campo, N B Chau, Ö F Çolak, T R L Cordeiro, M O Cruz, F A Custódio, A Couceiro, V Darmostuk, J D W Dearnaley, A L C M de Azevedo Santiago, L W S de Freitas, M de J Yáñez-Morales, C Domnauer, B Dentinger, K Dhileepan, J T De Souza, F Dovana, U Eberhardt, P Eisvand, A Erhard, V Fachada, A García-Martín, M Groenewald, A Hammerbacher, K Harms, S Haroon, M Haqnawaz, S Henriques, A J Hernández, L M Jacobus, D Jaen-Contreras, P Jangsantear, O Kaygusuz, R Knoppersen, T K A Kumar, M J Lynch, R Mahiques, G L Maraia, P A S Marbach, M Mehrabi-Koushki, P R Miller, S Mongkolsamrit, P-A Moreau, N H Oberlies, J A Oliveira, D Orlovich, A S Pérez-Méndez, A Pinto, H A Raja, G H Ramírez, B Raphael, A Rodrigues, H Rodrigues, D O Ramos, A Safi, S Sarwar, I Saar, R M Sánchez, J S Santana, J Scrace, L S Sales, L N P Silva, M Stryjak-Bogacka, A Tacconi, V N Thanh, A Thomas, N T Thuy, M Toome, J M Valdez-Carrazco, N I van Vuuren, J Vasey, J Vauras, C Vila-Viçosa, M Villarreal, C M Visagie, A Vizzini, E J Whiteside, J Z Groenewald","doi":"10.3114/persoonia.2025.54.10","DOIUrl":"10.3114/persoonia.2025.54.10","url":null,"abstract":"<p><p>Novel species of fungi described in this study include those from various countries as follows: <b>Argentina</b>, <i>Septoria reinamora</i> on leaf spots of <i>Mutisia spinosa</i>. <b>Australia</b>, <i>Cortinarius albofolliculus</i> on mossy soil, <i>Cortinarius descensoriformis</i> among leaf litter, <i>Cortinarius kaki</i> among leaf litter, <i>Cortinarius lissosporus</i> in leaf litter, <i>Cortinarius malogranatus</i> in leaf litter, <i>Cortinarius meletlac</i> on soil in mixed forest, <i>Cortinarius sebosioides</i> in long decayed wood litter, <i>Helicogermslita australiensis</i> as an endophyte from healthy leaves of <i>Archontophoenix cunninghamiana</i>, <i>Puccinia clemensiorum</i> on culms of <i>Eleocharis ochrostachys, Puccinia geethae</i> on leaves of <i>Cyperus brevifolius</i>, <i>Puccinia marjaniae</i> on leaves of <i>Nymphoides indica, Puccinia scleriae-rugosae</i> on leaves of <i>Scleria rugosa</i>. <b>Brazil</b>, <i>Dactylaria calliandrae</i> on living leaf of <i>Calliandra tweediei, Mucor cerradoensis</i> from soil, <i>Musicillium palmae</i> on living leaves of unidentified palm species, <i>Neodendryphiella agapanthi</i> from stalks of <i>Agapanthus praecox</i>, <i>Parafusicladium riodejaneiroanum</i> on living leaves of native bamboo, <i>Parapenidiella melastomatis</i> on living leaves of unidentified <i>Melastomataceae</i>, <i>Pararamichloridium ouropretoense</i> on living leaves of unidentified <i>Poaceae</i>, <i>Pentagonomyces endophyticus</i> (incl. <i>Pentagonomyces gen. nov.</i>) as endophytic from roots of <i>Musa acuminata</i>, <i>Polyschema endophytica</i> from healthy roots of coffee plant, <i>Purimyces endophyticus</i> as root endophyte of <i>Cattleya locatellii, Ramularia rhododendri</i> on living leaves of <i>Rhododendron</i> sp., <i>Staphylotrichum soli</i> from soil, <i>Trichoderma sexdentis</i> from leaves inside a nest of the leaf-cutting ant <i>Atta sexdens rubropilosa</i>, <i>Wiesneriomyces soli</i> from soil. <b>France</b>, <i>Cosmospora nemaniae</i> on dead or effete stromata of <i>Nemania</i> cf. <i>colliculosa</i>, <i>Inocybe alnobetulae</i> in subalpine green alder stands, <i>Stylonectria hygrophila</i> on dead twigs of <i>Betula pubescens.</i> <b>Germany</b>, <i>Coniochaeta corticalis</i> from bark humus, <i>Coniochaeta fermentaria</i> from fermentation residues from biogas plants, <i>Coniochaeta fibricola</i> from softwood fibres, <i>Coniochaeta weberae</i> from bark humus, <i>Inocybe canicularis</i> on calcareous to more acidic soil with conifers. <b>Iceland</b>, <i>Inocybe islandica</i> associated with <i>Dryas octopetala</i>. <b>India</b>, <i>Vishniacozyma indica</i> on dead twigs. <b>Iran</b>, <i>Botryotrichum lycii</i> on rotten leaf of <i>Lycium depressum.</i> <b>Italy</b>, <i>Cuphophyllus dolomiticus</i> among <i>Salix retusa</i>, <i>Salix reticulata</i> and <i>Dryas octopetala</i>, <i>Inocybe subentolomospora</i> on moss with the presence of <i>Alnus incana</i>, <i>Populus nigra</i> and <i>","PeriodicalId":20014,"journal":{"name":"Persoonia","volume":"54 ","pages":"327-587"},"PeriodicalIF":7.3,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12308287/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144760787","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Taxonomic revision of Bisifusarium (Nectriaceae). 标题双穗花属植物的分类订正。
IF 7.3 1区 生物学 Q1 MYCOLOGY Pub Date : 2025-06-01 Epub Date: 2025-05-14 DOI: 10.3114/persoonia.2025.54.06
K Zhang, M Sandoval-Denis, H Kandemir, N Yilmaz, J Z Groenewald, F Roets, M de J Yáñez-Morales, M J Wingfield, P W Crous

Species of Bisifusarium (previously the Fusarium dimerum species complex) have been associated with cheese fermentation and a wide range of opportunistic human infections, but they are generally regarded as saprotrophs. Bisifusarium spp. are also commonly isolated from soils and tissues of plants growing in arid climates. The genus is typically characterized by its distinct pionnotal growth in culture, and typically very short, 0-2(-3)-septate macroconidia, produced in sporodochia or on lateral phialidic hyphal pegs. Only 16 species of Bisifusarium have been described to date, and this study sought to re-evaluate these taxa by examining 116 Bisifusarium isolates from the culture collection of the Westerdijk Fungal Biodiversity Institute in Utrecht, The Netherlands. A multi-gene phylogenetic analysis using partial nucleotide sequences of the translation elongation factor 1-alpha (tef1), partial RNA polymerase II second largest subunit (rpb2), the 5.8S nrDNA with its flanking intergenic spacer regions (ITS), and partial β-tubulin (tub2) genes resolved 25 phylogenetic lineages. Further evaluation of culture and morphological characters, and host-substrates, confirmed eight of these clades as novel taxa that are formally described here. In addition, two putative novel species were identified but not described due to limited available data. We provide the morphological descriptions and photographic illustrations for B. hedylamarriae and B. lovelliae, which were formerly known only from their DNA data. This study significantly increases the number of species in Bisifusarium and provides a crucial foundation for future studies to elucidate the ecology and evolutionary relationships within this expanding genus. Citation: Zhang K, Sandoval-Denis M, Kandemir H, Yilmaz N, Groenewald JZ, Roets F, Yáñez-Morales M de J, Wingfield MJ, Crous PW (2025). Taxonomic revision of Bifusarium (Nectriaceae). Persoonia 54: 197-223. doi: 10.3114/persoonia.2025.54.06.

