Pub Date : 2021-06-01Epub Date: 2021-05-27DOI: 10.3767/persoonia.2021.46.07
A Bidaud, M Loizides, F Armada, J de Dios Reyes, X Carteret, G Corriol, G Consiglio, P Reumaux, J-M Bellanger
Molecular phylogenies in the past decade have demonstrated that the described diversity of Cortinarius is still underestimated, especially outside continental and boreal ecoregions where the genus has been historically investigated. We tackled this issue by revisiting the so far unresolved subgenus Leprocybe, and focused on the largely unexplored Mediterranean hotspot of biodiversity. The sequencing and phylogenetic analysis of 161 vouchered collections from Austria, Cyprus, France, Germany, Italy and Spain, including 16 types, allowed for the delineation of 11 species in this lineage, three of them recognised as new to science and formally introduced as C. jimenezianus, C. selinolens and C. viridans spp. nov., respectively. Interestingly, the newly described species exhibit a strict Mediterranean distribution, and one of them is putatively endemic to the island of Cyprus, highlighting the remarkable potential of this neglected ecoregion to uncover further undescribed diversity of Cortinarius in the future. The present work also unveils 23 synonymies in this subgenus, as well as previously undetected crypticism within C. venetus. Next Generation Sequencing carried out on three old and contaminated holotypes, successfully decrypts their phylogenetic identity, including that of C. leproleptopus, finally settling the long-standing controversy over the taxonomic status of this species. A brief overview of each species in the subgenus is lastly provided and a key is proposed to facilitate the identification of presently known European taxa of Leprocybe in the field. Citation: Bidaud A, Loizides M, Armada F, et al. 2021. Cortinarius subgenus Leprocybe in Europe: expanded Sanger and Next Generation Sequencing unveil unexpected diversity in the Mediterranean. Persoonia 46: 188-215. https://doi.org/10.3767/persoonia.2021.46.07.
过去10年的分子系统发育研究表明,对其多样性的描述仍然被低估,特别是在大陆和北方生态区外,该属已经被历史地研究过。我们通过重新审视迄今为止尚未解决的Leprocybe亚属来解决这个问题,并专注于大部分未开发的地中海生物多样性热点。对来自奥地利、塞浦路斯、法国、德国、意大利和西班牙的161份鉴定标本(包括16个类型)进行测序和系统发育分析,确定了该谱系中的11个种,其中3个为新种,分别被正式命名为C. jimenezianus、C. selinolens和C. viridans spp. nov.。有趣的是,新描述的物种表现出严格的地中海分布,其中一个被认为是塞浦路斯岛特有的,突出了这个被忽视的生态区域的巨大潜力,在未来发现进一步未描述的Cortinarius多样性。目前的工作还揭示了23个同义词在这个亚属,以及以前未检测到的隐密在C. venetus。对3个古老的被污染的全型进行了下一代测序,成功地解密了它们的系统发育身份,包括麻风猪的系统发育身份,最终解决了长期以来关于该物种分类地位的争议。最后简要介绍了该亚属的每个物种,并提出了一个关键字,以方便在野外识别目前已知的欧洲Leprocybe分类群。引用本文:Bidaud A, Loizides M, Armada F等。欧洲的长尾藻亚属:扩展的Sanger和下一代测序揭示了地中海意想不到的多样性。《人物》46:188-215。https://doi.org/10.3767/persoonia.2021.46.07。
{"title":"<i>Cortinarius</i> subgenus <i>Leprocybe</i> in Europe: expanded Sanger and Next Generation Sequencing unveil unexpected diversity in the Mediterranean.","authors":"A Bidaud, M Loizides, F Armada, J de Dios Reyes, X Carteret, G Corriol, G Consiglio, P Reumaux, J-M Bellanger","doi":"10.3767/persoonia.2021.46.07","DOIUrl":"https://doi.org/10.3767/persoonia.2021.46.07","url":null,"abstract":"<p><p>Molecular phylogenies in the past decade have demonstrated that the described diversity of <i>Cortinarius</i> is still underestimated, especially outside continental and boreal ecoregions where the genus has been historically investigated. We tackled this issue by revisiting the so far unresolved subgenus <i>Leprocybe</i>, and focused on the largely unexplored Mediterranean hotspot of biodiversity. The sequencing and phylogenetic analysis of 161 vouchered collections from Austria, Cyprus, France, Germany, Italy and Spain, including 16 types, allowed for the delineation of 11 species in this lineage, three of them recognised as new to science and formally introduced as <i>C. jimenezianus</i>, <i>C. selinolens</i> and <i>C. viridans</i> spp. nov., respectively. Interestingly, the newly described species exhibit a strict Mediterranean distribution, and one of them is putatively endemic to the island of Cyprus, highlighting the remarkable potential of this neglected ecoregion to uncover further undescribed diversity of <i>Cortinarius</i> in the future. The present work also unveils 23 synonymies in this subgenus, as well as previously undetected crypticism within <i>C. venetus</i>. Next Generation Sequencing carried out on three old and contaminated holotypes, successfully decrypts their phylogenetic identity, including that of <i>C. leproleptopus</i>, finally settling the long-standing controversy over the taxonomic status of this species. A brief overview of each species in the subgenus is lastly provided and a key is proposed to facilitate the identification of presently known European taxa of <i>Leprocybe</i> in the field. <b>Citation</b>: Bidaud A, Loizides M, Armada F, et al. 2021. Cortinarius subgenus Leprocybe in Europe: expanded Sanger and Next Generation Sequencing unveil unexpected diversity in the Mediterranean. Persoonia 46: 188-215. https://doi.org/10.3767/persoonia.2021.46.07.</p>","PeriodicalId":20014,"journal":{"name":"Persoonia","volume":" ","pages":"188-215"},"PeriodicalIF":9.1,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9311388/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40676633","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-06-01Epub Date: 2021-06-12DOI: 10.3767/persoonia.2021.46.09
M Andreasen, I Skrede, W M Jaklitsch, H Voglmayr, B Nordén
Recent studies on the fungal families Lophiostomataceae and Lophiotremataceae (Pleosporales) have provided varying phylogenetic and taxonomic results concerning constituent genera and species. By adding DNA sequences of 24 new strains of Lophiostomataceae and nine new strains of Lophiotremataceae to a sequence data matrix from international databases, we provide a new understanding of the relationships within these families. Multigene analysis of the four molecular markers ITS, LSU, TEF1-α, and RPB2 reveals that the genera within Lophio-tremataceae are phylogenetically well supported. Lophiostoma myriocarpum is recognised as a species of Lophiotrema in contrast to earlier concepts. In Lophiostomataceae, we resurrect a broad generic concept of the genus Lophiostoma and reduce 14 genera to synonymy: Alpestrisphaeria, Biappendiculispora, Capulatispora, Coelodictyosporium, Guttulispora, Lophiohelichrysum, Lophiopoacea, Neopaucispora, Neotrematosphaeria, Platystomum, Pseudocapulatispora, Pseudolophiostoma, Pseudoplatystomum, and Sigarispora. Nine new species are described based on molecular data and in most cases supported by morphological characters: Antealophiotrema populicola, Atrocalyx nordicus, Lophiostoma carpini, Lophiostoma dictyosporium, Lophiostoma erumpens, Lophiostoma fusisporum, Lophiostoma jotunheimenense, Lophiostoma plantaginis, and Lophiostoma submuriforme. Lophiostoma caespitosum and Lophiotrema myriocarpum are lecto- and epitypified to stabilise their species concepts. High intraspecific variability of several morphological traits is common within Lophiostomataceae. Citation: Andreasen M, Skrede I, Jaklitsch WM, et al. 2021. Multi-locus phylogenetic analysis of lophiostomatoid fungi motivates a broad concept of Lophiostoma and reveals nine new species. Persoonia 46: 240-271. https://doi.org/10.3767/persoonia.2021.46.09.
{"title":"Multi-locus phylogenetic analysis of lophiostomatoid fungi motivates a broad concept of <i>Lophiostoma</i> and reveals nine new species.","authors":"M Andreasen, I Skrede, W M Jaklitsch, H Voglmayr, B Nordén","doi":"10.3767/persoonia.2021.46.09","DOIUrl":"https://doi.org/10.3767/persoonia.2021.46.09","url":null,"abstract":"<p><p>Recent studies on the fungal families <i>Lophiostomataceae</i> and <i>Lophiotremataceae</i> (<i>Pleosporales</i>) have provided varying phylogenetic and taxonomic results concerning constituent genera and species. By adding DNA sequences of 24 new strains of <i>Lophiostomataceae</i> and nine new strains of <i>Lophiotremataceae</i> to a sequence data matrix from international databases, we provide a new understanding of the relationships within these families. Multigene analysis of the four molecular markers ITS, LSU, <i>TEF1-α</i>, and <i>RPB2</i> reveals that the genera within <i>Lophio-tremataceae</i> are phylogenetically well supported. <i>Lophiostoma myriocarpum</i> is recognised as a species of <i>Lophiotrema</i> in contrast to earlier concepts. In <i>Lophiostomataceae</i>, we resurrect a broad generic concept of the genus <i>Lophiostoma</i> and reduce 14 genera to synonymy: <i>Alpestrisphaeria</i>, <i>Biappendiculispora</i>, <i>Capulatispora</i>, <i>Coelodictyosporium</i>, <i>Guttulispora</i>, <i>Lophiohelichrysum</i>, <i>Lophiopoacea</i>, <i>Neopaucispora</i>, <i>Neotrematosphaeria</i>, <i>Platystomum</i>, <i>Pseudocapulatispora</i>, <i>Pseudolophiostoma</i>, <i>Pseudoplatystomum</i>, and <i>Sigarispora</i>. Nine new species are described based on molecular data and in most cases supported by morphological characters: <i>Antealophiotrema populicola</i>, <i>Atrocalyx nordicus</i>, <i>Lophiostoma carpini</i>, <i>Lophiostoma dictyosporium</i>, <i>Lophiostoma erumpens</i>, <i>Lophiostoma fusisporum</i>, <i>Lophiostoma jotunheimenense</i>, <i>Lophiostoma plantaginis</i>, and <i>Lophiostoma submuriforme</i>. <i>Lophiostoma caespitosum</i> and <i>Lophiotrema myriocarpum</i> are lecto- and epitypified to stabilise their species concepts. High intraspecific variability of several morphological traits is common within <i>Lophiostomataceae</i>. <b>Citation</b>: Andreasen M, Skrede I, Jaklitsch WM, et al. 2021. Multi-locus phylogenetic analysis of lophiostomatoid fungi motivates a broad concept of Lophiostoma and reveals nine new species. Persoonia 46: 240-271. https://doi.org/10.3767/persoonia.2021.46.09.</p>","PeriodicalId":20014,"journal":{"name":"Persoonia","volume":" ","pages":"240-271"},"PeriodicalIF":9.1,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9311397/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40676634","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-06-01Epub Date: 2021-05-06DOI: 10.3767/persoonia.2021.46.06
C M Visagie, J C Frisvad, J Houbraken, A Visagie, R A Samson, K Jacobs
A survey of Penicillium in the fynbos biome from South Africa resulted in the isolation of 61 species of which 29 were found to be new. In this study we focus on Penicillium section Canescentia, providing a phylogenetic re-evaluation based on the analysis of partial beta-tubulin (BenA), calmodulin (CaM) and RNA polymerase II second largest subunit (RPB2) sequence data. Based on phylogenies we show that five fynbos species are new and several previously assigned synonyms of P. canescens and P. janczewskii should be considered as distinct species. As such, we provide descriptions for the five new species and introduce the new name P. elizabethiae for the illegitimate P. echinatum. We also update the accepted species list and synonymies of section Canescentia species and provide a review of extrolites produced by these species. Citation: Visagie CM, Frisvad JC, Houbraken J, et al. 2021. A re-evaluation of Penicillium section Canescentia, including the description of five new species. Persoonia 46: 163-187. https://doi.org/10.3767/persoonia.2021.46.06.