双歧镰刀菌(以前称为二角镰刀菌)与奶酪发酵和广泛的机会性人类感染有关,但它们通常被认为是腐生菌。双镰刀菌通常也从生长在干旱气候的植物的土壤和组织中分离出来。该属的典型特征是其在培养中具有明显的先头生长,并且通常非常短,0-2(-3)分隔的大分生孢子,产生于孢子体或侧边的亲性菌丝柱上。迄今为止,只有16种Bisifusarium被描述,本研究试图通过检查荷兰乌得勒支Westerdijk真菌生物多样性研究所培养的116株Bisifusarium分离株来重新评估这些分类群。利用翻译延伸因子1- α (tef1)、部分RNA聚合酶II第二大亚基(rpb2)、5.8S nrDNA及其侧翼基因间间隔区(its)和部分β-微管蛋白(tub2)基因的部分核苷酸序列进行多基因系统发育分析,确定了25个系统发育谱系。对培养和形态特征以及宿主-基质的进一步评估证实,其中8个分支是本文正式描述的新分类群。此外,还发现了两个假定的新种,但由于现有资料有限,没有对其进行描述。我们提供了B. hedylamarriae和B. lovelliae的形态描述和照片插图,这两种植物以前只从它们的DNA数据中得知。该研究显著增加了双菜属植物的种类数量,为进一步研究这一不断扩大的属的生态学和进化关系奠定了重要基础。引用本文:张科,Sandoval-Denis M, Kandemir H, Yilmaz N, Groenewald JZ, Roets F, Yáñez-Morales M de J, Wingfield MJ, Crous PW(2025)。标题双歧花属植物的分类订正。《人物》54:197-223。doi: 10.3114 / persoonia.2025.54.06。
{"title":"Taxonomic revision of <i>Bisifusarium</i> (<i>Nectriaceae</i>).","authors":"K Zhang, M Sandoval-Denis, H Kandemir, N Yilmaz, J Z Groenewald, F Roets, M de J Yáñez-Morales, M J Wingfield, P W Crous","doi":"10.3114/persoonia.2025.54.06","DOIUrl":"10.3114/persoonia.2025.54.06","url":null,"abstract":"<p><p>Species of <i>Bisifusarium</i> (previously the <i>Fusarium dimerum</i> species complex) have been associated with cheese fermentation and a wide range of opportunistic human infections, but they are generally regarded as saprotrophs. <i>Bisifusarium</i> spp. are also commonly isolated from soils and tissues of plants growing in arid climates. The genus is typically characterized by its distinct pionnotal growth in culture, and typically very short, 0-2(-3)-septate macroconidia, produced in sporodochia or on lateral phialidic hyphal pegs. Only 16 species of <i>Bisifusarium</i> have been described to date, and this study sought to re-evaluate these taxa by examining 116 <i>Bisifusarium</i> isolates from the culture collection of the Westerdijk Fungal Biodiversity Institute in Utrecht, The Netherlands. A multi-gene phylogenetic analysis using partial nucleotide sequences of the translation elongation factor 1-alpha (<i>tef1</i>), partial RNA polymerase II second largest subunit (<i>rpb2</i>), the 5.8S nrDNA with its flanking intergenic spacer regions (ITS), and partial β-tubulin (<i>tub2</i>) genes resolved 25 phylogenetic lineages. Further evaluation of culture and morphological characters, and host-substrates, confirmed eight of these clades as novel taxa that are formally described here. In addition, two putative novel species were identified but not described due to limited available data. We provide the morphological descriptions and photographic illustrations for <i>B. hedylamarriae</i> and <i>B. lovelliae</i>, which were formerly known only from their DNA data. This study significantly increases the number of species in <i>Bisifusarium</i> and provides a crucial foundation for future studies to elucidate the ecology and evolutionary relationships within this expanding genus. <b>Citation:</b> Zhang K, Sandoval-Denis M, Kandemir H, Yilmaz N, Groenewald JZ, Roets F, Yáñez-Morales M de J, Wingfield MJ, Crous PW (2025). Taxonomic revision of <i>Bifusarium</i> (<i>Nectriaceae</i>). <i>Persoonia</i> <b>54</b>: 197-223. doi: 10.3114/persoonia.2025.54.06.</p>","PeriodicalId":20014,"journal":{"name":"Persoonia","volume":"54 ","pages":"197-223"},"PeriodicalIF":7.3,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12308283/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144760790","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A comprehensive molecular phylogeny of Cephalotrichum and Microascus provides novel insights into their systematics and evolutionary history 头癣菌和微囊癣菌的综合分子系统发育为了解其系统学和进化史提供了新的视角
IF 9.1 1区 生物学 Q1 MYCOLOGY Pub Date : 2024-06-30 DOI: 10.3767/persoonia.2024.52.05
T.P. Wei, Y.M. Wu, X. Zhang, H. Zhang, P.W. Crous, Y.L. Jiang
The genera Cephalotrichum and Microascus contain ecologically, morphologically and lifestyle diverse fungi in Microascaceae (Microascales, Sordariomycetes) with a world-wide distribution. Despite previous studies having elucidated that Cephalotrichumand Microascus are highly polyphyletic, the DNA phylogeny of many traditionally morphology-defined species is still poorly resolved, and a comprehensive taxonomic overview of the two genera is lacking. To resolve this issue, we integrate broad taxon sampling strategies and the mostcomprehensive multi-gene (ITS, LSU, tef1 and tub2) datasets to date, with fossil calibrations to address the phylogenetic relationships and divergence times among major lineages of Microascaceae. Two previously recognised main clades, Cephalotrichum (24 species)and Microascus (49 species), were re-affirmed based on our phylogenetic analyses, as well as the phylogenetic position of 15 genera within Microascaceae. In this study, we provide an up-to-date overview on the taxonomy and phylogeny of species belonging to Cephalotrichum and Microascus, as well as detailed descriptions and illustrations of 21 species of which eight are newly described. Furthermore, the divergence time estimates indicate that the crown age of Microascaceae was around 210.37 Mya (95% HPD: 177.18–246.96 Mya) in the Late Triassic,and that Cephalotrichum and Microascus began to diversify approximately 27.07 Mya (95% HPD:20.47–34.37 Mya) and 70.46 Mya (95% HPD:56.96–86.24 Mya), respectively. Our results also demonstrate that multigene sequence data coupled with broad taxon sampling can helpelucidate previously unresolved clade relationships.