对南非飞蝗群落青霉菌进行了调查,分离出61种,其中29种为新种。本研究以Canescentia青霉菌为研究对象,通过对部分β -微管蛋白(BenA)、钙调蛋白(CaM)和RNA聚合酶II第二大亚基(RPB2)序列数据的分析,对其进行系统发育再评价。在系统发育的基础上,我们发现5个fynbos种是新种,而先前与P. canescens和P. janczewskii的几个同义种应该被认为是不同的种。在此基础上,本文对5个新种进行了描述,并为非法种棘桐引入了新名称P. elizabethiae。本文还更新了该属植物的公认种表和同义词,并对这些物种产生的外向子进行了综述。引用本文:Visagie CM, Frisvad JC, Houbraken J等。2021。对青霉属Canescentia部分的重新评价,包括五个新种的描述。《人物》46:163-187。https://doi.org/10.3767/persoonia.2021.46.06。
{"title":"A re-evaluation of <i>Penicillium</i> section <i>Canescentia</i>, including the description of five new species.","authors":"C M Visagie, J C Frisvad, J Houbraken, A Visagie, R A Samson, K Jacobs","doi":"10.3767/persoonia.2021.46.06","DOIUrl":"https://doi.org/10.3767/persoonia.2021.46.06","url":null,"abstract":"<p><p>A survey of <i>Penicillium</i> in the fynbos biome from South Africa resulted in the isolation of 61 species of which 29 were found to be new. In this study we focus on <i>Penicillium</i> section <i>Canescentia</i>, providing a phylogenetic re-evaluation based on the analysis of partial beta-tubulin (<i>BenA</i>), calmodulin (<i>CaM</i>) and RNA polymerase II second largest subunit (<i>RPB2</i>) sequence data. Based on phylogenies we show that five fynbos species are new and several previously assigned synonyms of <i>P. canescens</i> and <i>P. janczewskii</i> should be considered as distinct species. As such, we provide descriptions for the five new species and introduce the new name <i>P. elizabethiae</i> for the illegitimate <i>P. echinatum</i>. We also update the accepted species list and synonymies of section <i>Canescentia</i> species and provide a review of extrolites produced by these species. <b>Citation</b>: Visagie CM, Frisvad JC, Houbraken J, et al. 2021. A re-evaluation of Penicillium section Canescentia, including the description of five new species. Persoonia 46: 163-187. https://doi.org/10.3767/persoonia.2021.46.06.</p>","PeriodicalId":20014,"journal":{"name":"Persoonia","volume":" ","pages":"163-187"},"PeriodicalIF":9.1,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9311393/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40699889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-06-01Epub Date: 2021-02-14DOI: 10.3767/persoonia.2021.46.04
D Croll, P W Crous, D Pereira, E A Mordecai, B A McDonald, P C Brunner
Several plant pathogenic Parastagonospora species have been identified infecting wheat and other cereals over the past 50 years. As new lineages were discovered, naming conventions grew unwieldy and the relationships with previously recognized species remained unclear. We used genome sequencing to clarify relationships among these species and provided new names for most of these species. Six of the nine described Parastagonospora species were recovered from wheat, with five of these species coming from Iran. Genome sequences revealed that three strains thought to be hybrids between P. nodorum and P. pseudonodorum were not actually hybrids, but rather represented rare gene introgressions between those species. Our data are consistent with the hypothesis that P. nodorum originated as a pathogen of wild grasses in the Fertile Crescent, then emerged as a wheat pathogen via host-tracking during the domestication of wheat in the same region. The discovery of a diverse array of Parastagonospora species infecting wheat in Iran suggests that new wheat pathogens could emerge from this region in the future. Citation: Croll D, Crous PW, Pereira D, et al. 2021. Genome-scale phylogenies reveal relationships among Parastagonospora species infecting domesticated and wild grasses. Persoonia 46: 116-128. https://doi.org/10.3767/persoonia.2021.46.04.
在过去的 50 年中,已经发现了多个感染小麦和其他谷物的植物致病性副伞孢属(Parastagonospora)物种。随着新品系的发现,命名规则变得越来越晦涩难懂,而且与之前确认的物种之间的关系仍不明确。我们利用基因组测序澄清了这些物种之间的关系,并为其中大多数物种提供了新名称。在已描述的 9 个 Parastagonospora 物种中,有 6 个是从小麦中发现的,其中 5 个来自伊朗。基因组序列显示,被认为是 P. nodorum 和 P. pseudonodorum 之间杂交种的三个菌株实际上并不是杂交种,而是这些物种之间罕见的基因导入。我们的数据与以下假设一致,即 P. nodorum 起源于新月沃地的一种野生禾本科植物病原体,然后在同一地区的小麦驯化过程中通过宿主追踪成为小麦病原体。在伊朗发现的感染小麦的 Parastagonospora 种类繁多,这表明未来该地区可能会出现新的小麦病原体。引用:Croll D, Crous PW, Pereira D, et al.基因组规模的系统发育揭示了感染驯化和野生禾本科植物的 Parastagonospora 物种之间的关系。Persoonia 46: 116-128. https://doi.org/10.3767/persoonia.2021.46.04.
{"title":"Genome-scale phylogenies reveal relationships among <i>Parastagonospora</i> species infecting domesticated and wild grasses.","authors":"D Croll, P W Crous, D Pereira, E A Mordecai, B A McDonald, P C Brunner","doi":"10.3767/persoonia.2021.46.04","DOIUrl":"10.3767/persoonia.2021.46.04","url":null,"abstract":"<p><p>Several plant pathogenic <i>Parastagonospora</i> species have been identified infecting wheat and other cereals over the past 50 years. As new lineages were discovered, naming conventions grew unwieldy and the relationships with previously recognized species remained unclear. We used genome sequencing to clarify relationships among these species and provided new names for most of these species. Six of the nine described <i>Parastagonospora</i> species were recovered from wheat, with five of these species coming from Iran. Genome sequences revealed that three strains thought to be hybrids between <i>P. nodorum</i> and <i>P. pseudonodorum</i> were not actually hybrids, but rather represented rare gene introgressions between those species. Our data are consistent with the hypothesis that <i>P. nodorum</i> originated as a pathogen of wild grasses in the Fertile Crescent, then emerged as a wheat pathogen via host-tracking during the domestication of wheat in the same region. The discovery of a diverse array of <i>Parastagonospora</i> species infecting wheat in Iran suggests that new wheat pathogens could emerge from this region in the future. <b>Citation</b>: Croll D, Crous PW, Pereira D, et al. 2021. Genome-scale phylogenies reveal relationships among Parastagonospora species infecting domesticated and wild grasses. Persoonia 46: 116-128. https://doi.org/10.3767/persoonia.2021.46.04.</p>","PeriodicalId":20014,"journal":{"name":"Persoonia","volume":"46 ","pages":"116-128"},"PeriodicalIF":9.5,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9311395/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10588959","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-12-01Epub Date: 2019-09-10DOI: 10.3767/persoonia.2020.45.02
S Bien, C Kraus, U Damm
Strains with a yeast-like appearance were frequently collected in two surveys on the biodiversity of fungi in Germany, either associated with necroses in wood of Prunus trees in orchards in Saxony, Lower Saxony and Baden-Württemberg or captured in spore traps mounted on grapevine shoots in a vineyard in Rhineland-Palatinate. The morphology of the strains was reminiscent of the genus Collophorina: all strains produced aseptate conidia on integrated conidiogenous cells directly on hyphae, on discrete phialides, adelophialides and by microcyclic conidiation, while in some strains additionally endoconidia or conidia in conidiomata were observed. Blastn searches with the ITS region placed the strains in the Leotiomycetes close to Collophorina spp. Analyses based on morphological and multi-locus sequence data (LSU, ITS, EF-1α, GAPDH) revealed that the 152 isolates from wood of Prunus spp. belong to five species including C. paarla, C. africana and three new species. A further ten isolates from spore traps belonged to seven new species, of which one was isolated from Prunus wood as well. However, a comparison with both LSU and ITS sequence data of these collophorina-like species with reference sequences from further Leotiomycetes revealed the genus Collophorina to be polyphyletic and the strains to pertain to several genera within the Phacidiales. Collophorina paarla and C. euphorbiae are transferred to the newly erected genera Pallidophorina and Ramoconidiophora, respectively. The new genera Capturomyces, Variabilispora and Vexillomyces are erected to accommodate five new species isolated from spore traps. In total nine species were recognised as new to science and described as Collophorina badensis, C. germanica, C. neorubra, Capturomyces funiculosus, Ca. luteus, Tympanis inflata, Variabilispora flava, Vexillomyces palatinus and V. verruculosus.