头孢属(Cephalotrichum)和小袋菌属(Microascus)包含小袋菌科(Microascales, Sordariomycetes)中在生态学、形态学和生活方式上多种多样的真菌,分布于世界各地。尽管之前的研究已经阐明头孢霉属和微囊霉属具有高度的多态性,但许多传统形态学定义的物种的 DNA 系统发育仍未得到很好的解决,也缺乏对这两个属的全面分类概述。为了解决这个问题,我们整合了广泛的分类群取样策略和迄今为止最全面的多基因(ITS、LSU、tef1 和 tub2)数据集,并通过化石校准来解决小袋鼠科主要支系之间的系统发生关系和分化时间问题。根据我们的系统发育分析,我们重新确认了之前确认的两个主要支系,即头状花序(Cephalotrichum)(24 种)和小袋鼠(Microascus)(49 种),以及小袋鼠科中 15 个属的系统发育位置。在本研究中,我们提供了 Cephalotrichum 和 Microascus 属物种分类学和系统发育的最新概述,以及 21 个物种的详细描述和图解,其中 8 个物种是新描述的。此外,分化时间估计表明,微囊菌科的冠年龄约为三叠纪晚期的 210.37 Mya(95% HPD:177.18-246.96 Mya),头孢菌和微囊菌开始分化的时间分别约为 27.07 Mya(95% HPD:20.47-34.37 Mya)和 70.46 Mya(95% HPD:56.96-86.24 Mya)。我们的研究结果还表明,多基因序列数据与广泛的类群取样相结合,有助于阐明以前尚未解决的支系关系。
{"title":"A comprehensive molecular phylogeny of Cephalotrichum and Microascus provides novel insights into their systematics and evolutionary history","authors":"T.P. Wei, Y.M. Wu, X. Zhang, H. Zhang, P.W. Crous, Y.L. Jiang","doi":"10.3767/persoonia.2024.52.05","DOIUrl":"https://doi.org/10.3767/persoonia.2024.52.05","url":null,"abstract":"The genera<i> Cephalotrichum</i> and<i> Microascus</i> contain ecologically, morphologically and lifestyle diverse fungi in<i> Microascaceae</i> (<i>Microascales</i>,<i> Sordariomycetes</i>) with a world-wide distribution. Despite previous studies having elucidated that<i> Cephalotrichum</i>\u0000and<i> Microascus</i> are highly polyphyletic, the DNA phylogeny of many traditionally morphology-defined species is still poorly resolved, and a comprehensive taxonomic overview of the two genera is lacking. To resolve this issue, we integrate broad taxon sampling strategies and the most\u0000comprehensive multi-gene (ITS, LSU,<i> tef1</i> and<i> tub2</i>) datasets to date, with fossil calibrations to address the phylogenetic relationships and divergence times among major lineages of<i> Microascaceae</i>. Two previously recognised main clades,<i> Cephalotrichum</i> (24 species)and<i> Microascus</i> (49 species), were re-affirmed based on our phylogenetic analyses, as well as the phylogenetic position of 15 genera within<i> Microascaceae</i>. In this study, we provide an up-to-date overview on the taxonomy and phylogeny of species belonging to<i> Cephalotrichum</i> and<i> Microascus</i>, as well as detailed descriptions and illustrations of 21 species of which eight are newly described. Furthermore, the divergence time estimates indicate that the crown age of<i> Microascaceae</i> was around 210.37 Mya (95% HPD: 177.18–246.96 Mya) in the Late Triassic,\u0000and that<i> Cephalotrichum</i> and<i> Microascus</i> began to diversify approximately 27.07 Mya (95% HPD:20.47–34.37 Mya) and 70.46 Mya (95% HPD:56.96–86.24 Mya), respectively. Our results also demonstrate that multigene sequence data coupled with broad taxon sampling can help\u0000elucidate previously unresolved clade relationships.","PeriodicalId":20014,"journal":{"name":"Persoonia","volume":"22 1","pages":""},"PeriodicalIF":9.1,"publicationDate":"2024-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141585897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Saccharomycetaceae: delineation of fungal genera based on phylogenomic analyses, genomic relatedness indices and genomics-based synapomorphies 酵母菌科:基于系统发生组分析、基因组亲缘关系指数和基于基因组学的异构体的真菌属划分
IF 9.1 1区 生物学 Q1 MYCOLOGY Pub Date : 2024-06-30 DOI: 10.3767/persoonia.2024.52.01
F. Liu, Z.-D. Hu, A. Yurkov, X.-H. Chen, W.-J. Bao, Q. Ma, W.-N. Zhao, S. Pan, X.-M. Zhao, J.-H. Liu, Q.-M. Wang, T. Boekhout
A correct classification of fungi, including yeasts, is of prime importance to understand fungal biodiversity and to communicate about this diversity. Fungal genera are mainly defined based on phenotypic characteristics and the results of single or multigene-based phylogenetic analyses.However, because yeasts often have less phenotypic characters, their classification experienced a strong move towards DNA-based data, from short ribosomal sequences to multigene phylogenies and more recently to phylogenomics. Here, we explore the usefulness of various genomics-based parametersto circumscribe fungal genera more correctly taking the yeast domain as an example. Therefore, we compared the results of a phylogenomic analysis, average amino acid identity (AAI) values, the presence of conserved signature indels (CSIs), the percentage of conserved proteins (POCP) and thepresence- absence patterns of orthologs (PAPO). These genome-based metrics were used to investigate their usefulness in demarcating 13 hitherto relatively well accepted genera in Saccharomycetaceae, namely Eremothecium, Grigorovia, Kazachstania, Kluyveromyces, Lachancea, Nakaseomyces, Naumovozyma, Saccharomyces, Tetrapisispora, Torulaspora, Vanderwaltozyma, Zygosaccharomyces and Zygotorulaspora. As a result, most of these genera are supported by the genomics-based metrics, but the genera Kazachstania , Nakaseomyces and Tetrapisispora were shown to be genetically highly diverse based on the above listed analyses. Considering the results obtained for the presently recognized genera, a range of 80–92% POCP values and a range of 60–70 % AAI valuesmight be valuable thresholds to discriminate genera in Saccharomycetaceae. Furthermore, the genus-specific genes identified in the PAPO analysis and the CSIs were found to be useful as synapomorphies to characterize and define genera in Saccharomycetaceae. Our results indicatethat the combined monophyly-based phylogenomic analysis together with genomic relatedness indices and synapomorphies provide promising approaches to delineating yeast genera and likely those of filamentous fungi as well. The genera Kazachstania, Nakaseomyces and Tetrapisisporaare revised and we propose eight new genera and 41 new combinations.
对包括酵母菌在内的真菌进行正确分类,对于了解真菌的生物多样性和交流这种多样性至关重要。然而,由于酵母菌的表型特征通常较少,因此它们的分类经历了从短核糖体序列到多基因系统发育,以及最近的系统发生组学等基于 DNA 数据的重大转变。在此,我们以酵母菌为例,探讨各种基于基因组学的参数对更正确地划分真菌属的有用性。因此,我们比较了系统发生组分析的结果、平均氨基酸同一性(AAI)值、是否存在保守的特征性嵌合体(CSIs)、保守蛋白质的百分比(POCP)以及同源物的存在-缺失模式(PAPO)。这些基于基因组的指标被用来研究它们在划分酵母菌科中 13 个迄今为止相对公认的属的有用性,这 13 个属是 Eremothecium、Grigorovia、Kazachstania、Kluyveromyces、Lachancea、Nakaseomyces、Naumovozyma、Saccharomyces、Tetrapispora、Torulaspora、Vanderwaltozyma、Zygosaccharomyces 和 Zygotorulaspora。 因此,这些属中的大多数都得到了基于基因组学指标的支持,但根据上述分析,Kazachstania 属、Nakaseomyces 属和 Tetrapispora 属在基因上具有高度多样性。考虑到目前已知属的结果,80-92% 的 POCP 值范围和 60-70% 的 AAI 值范围可能是区分酵母菌科属的有价值的临界值。此外,在 PAPO 分析和 CSIs 中发现的属特异性基因可作为同源物来描述和定义酵母菌科的属。我们的研究结果表明,将基于单系的系统发生组分析与基因组亲缘关系指数和同形异构体相结合,为划分酵母菌属以及丝状真菌属提供了很好的方法。我们对 Kazachstania 属、Nakaseomyces 属和 Tetrapisispor 属进行了修订,并提出了 8 个新属和 41 个新组合。
{"title":"Saccharomycetaceae: delineation of fungal genera based on phylogenomic analyses, genomic relatedness indices and genomics-based synapomorphies","authors":"F. Liu, Z.-D. Hu, A. Yurkov, X.-H. Chen, W.-J. Bao, Q. Ma, W.-N. Zhao, S. Pan, X.-M. Zhao, J.-H. Liu, Q.-M. Wang, T. Boekhout","doi":"10.3767/persoonia.2024.52.01","DOIUrl":"https://doi.org/10.3767/persoonia.2024.52.01","url":null,"abstract":"A correct classification of fungi, including yeasts, is of prime importance to understand fungal biodiversity and to communicate about this diversity. Fungal genera are mainly defined based on phenotypic characteristics and the results of single or multigene-based phylogenetic analyses.\u0000However, because yeasts often have less phenotypic characters, their classification experienced a strong move towards DNA-based data, from short ribosomal sequences to multigene phylogenies and more recently to phylogenomics. Here, we explore the usefulness of various genomics-based parameters\u0000to circumscribe fungal genera more correctly taking the yeast domain as an example. Therefore, we compared the results of a phylogenomic analysis, average amino acid identity (AAI) values, the presence of conserved signature indels (CSIs), the percentage of conserved proteins (POCP) and the\u0000presence- absence patterns of orthologs (PAPO). These genome-based metrics were used to investigate their usefulness in demarcating 13 hitherto relatively well accepted genera in<i> Saccharomycetaceae</i>, namely<i> Eremothecium</i>,<i> Grigorovia</i>,<i> Kazachstania</i>,<i> Kluyveromyces</i>,<i> Lachancea</i>,<i> Nakaseomyces</i>,<i> Naumovozyma</i>,<i> Saccharomyces</i>,<i> Tetrapisispora</i>,<i> Torulaspora</i>,<i> Vanderwaltozyma</i>,<i> Zygosaccharomyces</i> and<i> Zygotorulaspora. </i> As a result, most of these genera are supported by the genomics-based metrics, but the genera<i> Kazachstania</i> ,<i> Nakaseomyces </i> and<i> Tetrapisispora</i> were shown to be genetically highly diverse based on the above listed analyses. Considering the results obtained for the presently recognized genera, a range of 80–92% POCP values and a range of 60–70 % AAI values\u0000might be valuable thresholds to discriminate genera in<i> Saccharomycetaceae.</i> Furthermore, the genus-specific genes identified in the PAPO analysis and the CSIs were found to be useful as synapomorphies to characterize and define genera in<i> Saccharomycetaceae</i>. Our results indicate\u0000that the combined monophyly-based phylogenomic analysis together with genomic relatedness indices and synapomorphies provide promising approaches to delineating yeast genera and likely those of filamentous fungi as well. The genera<i> Kazachstania</i>,<i> Nakaseomyces</i> and<i> Tetrapisispora</i>\u0000are revised and we propose eight new genera and 41 new combinations.","PeriodicalId":20014,"journal":{"name":"Persoonia","volume":"12 1","pages":""},"PeriodicalIF":9.1,"publicationDate":"2024-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141585901","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Single host plant species may harbour more than one species of Peronospora – a case study on Peronospora infecting Plantag 单一寄主植物物种可能携带不止一种 Peronospora --关于感染植物的 Peronospora 的案例研究
IF 9.1 1区 生物学 Q1 MYCOLOGY Pub Date : 2024-06-30 DOI: 10.3767/persoonia.2024.52.04
M. Mu, Y.-J. Choi, J. Kruse, J.A. Crouch, S. Ploch, M. Thines
The genus Peronospora is the largest genus of the oomycetes, fungus-like members of the kingdom Straminipila that also contains amoeboid (e.g., Leukarachnion) and plant-like (e.g., Laminaria) life forms. Peronospora species are obligate biotrophicplant pathogens, causing high economic losses in various crops and ornamentals, including Plantago species. Several species of Plantago are used as specialty crops and medicinal plants. In this study, Peronospora species parasitic on Plantago were investigated basedon morphology and phylogenetic analyses using two nuclear (ITS, nrLSU) loci and one mitochondrial (cox2) locus. As a result of these investigations, 10 new species are added to the already known Peronospora species on Plantago. Interestingly, it was found that four independentspecies are parasitic to Plantago major, highlighting that the reliance on the host plant for pathogen determination can be misleading in Peronospora. Taking this into account, morphological and phylogenetic analyses should be conducted as a prerequisite for effective quarantineregulations and phytosanitary measures.