{"title":"Novel collophorina-like genera and species from <i>Prunus</i> trees and vineyards in Germany.","authors":"S Bien, C Kraus, U Damm","doi":"10.3767/persoonia.2020.45.02","DOIUrl":"10.3767/persoonia.2020.45.02","url":null,"abstract":"<p><p>Strains with a yeast-like appearance were frequently collected in two surveys on the biodiversity of fungi in Germany, either associated with necroses in wood of <i>Prunus</i> trees in orchards in Saxony, Lower Saxony and Baden-Württemberg or captured in spore traps mounted on grapevine shoots in a vineyard in Rhineland-Palatinate. The morphology of the strains was reminiscent of the genus <i>Collophorina</i>: all strains produced aseptate conidia on integrated conidiogenous cells directly on hyphae, on discrete phialides, adelophialides and by microcyclic conidiation, while in some strains additionally endoconidia or conidia in conidiomata were observed. Blastn searches with the ITS region placed the strains in the <i>Leotiomycetes</i> close to <i>Collophorina</i> spp. Analyses based on morphological and multi-locus sequence data (LSU, ITS, <i>EF-1α</i>, <i>GAPDH</i>) revealed that the 152 isolates from wood of <i>Prunus</i> spp. belong to five species including <i>C. paarla</i>, <i>C. africana</i> and three new species. A further ten isolates from spore traps belonged to seven new species, of which one was isolated from <i>Prunus</i> wood as well. However, a comparison with both LSU and ITS sequence data of these collophorina-like species with reference sequences from further <i>Leotiomycetes</i> revealed the genus <i>Collophorina</i> to be polyphyletic and the strains to pertain to several genera within the <i>Phacidiales</i>. <i>Collophorina paarla</i> and <i>C. euphorbiae</i> are transferred to the newly erected genera <i>Pallidophorina</i> and <i>Ramoconidiophora</i>, respectively. The new genera <i>Capturomyces</i>, <i>Variabilispora</i> and <i>Vexillomyces</i> are erected to accommodate five new species isolated from spore traps. In total nine species were recognised as new to science and described as <i>Collophorina badensis</i>, <i>C. germanica</i>, <i>C. neorubra</i>, <i>Capturomyces funiculosus</i>, <i>Ca. luteus</i>, <i>Tympanis inflata</i>, <i>Variabilispora flava</i>, <i>Vexillomyces palatinus</i> and <i>V. verruculosus</i>.</p>","PeriodicalId":20014,"journal":{"name":"Persoonia","volume":"45 ","pages":"46-67"},"PeriodicalIF":9.1,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/35/70/per-2020-45-2.PMC8375351.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39363517","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-12-01Epub Date: 2020-10-29DOI: 10.3767/persoonia.2020.45.08
C F J Spies, L Mostert, A Carlucci, P Moyo, W J van Jaarsveld, I L du Plessis, M van Dyk, F Halleen
Trunk disease fungal pathogens reduce olive production globally by causing cankers, dieback, and other decline-related symptoms on olive trees. Very few fungi have been reported in association with olive dieback and decline in South Africa. Many of the fungal species reported from symptomatic olive trees in other countries have broad host ranges and are known to occur on other woody host plants in the Western Cape province, the main olive production region of South Africa. This survey investigated the diversity of fungi and symptoms associated with olive dieback and decline in South Africa. Isolations were made from internal wood symptoms of 145 European and 42 wild olive trees sampled in 10 and 9 districts, respectively. A total of 99 taxa were identified among 440 fungal isolates using combinations of morphological and molecular techniques. A new species of Pseudophaeomoniella, P. globosa, had the highest incidence, being recovered from 42.8 % of European and 54.8 % of wild olive samples. This species was recovered from 9 of the 10 districts where European olive trees were sampled and from all districts where wild olive trees were sampled. Members of the Phaeomoniellales (mainly P. globosa) were the most prevalent fungi in five of the seven symptom types considered, the only exceptions being twig dieback, where members of the Botryosphaeriaceae were more common, and soft/white rot where only Basidiomycota were recovered. Several of the species identified are known as pathogens of olives or other woody crops either in South Africa or elsewhere in the world, including species of Neofusicoccum, Phaeoacremonium, and Pleurostoma richardsiae. However, 81 of the 99 taxa identified have not previously been recorded on olive trees and have unknown interactions with this host. These taxa include one new genus and several putative new species, of which four are formally described as Celerioriella umnquma sp. nov., Pseudophaeomoniella globosa sp. nov., Vredendaliella oleae gen. & sp. nov., and Xenocylindrosporium margaritarum sp. nov.
{"title":"Dieback and decline pathogens of olive trees in South Africa.","authors":"C F J Spies, L Mostert, A Carlucci, P Moyo, W J van Jaarsveld, I L du Plessis, M van Dyk, F Halleen","doi":"10.3767/persoonia.2020.45.08","DOIUrl":"https://doi.org/10.3767/persoonia.2020.45.08","url":null,"abstract":"<p><p>Trunk disease fungal pathogens reduce olive production globally by causing cankers, dieback, and other decline-related symptoms on olive trees. Very few fungi have been reported in association with olive dieback and decline in South Africa. Many of the fungal species reported from symptomatic olive trees in other countries have broad host ranges and are known to occur on other woody host plants in the Western Cape province, the main olive production region of South Africa. This survey investigated the diversity of fungi and symptoms associated with olive dieback and decline in South Africa. Isolations were made from internal wood symptoms of 145 European and 42 wild olive trees sampled in 10 and 9 districts, respectively. A total of 99 taxa were identified among 440 fungal isolates using combinations of morphological and molecular techniques. A new species of <i>Pseudophaeomoniella</i>, <i>P. globosa</i>, had the highest incidence, being recovered from 42.8 % of European and 54.8 % of wild olive samples. This species was recovered from 9 of the 10 districts where European olive trees were sampled and from all districts where wild olive trees were sampled. Members of the <i>Phaeomoniellales</i> (mainly <i>P. globosa</i>) were the most prevalent fungi in five of the seven symptom types considered, the only exceptions being twig dieback, where members of the <i>Botryosphaeriaceae</i> were more common, and soft/white rot where only <i>Basidiomycota</i> were recovered. Several of the species identified are known as pathogens of olives or other woody crops either in South Africa or elsewhere in the world, including species of <i>Neofusicoccum</i>, <i>Phaeoacremonium</i>, and <i>Pleurostoma richardsiae</i>. However, 81 of the 99 taxa identified have not previously been recorded on olive trees and have unknown interactions with this host. These taxa include one new genus and several putative new species, of which four are formally described as <i>Celerioriella umnquma</i> sp. nov., <i>Pseudophaeomoniella globosa</i> sp. nov., <i>Vredendaliella oleae</i> gen. & sp. nov., and <i>Xenocylindrosporium margaritarum</i> sp. nov.</p>","PeriodicalId":20014,"journal":{"name":"Persoonia","volume":"45 ","pages":"196-220"},"PeriodicalIF":9.1,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/f7/4a/per-2020-45-8.PMC8375345.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39363393","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-12-01Epub Date: 2020-01-10DOI: 10.3767/persoonia.2020.45.03
P Zhao, X H Qi, P W Crous, W J Duan, L Cai
Gymnosporangium species (Pucciniaceae, Pucciniales, Basidiomycota) are the causal agents of cedar-apple rust diseases, which can lead to significant economic losses to apple cultivars. Currently, the genus contains 17 described species that alternate between spermogonial/aecial stages on Malus species and telial stages on Juniperus or Chamaecyparis species, although these have yet to receive a modern systematic treatment. Furthermore, prior studies have shown that Gymnosporangium does not belong to the Pucciniaceae sensu stricto (s.str.), nor is it allied to any currently defined rust family. In this study we examine the phylogenetic placement of the genus Gymnosporangium. We also delineate interspecific boundaries of the Gymnosporangium species on Malus based on phylogenies inferred from concatenated data of rDNA SSU, ITS and LSU and the holomorphic morphology of the entire life cycle. Based on these results, we propose a new family, Gymnosporangiaceae, to accommodate the genus Gymnosporangium, and recognize 22 Gymnosporangium species parasitic on Malus species, of which G. lachrymiforme, G. shennongjiaense, G. spinulosum, G. tiankengense and G. kanas are new. Typification of G. asiaticum, G. fenzelianum, G. juniperi-virginianae, G. libocedri, G. nelsonii, G. nidus-avis and G. yamadae are proposed to stabilize the use of names. Morphological and molecular data from type materials of 14 Gymnosporangium species are provided. Finally, morphological characteristics, host alternation and geographical distribution data are provided for each Gymnosporangium species on Malus.
{"title":"<i>Gymnosporangium</i> species on <i>Malus</i>: species delineation, diversity and host alternation.","authors":"P Zhao, X H Qi, P W Crous, W J Duan, L Cai","doi":"10.3767/persoonia.2020.45.03","DOIUrl":"https://doi.org/10.3767/persoonia.2020.45.03","url":null,"abstract":"<p><p><i>Gymnosporangium</i> species (<i>Pucciniaceae</i>, <i>Pucciniales</i>, <i>Basidiomycota</i>) are the causal agents of cedar-apple rust diseases, which can lead to significant economic losses to apple cultivars. Currently, the genus contains 17 described species that alternate between spermogonial/aecial stages on <i>Malus</i> species and telial stages on <i>Juniperus</i> or <i>Chamaecyparis</i> species, although these have yet to receive a modern systematic treatment. Furthermore, prior studies have shown that <i>Gymnosporangium</i> does not belong to the <i>Pucciniaceae</i> sensu stricto (s.str.), nor is it allied to any currently defined rust family. In this study we examine the phylogenetic placement of the genus <i>Gymnosporangium.</i> We also delineate interspecific boundaries of the <i>Gymnosporangium</i> species on <i>Malus</i> based on phylogenies inferred from concatenated data of rDNA SSU, ITS and LSU and the holomorphic morphology of the entire life cycle. Based on these results, we propose a new family, <i>Gymnosporangiaceae</i>, to accommodate the genus <i>Gymnosporangium</i>, and recognize 22 <i>Gymnosporangium</i> species parasitic on <i>Malus</i> species, of which <i>G. lachrymiforme</i>, <i>G. shennongjiaense</i>, <i>G. spinulosum</i>, <i>G. tiankengense</i> and <i>G. kanas</i> are new. Typification of <i>G. asiaticum</i>, <i>G. fenzelianum</i>, <i>G. juniperi-virginianae</i>, <i>G. libocedri</i>, <i>G. nelsonii</i>, <i>G. nidus-avis</i> and <i>G. yamadae</i> are proposed to stabilize the use of names. Morphological and molecular data from type materials of 14 <i>Gymnosporangium</i> species are provided. Finally, morphological characteristics, host alternation and geographical distribution data are provided for each <i>Gymnosporangium</i> species on <i>Malus</i>.</p>","PeriodicalId":20014,"journal":{"name":"Persoonia","volume":"45 ","pages":"68-100"},"PeriodicalIF":9.1,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/6d/d5/per-2020-45-3.PMC8375348.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39363518","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-12-01Epub Date: 2020-03-17DOI: 10.3767/persoonia.2020.45.06
J Q Li, B D Wingfield, M J Wingfield, I Barnes, A Fourie, P W Crous, S F Chen
The genus Calonectria includes many important plant pathogens with a wide global distribution. In order to better understand the reproductive biology of these fungi, we characterised the structure of the mating type locus and flanking genes using the genome sequences for seven Calonectria species. Primers to amplify the mating type genes in other species were also developed. PCR amplification of the mating type genes and multi-gene phylogenetic analyses were used to investigate the mating strategies and evolution of mating type in a collection of 70 Calonectria species residing in 10 Calonectria species complexes. Results showed that the organisation of the MAT locus and flanking genes is conserved. In heterothallic species, a novel MAT gene, MAT1-2-12 was identified in the MAT1-2 idiomorph; the MAT1-1 idiomorph, in most cases, contained the MAT1-1-3 gene. Neither MAT1-1-3 nor MAT1-2-12 was found in homothallic Calonectria (Ca.) hongkongensis, Ca. lateralis, Ca. pseudoturangicola and Ca. turangicola. Four different homothallic MAT locus gene arrangements were observed. Ancestral state reconstruction analysis provided evidence that the homothallic state was basal in Calonectria and this evolved from a heterothallic ancestor.