Peronospora 属是卵菌纲中最大的一个属,它是 Straminipila 王国中的真菌类成员,该王国还包括变形虫(如 Leukarachnion)和植物类(如 Laminaria)生命形式。Peronospora 物种是一种强制性生物营养植物病原体,对包括车前草在内的各种作物和观赏植物造成了严重的经济损失。车前草的几个品种被用作特种作物和药用植物。本研究根据形态学和使用两个核基因位点(ITS、nrLSU)和一个线粒体基因位点(cox2)进行的系统发育分析,对寄生在车前草上的 Peronospora 种进行了调查。这些研究的结果是,在已知的车前草 Peronospora 种类中又增加了 10 个新种类。有趣的是,研究发现有 4 个独立的物种寄生在大车前草上,这突出表明依靠寄主植物来确定 Peronospora 的病原体可能会产生误导。考虑到这一点,应进行形态学和系统发生学分析,作为有效检疫规定和植物检疫措施的先决条件。
{"title":"Single host plant species may harbour more than one species of Peronospora – a case study on Peronospora infecting Plantag","authors":"M. Mu, Y.-J. Choi, J. Kruse, J.A. Crouch, S. Ploch, M. Thines","doi":"10.3767/persoonia.2024.52.04","DOIUrl":"https://doi.org/10.3767/persoonia.2024.52.04","url":null,"abstract":"The genus <i>Peronospora</i> is the largest genus of the oomycetes, fungus-like members of the kingdom <i>Straminipila</i> that also contains amoeboid (e.g., <i>Leukarachnion</i>) and plant-like (e.g., <i>Laminaria</i>) life forms. <i>Peronospora</i> species are obligate biotrophic\u0000plant pathogens, causing high economic losses in various crops and ornamentals, including <i>Plantago</i> species. Several species of <i>Plantago</i> are used as specialty crops and medicinal plants. In this study, <i>Peronospora</i> species parasitic on <i>Plantago</i> were investigated based\u0000on morphology and phylogenetic analyses using two nuclear (ITS, nrLSU) loci and one mitochondrial (cox2) locus. As a result of these investigations, 10 new species are added to the already known <i>Peronospora</i> species on <i>Plantago</i>. Interestingly, it was found that four independent\u0000species are parasitic to <i>Plantago majo</i>r, highlighting that the reliance on the host plant for pathogen determination can be misleading in <i>Peronospora</i>. Taking this into account, morphological and phylogenetic analyses should be conducted as a prerequisite for effective quarantine\u0000regulations and phytosanitary measures.","PeriodicalId":20014,"journal":{"name":"Persoonia","volume":"2018 1","pages":""},"PeriodicalIF":9.1,"publicationDate":"2024-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141585898","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phylogenomic analysis of the Candida auris- Candida haemuli clade and related taxa in the Metschnikowiaceae, and proposal of thirteen new genera, fifty-five new combinations and nine new species Metschnikowiaceae 中 Candida auris- Candida haemuli 支系和相关类群的系统发生组分析,以及 13 个新属、55 个新组合和 9 个新种的提出
IF 9.1 1区 生物学 Q1 MYCOLOGY Pub Date : 2024-06-30 DOI: 10.3767/persoonia.2024.52.02
F. Liu, Z.-D. Hu, X.-M. Zhao, W.-N. Zhao, Z.-X. Feng, A. Yurkov, S. Alwasel, T. Boekhout, K. Bensch, F.-L. Hui, F.-Y. Bai, Q.-M. Wang
Candida is a polyphyletic genus of sexually reproducing yeasts in the Saccharomycotina with more than 400 species that occur in almost all families of the subclass and its name is strongly connected with the infectious disease candidiasis. During the last two decades,approximately half of the Candida species have been reassigned into more than 36 already existing genera and 14 newly proposed genera, but the polyphyletic feature of the genus largely remained. Candida auris is an important, globally emerging opportunistic pathogen that hascaused life-threatening outbreaks in healthcare facilities worldwide. This species belongs to the Candida auris - Candida haemuli (CAH) clade in the Metschnikowiaceae, a clade that contains multidrug-resistant clinically relevant species, but also species isolated fromnatural environments. The clade is phylogenetically positioned remotely from the type species of the genus Candida that is Candida vulgaris (currently interpreted as a synonym of Candida tropicalis) and belongs to the family Debaryomycetaceae. Although previousphylogenetic and phylogenomic studies confirmed the position of C. auris in the Metschnikowiaceae, these analyses failed to resolve the position of the CAH clade within the family and its delimitation from the genera Clavispora and Metschnikowia. To resolve theposition of the CAH clade, phylogenomic and comparative genomics analyses were carried out to address the phylogenetic position of C. auris and related species in the Metschnikowiaceae using several metrics, such as the average amino acid identity (AAI) values, the percentageof conserved proteins (POCP), and the presence-absence patterns of orthologs (PAPO).Based on those approaches, 13 new genera are proposed for various Candida and Hyphopichia species, including members of the CAH clade in the Metschnikowiaceae. As a result, C. aurisand related species are reassigned to the genus Candidozyma. Fifty-five new combinations and nine new species are introduced, and this will reduce the polyphyly of the genus Candida.
念珠菌属(Candida)是酵母菌亚门(Saccharomycotina)中有性生殖酵母菌的一个多态属,有 400 多个种,几乎存在于该亚门的所有科中,其名称与传染性疾病念珠菌病密切相关。在过去 20 年中,大约一半的念珠菌被重新归入 36 个已有属和 14 个新拟属,但该属的多形性特征基本保持不变。白色念珠菌(Candida auris)是一种重要的、全球新兴的机会性病原体,曾在世界各地的医疗机构爆发,造成生命危险。该种属于 Metschnikowiaceae 中的 Candida auris - Candida haemuli(CAH)支系,该支系包含具有多重耐药性的临床相关物种以及从自然环境中分离出来的物种。该支系在系统发育上远离白色念珠菌属的模式种,即寻常白色念珠菌(目前被解释为热带白色念珠菌的异名),属于德巴菌科。尽管以前的系统发生学和系统发生组学研究证实了 C. auris 在 Metschnikowiaceae 中的位置,但这些分析未能确定 CAH 支系在该科中的位置及其与 Clavispora 属和 Metschnikowia 属的分界。为了确定 CAH 支系的位置,研究人员利用氨基酸平均同一性(AAI)值、保守蛋白百分比(POCP)和同源物的存在-不存在模式(PAPO)等指标,进行了系统发生组学和比较基因组学分析,以确定 C. auris 及相关物种在 Metschnikowiaceae 中的系统发生位置。根据这些方法,为各种念珠菌和hyphopichia(包括 Metschnikowiaceae 中 CAH 支系的成员)提出了 13 个新属。因此,C. auris 和相关种被重新归入 Candidozyma 属。引入了 55 个新组合和 9 个新种,这将减少念珠菌属的多型性。
{"title":"Phylogenomic analysis of the Candida auris- Candida haemuli clade and related taxa in the Metschnikowiaceae, and proposal of thirteen new genera, fifty-five new combinations and nine new species","authors":"F. Liu, Z.-D. Hu, X.-M. Zhao, W.-N. Zhao, Z.-X. Feng, A. Yurkov, S. Alwasel, T. Boekhout, K. Bensch, F.-L. Hui, F.-Y. Bai, Q.