{"title":"Mating genes in <i>Calonectria</i> and evidence for a heterothallic ancestral state.","authors":"J Q Li, B D Wingfield, M J Wingfield, I Barnes, A Fourie, P W Crous, S F Chen","doi":"10.3767/persoonia.2020.45.06","DOIUrl":"https://doi.org/10.3767/persoonia.2020.45.06","url":null,"abstract":"<p><p>The genus <i>Calonectria</i> includes many important plant pathogens with a wide global distribution. In order to better understand the reproductive biology of these fungi, we characterised the structure of the mating type locus and flanking genes using the genome sequences for seven <i>Calonectria</i> species. Primers to amplify the mating type genes in other species were also developed. PCR amplification of the mating type genes and multi-gene phylogenetic analyses were used to investigate the mating strategies and evolution of mating type in a collection of 70 <i>Calonectria</i> species residing in 10 <i>Calonectria</i> species complexes. Results showed that the organisation of the <i>MAT</i> locus and flanking genes is conserved. In heterothallic species, a novel <i>MAT</i> gene, <i>MAT1-2-12</i> was identified in the <i>MAT1-2</i> idiomorph; the <i>MAT1-1</i> idiomorph, in most cases, contained the <i>MAT1-1-3</i> gene. Neither <i>MAT1-1-3</i> nor <i>MAT1-2-12</i> was found in homothallic <i>Calonectria</i> (<i>Ca</i>.) <i>hongkongensis</i>, <i>Ca. lateralis</i>, <i>Ca. pseudoturangicola</i> and <i>Ca. turangicola</i>. Four different homothallic <i>MAT</i> locus gene arrangements were observed. Ancestral state reconstruction analysis provided evidence that the homothallic state was basal in <i>Calonectria</i> and this evolved from a heterothallic ancestor.</p>","PeriodicalId":20014,"journal":{"name":"Persoonia","volume":"45 ","pages":"163-176"},"PeriodicalIF":9.1,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/5f/fd/per-2020-45-6.PMC8375350.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39363391","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-12-01Epub Date: 2020-07-22DOI: 10.3767/persoonia.2020.45.07
S Marincowitz, T A Duong, S J Taerum, Z W de Beer, M J Wingfield
The red turpentine beetle (RTB; Dendroctonus valens) is a bark beetle that is native to Central and North America. This insect is well-known to live in association with a large number of Ophiostomatalean fungi. The beetle is considered a minor pest in its native range, but has killed millions of indigenous pine trees in China after its appearance in that country in the late 1990s. In order to increase the base of knowledge regarding the RTB and its symbionts, surveys of the beetle's fungal associates were initially undertaken in China, and in a subsequent study in its native range in North America. A total of 30 Ophiostomatalean species that included several undescribed taxa, were identified in these surveys. In the present study, seven of the undescribed taxa collected during the surveys were further characterised based on their morphological characteristics and multi-gene phylogenies. We proceeded to describe five of these as novel Leptographium spp. and two as new species of Ophiostoma. Four of the Leptographium spp. resided in the G. galeiformis-species complex, while one formed part of the L. olivaceum-species complex. One Ophiostoma sp. was a member of the O. ips-species complex, while the only new species from China was closely related to O. floccosum. Two of the previously undescribed taxa from North America were shown to be congeneric with L. terebrantis, implying that this species was most often isolated in association with the RTB in North America. The undescribed taxon from North America was identified as O. ips, and like L. terebrantis, this species was also not recognized during the initial North American survey. Resolving the identities of these taxa provides essential baseline information to better understand the movement of fungal pathogens with this beetle. This then enhances our ability to accurately assess and predict the risks of invasions by these and related fungi.
{"title":"Fungal associates of an invasive pine-infesting bark beetle, <i>Dendroctonus valens</i>, including seven new Ophiostomatalean fungi.","authors":"S Marincowitz, T A Duong, S J Taerum, Z W de Beer, M J Wingfield","doi":"10.3767/persoonia.2020.45.07","DOIUrl":"https://doi.org/10.3767/persoonia.2020.45.07","url":null,"abstract":"<p><p>The red turpentine beetle (RTB; <i>Dendroctonus valens</i>) is a bark beetle that is native to Central and North America. This insect is well-known to live in association with a large number of Ophiostomatalean fungi. The beetle is considered a minor pest in its native range, but has killed millions of indigenous pine trees in China after its appearance in that country in the late 1990s. In order to increase the base of knowledge regarding the RTB and its symbionts, surveys of the beetle's fungal associates were initially undertaken in China, and in a subsequent study in its native range in North America. A total of 30 Ophiostomatalean species that included several undescribed taxa, were identified in these surveys. In the present study, seven of the undescribed taxa collected during the surveys were further characterised based on their morphological characteristics and multi-gene phylogenies. We proceeded to describe five of these as novel <i>Leptographium</i> spp. and two as new species of <i>Ophiostoma</i>. Four of the <i>Leptographium</i> spp. resided in the <i>G. galeiformis-</i>species complex, while one formed part of the <i>L. olivaceum</i>-species complex<i>.