-M. Wang","doi":"10.3767/persoonia.2024.52.02","DOIUrl":"https://doi.org/10.3767/persoonia.2024.52.02","url":null,"abstract":"<i>Candida</i> is a polyphyletic genus of sexually reproducing yeasts in the <i>Saccharomycotina</i> with more than 400 species that occur in almost all families of the subclass and its name is strongly connected with the infectious disease candidiasis. During the last two decades,\u0000approximately half of the <i>Candida</i> species have been reassigned into more than 36 already existing genera and 14 newly proposed genera, but the polyphyletic feature of the genus largely remained. <i>Candida auris</i> is an important, globally emerging opportunistic pathogen that has\u0000caused life-threatening outbreaks in healthcare facilities worldwide. This species belongs to the <i>Candida auris</i> - <i>Candida haemuli</i> (CAH) clade in the <i>Metschnikowiaceae</i>, a clade that contains multidrug-resistant clinically relevant species, but also species isolated from\u0000natural environments. The clade is phylogenetically positioned remotely from the type species of the genus <i>Candida</i> that is <i>Candida vulgaris</i> (currently interpreted as a synonym of <i>Candida tropicalis</i>) and belongs to the family <i>Debaryomycetaceae</i>. Although previous\u0000phylogenetic and phylogenomic studies confirmed the position of <i>C. auris</i> in the <i>Metschnikowiaceae</i>, these analyses failed to resolve the position of the CAH clade within the family and its delimitation from the genera <i>Clavispora</i> and <i>Metschnikowia</i>. To resolve the\u0000position of the CAH clade, phylogenomic and comparative genomics analyses were carried out to address the phylogenetic position of <i>C. auris</i> and related species in the <i>Metschnikowiaceae</i> using several metrics, such as the average amino acid identity (AAI) values, the percentage\u0000of conserved proteins (POCP), and the presence-absence patterns of orthologs (PAPO).Based on those approaches, 13 new genera are proposed for various <i>Candida</i> and <i>Hyphopichia</i> species, including members of the CAH clade in the <i>Metschnikowiaceae</i>. As a result, <i>C. auris</i>\u0000and related species are reassigned to the genus <i>Candidozyma</i>. Fifty-five new combinations and nine new species are introduced, and this will reduce the polyphyly of the genus <i>Candida</i>.","PeriodicalId":20014,"journal":{"name":"Persoonia","volume":"102 1","pages":""},"PeriodicalIF":9.1,"publicationDate":"2024-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141585899","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Endless forms most frustrating: disentangling species boundaries in the Ramalina decipiens group (Lecanoromycetes, Ascomycota), with the description of six new species and a key to the group 无穷无尽的形式最令人沮丧:厘清 Ramalina decipiens 群(子囊菌目,子囊菌科)的物种界限,并描述六个新物种和该群的检索表
IF 9.1 1区 生物学 Q1 MYCOLOGY Pub Date : 2024-06-30 DOI: 10.3767/persoonia.2024.52.03
M. Blázquez, I. Pérez-Vargas, I. Garrido-Benavent, M. Villar-dePablo, Y. Turégano, C. Frías-López, A. Sánchez-Gracia, A. de los Ríos, F. Gasulla, S. Pérez-Ortega
Oceanic islands have been recognized as natural laboratories in which to study a great variety of evolutionary processes. One such process is evolutionary radiations, the diversification of a single ancestor into a number of species that inhabit different environments and differ inthe traits that allow them to exploit those environments. The factors that drive evolutionary radiations have been studied for decades in charismatic organisms such as birds or lizards, but are lacking in lichen-forming fungi, despite recent reports of some lineages showing diversificationpatterns congruent with radiation.Here we propose the Ramalina decipiens group as a model system in which to carry out such studies. This group is currently thought to be comprised of five saxicolous species, all of them endemic to the Macaronesian region (the Azores, Madeira, Selvagens,Canary, and Cape Verde islands). Three species are single-island endemics (a rare geographic distribution pattern in lichens), whereas two are widespread and show extreme morphological variation. The latter are suspected to harbor unrecognized species-level lineages.In order to use the Ramalinadecipiens group as a model system, it is necessary to resolve the group's phylogeny and to clarify its species boundaries. In this study, we attempt to do so following an integrative taxonomy approach. We constructed a phylogenetic tree based on six molecular markers, four of which arenewly developed, and generated competing species hypotheses based on molecular (species discovery strategies based on both single locus and multilocus datasets) and phenotypic data (unsupervised clustering algorithms based on morphology, secondary chemistry, and geographic origin).We foundthat taxonomic diversity in the Ramalina decipiens group has been highly underestimated in previous studies. In consequence, we describe six new species, most of them single-island endemics, and provide a key to the group. Phylogenetic relationships among species have been reconstructedwith almost full support which, coupled with the endemic character of the group, makes it an excellent system for the study of island radiations in lichen-forming fungi.
海洋岛屿被认为是研究各种进化过程的天然实验室。其中一个进化过程就是进化辐射,即从一个祖先进化成许多物种,这些物种栖息在不同的环境中,它们利用这些环境的特征也各不相同。几十年来,人们一直在研究鸟类或蜥蜴等有魅力生物的进化辐射驱动因素,但在地衣形成真菌中却缺乏研究,尽管最近有报道称一些菌系显示出与辐射一致的多样化模式。目前认为该类群由 5 个萨克斯科物种组成,它们都是马卡罗内斯地区(亚速尔群岛、马德拉群岛、塞尔瓦根群岛、加那利群岛和佛得角群岛)的特有物种。其中三个物种是单岛特有种(这在地衣中是一种罕见的地理分布模式),另外两个物种分布广泛,形态差异极大。为了将 Ramalinadecipiens 群作为一个模式系统,有必要解决该群的系统发育问题并明确其物种界限。在本研究中,我们尝试采用综合分类法来实现这一目标。我们基于六个分子标记(其中四个是新开发的)构建了一棵系统发生树,并根据分子(基于单位点和多焦点数据集的物种发现策略)和表型数据(基于形态学、次生化学和地理起源的无监督聚类算法)生成了相互竞争的物种假说。因此,我们描述了六个新物种,其中大部分是单岛特有物种,并提供了该类群的检索表。物种之间的系统发育关系已得到几乎完全支持的重建,再加上该群的特有性,使其成为研究地衣形成真菌的岛屿辐射的绝佳系统。
{"title":"Endless forms most frustrating: disentangling species boundaries in the Ramalina decipiens group (Lecanoromycetes, Ascomycota), with the description of six new species and a key to the group","authors":"M. Blázquez, I. Pérez-Vargas, I. Garrido-Benavent, M. Villar-dePablo, Y. Turégano, C. Frías-López, A. Sánchez-Gracia, A. de los Ríos, F. Gasulla, S. Pérez-Ortega","doi":"10.3767/persoonia.2024.52.03","DOIUrl":"https://doi.org/10.3767/persoonia.2024.52.03","url":null,"abstract":"Oceanic islands have been recognized as natural laboratories in which to study a great variety of evolutionary processes. One such process is evolutionary radiations, the diversification of a single ancestor into a number of species that inhabit different environments and differ in\u0000the traits that allow them to exploit those environments. The factors that drive evolutionary radiations have been studied for decades in charismatic organisms such as birds or lizards, but are lacking in lichen-forming fungi, despite recent reports of some lineages showing diversification\u0000patterns congruent with radiation.Here we propose the <i>Ramalina decipiens</i> group as a model system in which to carry out such studies. This group is currently thought to be comprised of five saxicolous species, all of them endemic to the Macaronesian region (the Azores, Madeira, Selvagens,\u0000Canary, and Cape Verde islands). Three species are single-island endemics (a rare geographic distribution pattern in lichens), whereas two are widespread and show extreme morphological variation. The latter are suspected to harbor unrecognized species-level lineages.In order to use the <i>Ramalina\u0000decipiens</i> group as a model system, it is necessary to resolve the group's phylogeny and to clarify its species boundaries. In this study, we attempt to do so following an integrative taxonomy approach. We constructed a phylogenetic tree based on six molecular markers, four of which are\u0000newly developed, and generated competing species hypotheses based on molecular (species discovery strategies based on both single locus and multilocus datasets) and phenotypic data (unsupervised clustering algorithms based on morphology, secondary chemistry, and geographic origin).We found\u0000that taxonomic diversity in the <i>Ramalina decipiens</i> group has been highly underestimated in previous studies. In consequence, we describe six new species, most of them single-island endemics, and provide a key to the group. Phylogenetic relationships among species have been reconstructed\u0000with almost full support which, coupled with the endemic character of the group, makes it an excellent system for the study of island radiations in lichen-forming fungi.","PeriodicalId":20014,"journal":{"name":"Persoonia","volume":"17 1","pages":""},"PeriodicalIF":9.1,"publicationDate":"2024-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141585900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High species diversity in Diaporthe associated with citrus diseases in China 中国柑橘病害相关 Diaporthe 的物种多样性较高
IF 9.1 1区 生物学 Q1 MYCOLOGY Pub Date : 2023-12-31 DOI: 10.3767/persoonia.2023.51.06
X.E. Xiao, Y.D. Liu, F. Zheng, T. Xiong, Y.T. Zeng, W. Wang, X.L. Zheng, Q. Wu, J.P. Xu, P.W. Crous, C. Jiao, H.Y. Li
Species in Diaporthe have broad host ranges and cosmopolitan geographic distributions, occurring as endophytes, saprobes and plantpathogens. Previous studies have indicated that many Diaporthe species are associated with Citrus. To further determine the diversityof Diaporthe species associated with citrus diseases in China, we conducted extensive surveys in major citrus-producing are as from 2017–2020. Diseased tissues we recollected from leaves, fruits, twigs, branches and trunks showing a range of symptoms including melanose, dieback,gummosis, wood decay and canker. Based on phylogenetic comparisons of DNA sequences of the internal transcribed spacer regions(ITS), calmodulin(cal), histoneH3(his3), translation elongation factor1-alpha (tef1) and beta-tubulin (tub2), 393 isolates from 10 provinceswere identified as belonging to 36 species of Diaporthe, including 32 known species, namely D. apiculata, D. biconispora, D. biguttulata, D. caryae, D. citri, D. citriasiana, D. compacta, D. discoidispora, D. endophytica, D. eres, D. fusicola, D. fulvicolor, D. guangxiensis, D. hongkongensis, D. hubeiensis, D. limonicola, D. litchii, D. novem, D. passifloricola, D. penetriteum, D. pescicola, D. pometiae, D. sackstonii, D. sennicola, D. sojae, D. spinosa, D. subclavata, D. tectonae, D. tibetensis, D. unshiuensis, D. velutina and D. xishuangbanica, and four new species, namely D. gammata , D. jishouensis, D. ruiliensis and D. sexualispora. Among the 32 known species, 14 are reported for the first time on Citrus, and two are newly reported from China. Among the 36 species, D. citri was the dominant species as exemplified by its high frequency of isolationand virulence. Pathogenicitytests indicated that most Diaporthe species obtained in this study were weakly aggressive or non-pathogenic to the tested citrus varieties. Only D. citri produced the longest lesion lengths on citrus shoots and induced melanose on citrus leaves. These results further demonstratedthat a rich diversity of Diaporthe species occupy Citrus, but only a few species are harmful and D. citri is the main pathogen for Citrus in China. The present study provides a basis from which targeted monitoring, prevention and control measures can be developed.
Diaporthe 物种的寄主范围很广,分布于世界各地,以内生菌、汁菌和植物病原体的形式出现。以前的研究表明,许多 Diaporthe 物种与柑橘相关。为进一步确定中国柑橘病害相关 Diaporthe 物种的多样性,我们于 2017-2020 年在柑橘主产区进行了广泛调查。我们从叶片、果实、树枝、枝条和树干中采集了病组织,这些病组织表现出一系列症状,包括黑斑病、枯死病、胶冻病、木质部腐烂病和腐烂病。根据内部转录间隔区(ITS)、钙调蛋白(cal)、组蛋白H3(his3)、翻译伸长因子1-α(tef1)和β-微管蛋白(tub2)的DNA序列的系统发育比较,从10个省的393个分离物中鉴定出属于36个Diaporthe种,包括32个已知种,即D.apiculata、D. biconispora、D. biguttulata、D. caryae、D. citri、D. citriasiana、D. compacta、D. discoidispora、D.endophytica, D. eres, D. fusicola, D. fulvicolor, D. guangxiensis, D. hongkongensis, D. hubeiensis, D. limonicola, D. litchii, D. novem, D. passifloricola, D. penetriteum, D. pescicola, D. pometiae, D. sackstonii, D. sennicola, D. so.sennicola、D. sojae、D. spinosa、D. subclavata、D. tectonae、D. tibetensis、D. unshiuensis、D. velutina 和 D. xishuangbanica,以及 4 个新种,即 D. gammata、D. jishouensis、D. ruiliensis 和 D. sexualispora。在 32 个已知种中,14 个是首次在柑橘上报道,2 个是中国新报道。在这 36 个种中,柑橘褐斑病菌是优势种,这体现在它的高分离频率和高致病力上。致病性测试表明,本研究中获得的大多数 Diaporthe 物种对受测柑橘品种的侵染性较弱或无致病性。只有 D. citri 在柑橘嫩枝上产生的病斑长度最长,并在柑橘叶片上诱发黑色素。这些结果进一步表明,柑橘上的 Diaporthe 种类丰富多样,但只有少数几个种类是有害的,而 D. citri 是中国柑橘的主要病原菌。本研究为制定有针对性的监测、预防和控制措施提供了依据。
{"title":"High species diversity in Diaporthe associated with citrus diseases in China","authors":"X.E. Xiao, Y.D. Liu, F. Zheng, T. Xiong, Y.T. Zeng, W. Wang, X.L. Zheng, Q. Wu, J.P. Xu, P.W. Crous, C. Jiao, H.Y. Li","doi":"10.3767/persoonia.2023.51.06","DOIUrl":"https://doi.org/10.3767/persoonia.2023.51.06","url":null,"abstract":"Species in<i> Diaporthe</i> have broad host ranges and cosmopolitan geographic distributions, occurring as endophytes, saprobes and plantpathogens. Previous studies have indicated that many<i> Diaporthe</i> species are associated with<i> Citrus</i>. To further determine the diversity\u0000of<i> Diaporthe</i> species associated with citrus diseases in China, we conducted extensive surveys in major citrus-producing are as from 2017–2020. Diseased tissues we recollected from leaves, fruits, twigs, branches and trunks showing a range of symptoms including melanose, dieback,\u0000gummosis, wood decay and canker. Based on phylogenetic comparisons of DNA sequences of the internal transcribed spacer regions(ITS), calmodulin(<i>cal</i>), histoneH3(<i>his3</i>), translation elongation factor1-alpha (<i>tef1</i>) and beta-tubulin (<i>tub2</i>), 393 isolates from 10 provinces\u0000were identified as belonging to 36 species of<i> Diaporthe</i>, including 32 known species, namely<i> D. apiculata</i>,<i> D. biconispora</i>,<i> D. biguttulata</i>,<i> D. caryae</i>,<i> D. citri</i>,<i> D. citriasiana</i>,<i> D. compacta</i>,<i> D. discoidispora</i>,<i> D. endophytica</i>,<i> D. eres</i>,<i> D. fusicola</i>,<i> D. fulvicolor</i>,<i> D. guangxiensis</i>,<i> D. hongkongensis</i>,<i> D. hubeiensis</i>,<i> D. limonicola</i>,<i> D. litchii</i>,<i> D. novem</i>,<i> D. passifloricola</i>,<i> D. penetriteum</i>,<i> D. pescicola</i>,<i> D. pometiae</i>,<i> D. sackstonii</i>,<i> D. sennicola</i>,<i> D. sojae</i>,<i> D. spinosa</i>,<i> D. subclavata</i>, <i>D. tectonae</i>,<i> D. tibetensis</i>,<i> D. unshiuensis</i>,<i> D. velutina</i> and<i> D. xishuangbanica</i>, and