</i> One <i>Ophiostoma</i> sp. was a member of the <i>O. ips</i>-species complex, while the only new species from China was closely related to <i>O. floccosum</i>. Two of the previously undescribed taxa from North America were shown to be congeneric with <i>L. terebrantis</i>, implying that this species was most often isolated in association with the RTB in North America. The undescribed taxon from North America was identified as <i>O. ips</i>, and like <i>L. terebrantis</i>, this species was also not recognized during the initial North American survey. Resolving the identities of these taxa provides essential baseline information to better understand the movement of fungal pathogens with this beetle. This then enhances our ability to accurately assess and predict the risks of invasions by these and related fungi.</p>","PeriodicalId":20014,"journal":{"name":"Persoonia","volume":"45 ","pages":"177-195"},"PeriodicalIF":9.1,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/30/05/per-2020-45-7.PMC8375344.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39363392","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-12-01Epub Date: 2020-12-19DOI: 10.3767/persoonia.2020.45.10
P W Crous, D A Cowan, G Maggs-Kölling, N Yilmaz, E Larsson, C Angelini, T E Brandrud, J D W Dearnaley, B Dima, F Dovana, N Fechner, D García, J Gené, R E Halling, J Houbraken, P Leonard, J J Luangsa-Ard, W Noisripoom, A E Rea-Ireland, H Ševčíková, C W Smyth, A Vizzini, J D Adam, G C Adams, A V Alexandrova, A Alizadeh, E Álvarez Duarte, V Andjic, V Antonín, F Arenas, R Assabgui, J Ballarà, A Banwell, A Berraf-Tebbal, V K Bhatt, G Bonito, W Botha, T I Burgess, M Caboň, J Calvert, L C Carvalhais, R Courtecuisse, P Cullington, N Davoodian, C A Decock, R Dimitrov, S Di Piazza, A Drenth, S Dumez, A Eichmeier, J Etayo, I Fernández, J-P Fiard, J Fournier, S Fuentes-Aponte, M A T Ghanbary, G Ghorbani, A Giraldo, A M Glushakova, D E Gouliamova, J Guarro, F Halleen, F Hampe, M Hernández-Restrepo, I Iturrieta-González, M Jeppson, A V Kachalkin, O Karimi, A N Khalid, A Khonsanit, J I Kim, K Kim, M Kiran, I Krisai-Greilhuber, V Kučera, I Kušan, S D Langenhoven, T Lebel, R Lebeuf, K Liimatainen, C Linde, D L Lindner, L Lombard, A E Mahamedi, N Matočec, A Maxwell, T W May, A R McTaggart, M Meijer, A Mešić, A J Mileto, A N Miller, A Molia, S Mongkolsamrit, C Muñoz Cortés, J Muñoz-Mohedano, A Morte, O V Morozova, L Mostert, R Mostowfizadeh-Ghalamfarsa, L G Nagy, A Navarro-Ródenas, L Örstadius, B E Overton, V Papp, R Para, U Peintner, T H G Pham, A Pordel, A Pošta, A Rodríguez, M Romberg, M Sandoval-Denis, K A Seifert, K C Semwal, B J Sewall, R G Shivas, M Slovák, K Smith, M Spetik, C F J Spies, K Syme, K Tasanathai, R G Thorn, Z Tkalčec, M A Tomashevskaya, D Torres-Garcia, Z Ullah, C M Visagie, A Voitk, L M Winton, J Z Groenewald
<p><p>Novel species of fungi described in this study include those from various countries as follows: <b>Australia</b>, <i>Austroboletus asper</i> on soil, <i>Cylindromonium alloxyli</i> on leaves of <i>Alloxylon pinnatum, Davidhawksworthia quintiniae</i> on leaves of <i>Quintinia sieberi, Exophiala prostantherae</i> on leaves of <i>Prostanthera</i> sp., <i>Lactifluus lactiglaucus</i> on soil, <i>Linteromyces quintiniae</i> (incl. <i>Linteromyces</i> gen. nov.) on leaves of <i>Quintinia sieberi</i>, <i>Lophotrichus medusoides</i> from stem tissue of <i>Citrus garrawayi</i>, <i>Mycena pulchra</i> on soil, <i>Neocalonectria tristaniopsidis</i> (incl. <i>Neocalonectria</i> gen. nov.) and <i>Xyladictyochaeta tristaniopsidis</i> on leaves of <i>Tristaniopsis collina, Parasarocladium tasmanniae</i> on leaves of <i>Tasmannia insipida</i>, <i>Phytophthora aquae-cooljarloo</i> from pond water, Serendipita whamiae as endophyte from roots of <i>Eriochilus cucullatus</i>, <i>Veloboletus limbatus</i> (incl. <i>Veloboletus</i> gen. nov.) on soil. <b>Austria</b>, <i>Cortinarius glaucoelotus</i> on soil. <b>Bulgaria</b>, <i>Suhomyces rilaensis</i> from the gut of <i>Bolitophagus interruptus</i> found on a <i>Polyporus</i> sp. <b>Canada</b>, <i>Cantharellus betularum</i> among leaf litter of <i>Betula</i>, <i>Penicillium saanichii</i> from house dust. <b>Chile</b>, <i>Circinella lampensis</i> on soil, <i>Exophiala embothrii</i> from rhizosphere of <i>Embothrium coccineum.</i> <b>China</b>, <i>Colletotrichum cycadis</i> on leaves of <i>Cycas revoluta.</i> <b>Croatia</b>, <i>Phialocephala melitaea</i> on fallen branch of <i>Pinus halepensis</i>. <b>Czech Republic</b>, <i>Geoglossum jirinae</i> on soil, <i>Pyrenochaetopsis rajhradensis</i> from dead wood of <i>Buxus sempervirens.</i> <b>Dominican Republic</b>, <i>Amanita domingensis</i> on litter of deciduous wood, <i>Melanoleuca dominicana</i> on forest litter. <b>France</b>, <i>Crinipellis nigrolamellata</i> (Martinique) on leaves of <i>Pisonia fragrans</i>, <i>Talaromyces pulveris</i> from bore dust of <i>Xestobium rufovillosum</i> infesting floorboards. <b>French Guiana</b>, <i>Hypoxylon hepaticolor</i> on dead corticated branch. <b>Great Britain</b>, <i>Inocybe ionolepis</i> on soil. <b>India</b>, <i>Cortinarius indopurpurascens</i> among leaf litter of <i>Quercus leucotrichophora.</i> <b>Iran</b>, <i>Pseudopyricularia javanii</i> on infected leaves of <i>Cyperus</i> sp., <i>Xenomonodictys iranica</i> (incl. <i>Xenomonodictys</i> gen. nov.) on wood of <i>Fagus orientalis.</i> <b>Italy</b>, <i>Penicillium vallebormidaense</i> from compost. <b>Namibia</b>, <i>Alternaria mirabibensis</i> on plant litter, <i>Curvularia moringae</i> and <i>Moringomyces phantasmae</i> (incl. <i>Moringomyces</i> gen. nov.) on leaves and flowers of <i>Moringa ovalifolia, Gobabebomyces vachelliae</i> (incl. <i>Gobabebomyces</i> gen. nov.) on leaves of <i>Vachellia erioloba, Preussia procaviae</i> on dung of <i>Procavia capensis.</i> <b>
{"title":"Fungal Planet description sheets: 1112-1181.","authors":"P W Crous, D A Cowan, G Maggs-Kölling, N Yilmaz, E Larsson, C Angelini, T E Brandrud, J D W Dearnaley, B Dima, F Dovana, N Fechner, D García, J Gené, R E Halling, J Houbraken, P Leonard, J J Luangsa-Ard, W Noisripoom, A E Rea-Ireland, H Ševčíková, C W Smyth, A Vizzini, J D Adam, G C Adams, A V Alexandrova, A Alizadeh, E Álvarez Duarte, V Andjic, V Antonín, F Arenas, R Assabgui, J Ballarà, A Banwell, A Berraf-Tebbal, V K Bhatt, G Bonito, W Botha, T I Burgess, M Caboň, J Calvert, L C Carvalhais, R Courtecuisse, P Cullington, N Davoodian, C A Decock, R Dimitrov, S Di Piazza, A Drenth, S Dumez, A Eichmeier, J Etayo, I Fernández, J-P Fiard, J Fournier, S Fuentes-Aponte, M A T Ghanbary, G Ghorbani, A Giraldo, A M Glushakova, D E Gouliamova, J Guarro, F Halleen, F Hampe, M Hernández-Restrepo, I Iturrieta-González, M Jeppson, A V Kachalkin, O Karimi, A N Khalid, A Khonsanit, J I Kim, K Kim, M Kiran, I Krisai-Greilhuber, V Kučera, I Kušan, S D Langenhoven, T Lebel, R Lebeuf, K Liimatainen, C Linde, D L Lindner, L Lombard, A E Mahamedi, N Matočec, A Maxwell, T W May, A R McTaggart, M Meijer, A Mešić, A J Mileto, A N Miller, A Molia, S Mongkolsamrit, C Muñoz Cortés, J Muñoz-Mohedano, A Morte, O V Morozova, L Mostert, R Mostowfizadeh-Ghalamfarsa, L G Nagy, A Navarro-Ródenas, L Örstadius, B E Overton, V Papp, R Para, U Peintner, T H G Pham, A Pordel, A Pošta, A Rodríguez, M Romberg, M Sandoval-Denis, K A Seifert, K C Semwal, B J Sewall, R G Shivas, M Slovák, K Smith, M Spetik, C F J Spies, K Syme, K Tasanathai, R G Thorn, Z Tkalčec, M A Tomashevskaya, D Torres-Garcia, Z Ullah, C M Visagie, A Voitk, L M Winton, J Z Groenewald","doi":"10.3767/persoonia.2020.45.10","DOIUrl":"https://doi.org/10.3767/persoonia.2020.45.10","url":null,"abstract":"<p><p>Novel species of fungi described in this study include those from various countries as follows: <b>Australia</b>, <i>Austroboletus asper</i> on soil, <i>Cylindromonium alloxyli</i> on leaves of <i>Alloxylon pinnatum, Davidhawksworthia quintiniae</i> on leaves of <i>Quintinia sieberi, Exophiala prostantherae</i> on leaves of <i>Prostanthera</i> sp., <i>Lactifluus lactiglaucus</i> on soil, <i>Linteromyces quintiniae</i> (incl. <i>Linteromyces</i> gen. nov.) on leaves of <i>Quintinia sieberi</i>, <i>Lophotrichus medusoides</i> from stem tissue of <i>Citrus garrawayi</i>, <i>Mycena pulchra</i> on soil, <i>Neocalonectria tristaniopsidis</i> (incl. <i>Neocalonectria</i> gen. nov.) and <i>Xyladictyochaeta tristaniopsidis</i> on leaves of <i>Tristaniopsis collina, Parasarocladium tasmanniae</i> on leaves of <i>Tasmannia insipida</i>, <i>Phytophthora aquae-cooljarloo</i> from pond water, Serendipita whamiae as endophyte from roots of <i>Eriochilus cucullatus</i>, <i>Veloboletus limbatus</i> (incl. <i>Veloboletus</i> gen. nov.) on soil. <b>Austria</b>, <i>Cortinarius glaucoelotus</i> on soil. <b>Bulgaria</b>, <i>Suhomyces rilaensis</i> from the gut of <i>Bolitophagus interruptus</i> found on a <i>Polyporus</i> sp. <b>Canada</b>, <i>Cantharellus betularum</i> among leaf litter of <i>Betula</i>, <i>Penicillium saanichii</i> from house dust. <b>Chile</b>, <i>Circinella lampensis</i> on soil, <i>Exophiala embothrii</i> from rhizosphere of <i>Embothrium coccineum.</i> <b>China</b>, <i>Colletotrichum cycadis</i> on leaves of <i>Cycas revoluta.</i> <b>Croatia</b>, <i>Phialocephala melitaea</i> on fallen branch of <i>Pinus halepensis</i>. <b>Czech Republic</b>, <i>Geoglossum jirinae</i> on soil, <i>Pyrenochaetopsis rajhradensis</i> from dead wood of <i>Buxus sempervirens.</i> <b>Dominican Republic</b>, <i>Amanita domingensis</i> on litter of deciduous wood, <i>Melanoleuca dominicana</i> on forest litter. <b>France</b>, <i>Crinipellis nigrolamellata</i> (Martinique) on leaves of <i>Pisonia fragrans</i>, <i>Talaromyces pulveris</i> from bore dust of <i>Xestobium rufovillosum</i> infesting floorboards. <b>French Guiana</b>, <i>Hypoxylon hepaticolor</i> on dead corticated branch. <b>Great Britain</b>, <i>Inocybe ionolepis</i> on soil. <b>India</b>, <i>Cortinarius indopurpurascens</i> among leaf litter of <i>Quercus leucotrichophora.</i> <b>Iran</b>, <i>Pseudopyricularia javanii</i> on infected leaves of <i>Cyperus</i> sp., <i>Xenomonodictys iranica</i> (incl. <i>Xenomonodictys</i> gen. nov.) on wood of <i>Fagus orientalis.</i> <b>Italy</b>, <i>Penicillium vallebormidaense</i> from compost. <b>Namibia</b>, <i>Alternaria mirabibensis</i> on plant litter, <i>Curvularia moringae</i> and <i>Moringomyces phantasmae</i> (incl. <i>Moringomyces</i> gen. nov.) on leaves and flowers of <i>Moringa ovalifolia, Gobabebomyces vachelliae</i> (incl. <i>Gobabebomyces</i> gen. nov.) on leaves of <i>Vachellia erioloba, Preussia procaviae</i> on dung of <i>Procavia capensis.</i> <b>","PeriodicalId":20014,"journal":{"name":"Persoonia","volume":"45 ","pages":"251-409"},"PeriodicalIF":9.1,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/8d/cb/per-2020-45-10.PMC8375349.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39363400","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}