four new species, namely <i> D. gammata</i> ,<i> D. jishouensis</i>,<i> D. ruiliensis </i> and<i> D. sexualispora</i>. Among the 32 known species, 14 are reported for the first time on<i> Citrus</i>,<i> </i> and two are newly reported from China. Among the 36 species,<i> D. citri</i> was the dominant species as exemplified by its high frequency of isolationand virulence. Pathogenicity\u0000tests indicated that most<i> Diaporthe</i> species obtained in this study were weakly aggressive or non-pathogenic to the tested citrus varieties. Only<i> D. citri</i> produced the longest lesion lengths on citrus shoots and induced melanose on citrus leaves. These results further demonstrated\u0000that a rich diversity of<i> Diaporthe</i> species occupy<i> Citrus</i>, but only a few species are harmful and<i> D. citri </i> is the main pathogen for<i> Citrus</i> in China. The present study provides a basis from which targeted monitoring, prevention and control measures can be developed.","PeriodicalId":20014,"journal":{"name":"Persoonia","volume":"25 1","pages":""},"PeriodicalIF":9.1,"publicationDate":"2023-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139584185","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Resolution of eleven reported and five novel Podaxis species based on ITS phylogeny, phylogenomics, morphology, ecology, and geographic distribution 基于 ITS 系统发育、系统发生组学、形态学、生态学和地理分布,解析 11 个已报道的 Podaxis 物种和 5 个新的 Podaxis 物种
IF 9.1 1区 生物学 Q1 MYCOLOGY Pub Date : 2023-12-31 DOI: 10.3767/persoonia.2023.51.07
G.S. Li, C.A. Leal-Dutra, A. Cuesta-Maté, B.H. Conlon, N. Peereboom, C. Beemelmanns, D.K. Aanen, S. Rosendahl, Z.W. Debeer, M. Poulsen
Thegenus Podaxis was first described from India by Linnaeus in 1771, but several revisions of the genus have left the taxonomy unclear. Forty-four Podaxis species names and nine intraspecific varieties are currently accepted, but most fungarium specimens are labelled Podaxis pistillaris. Recent molecular analyses based on barcoding genes suggest that the genus comprises severals pecies, but their status is largely unresolved. Here we obtained basidiospores and photographs from166 fungarium specimens from around the world and generated a phylogeny basedonrDNA internal transcribed spacer ITS1, 5.8S and ITS2(ITS), and aphylogenomic analysis of 3839 BUSCO genes from low-coverage genomes for a subset of the specimens. Combining phylogenetics, phylogenomics, morphology, ecology, and geographical distribution, spanning 250 years of collections, wepropose that the genus includes at least 16 unambiguous species. Based on10 type specimens (holotype, paratype, andsyntype), four recorded species were confirmed, P. carcinomalis, P. deflersii, P. emerici, and P. farlowii. Comparing phylogenetic analysis with describedspecies, including morphology, ecology, and distribution, we resurrected P. termitophilus and designated neotypes, epitypes, orlectotypes for five previously described species, P. aegyptiacus, P. africana, P. beringamensis, P. calyptratus and P. perraldieri.Lastly, based on phylogenies and morphology of type material, we synonymized three reported species, P. algericus, P. arabicus, and P. rugospora with P. pistillaris, and described five newspecies that we named P. desolatus, P. inyoensis, P. mareebaensis, P. namaquensis, and P. namibensis.
林奈于 1771 年首次在印度描述了 Podaxis 属,但对该属的多次修订导致分类不清。目前有 44 个 Podaxis 种名和 9 个种内变种被接受,但大多数菌种标本都标为 Podaxis pistillaris。最近基于条形码基因的分子分析表明,该属由多个变种组成,但它们的地位在很大程度上尚未确定。在此,我们从世界各地的 166 个真菌标本中获得了基生孢子和照片,并根据rDNA 内部转录间隔 ITS1、5.8S 和 ITS2(ITS)生成了一个系统发育关系,还对其中一部分标本的低覆盖基因组中的 3839 个 BUSCO 基因进行了系统发生组分析。结合系统发生学、系统发生组学、形态学、生态学和地理分布,以及 250 年来的采集情况,我们认为该属至少包括 16 个明确的种。根据 10 个模式标本(主模式、副模式和综合模式),我们确认了 4 个记录在案的物种,分别是 P. carcinomalis、P. deflersii、P. emerici 和 P. farlowii。通过系统发育分析与描述的物种(包括形态学、生态学和分布)进行比较,我们复活了嗜白蚁属(P. termitophilus),并为五个先前描述的物种(P. aegyptiacus、P. africana、P. beringamensis、P. calyptratus 和 P. perraldieri)指定了新种、表型或选型。最后,根据系统发育和模式标本的形态,我们将已报道的三个种(P. algericus、P. arabicus 和 P. rugospora)与 P. pistillaris 同名,并描述了五个新种,分别命名为 P. desolatus、P. inyoensis、P. mareebaensis、P. namaquensis 和 P. namibensis。
{"title":"Resolution of eleven reported and five novel Podaxis species based on ITS phylogeny, phylogenomics, morphology, ecology, and geographic distribution","authors":"G.S. Li, C.A. Leal-Dutra, A. Cuesta-Maté, B.H. Conlon, N. Peereboom, C. Beemelmanns, D.K. Aanen, S. Rosendahl, Z.W. Debeer, M. Poulsen","doi":"10.3767/persoonia.2023.51.07","DOIUrl":"https://doi.org/10.3767/persoonia.2023.51.07","url":null,"abstract":"Thegenus<i> Podaxis</i> was first described from India by Linnaeus in 1771, but several revisions of the genus have left the taxonomy unclear. Forty-four<i> Podaxis</i> species names and nine intraspecific varieties are currently accepted, but most fungarium specimens are labelled<i> Podaxis pistillaris</i>. Recent molecular analyses based on barcoding genes suggest that the genus comprises severals pecies, but their status is largely unresolved. Here we obtained basidiospores and photographs from166 fungarium specimens from around the world and generated a phylogeny basedonr\u0000DNA internal transcribed spacer ITS1, 5.8S and ITS2(ITS), and aphylogenomic analysis of 3839 BUSCO genes from low-coverage genomes for a subset of the specimens. Combining phylogenetics, phylogenomics, morphology, ecology, and geographical distribution, spanning 250 years of collections, we\u0000propose that the genus includes at least 16 unambiguous species. Based on10 type specimens (holotype, paratype, andsyntype), four recorded species were confirmed,<i> P. carcinomalis</i>,<i> P. deflersii</i>,<i> P. emerici</i>, and<i> P. farlowii</i>. Comparing phylogenetic analysis with described\u0000species, including morphology, ecology, and distribution, we resurrected<i> P. termitophilus</i> and designated neotypes, epitypes, orlectotypes for five previously described species,<i> P. aegyptiacus</i>,<i> P. africana</i>,<i> P. beringamensis</i>,<i> P. calyptratus</i> and<i> P. perraldieri</i>.\u0000Lastly, based on phylogenies and morphology of type material, we synonymized three reported species,<i> P. algericus</i>,<i> P. arabicus</i>, and<i> P. rugospora</i> with<i> P. pistillaris</i>, and described five newspecies that we named<i> P. desolatus</i>,<i> P. inyoensis</i>,<i> P. mareebaensis</i>,<i> P. namaquensis</i>, and<i> P. namibensis</i>.","PeriodicalId":20014,"journal":{"name":"Persoonia","volume":"64 1","pages":""},"PeriodicalIF":9.1,"publicationDate":"2023-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139584298","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Persoonia
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1