首页 > 最新文献

Photonics Letters of Poland最新文献

英文 中文
Polymer tapered pillar on a fiber end fabricated by UV irradiation using a high-NA fiber 使用高NA光纤通过紫外线照射在光纤末端制备聚合物锥形柱
IF 0.6 Q4 OPTICS Pub Date : 2022-12-31 DOI: 10.4302/plp.v14i4.1179
Taiga Kurisawa, Yoshiki Kamiura, C. Fujikawa, O. Mikami
The increasing need for single-mode fibers (SMFs) and advances in silicon photonics (SiPh) devices have led to the need for an efficient method of optical coupling between them. To achieve a higher coupling between them, a polymer tapered pillar was fabricated on the end face of the SMF by applying the optical diffraction effect and a self-written waveguide technology using a high numerical aperture (HiNA) fiber. The initial 10.4 µm spot size was reduced to 4.17 µm at 1.55 µm wavelength, and the greatest coupling efficiency of –1.01 dB was reached between an SMF with a tapered pillar and uncured resin cladding and a HiNA fiber. Full Text: PDF ReferencesR. Marchetti, C. Lacava, L. Carroll, K. Gradkowski, P. Minzioni, "Coupling strategies for silicon photonics integrated chips [Invited]", Photonics Res. 7, 201 (2019). CrossRef R. Bachelot, C. Ecoffet, D. Deloeil, P. Royer, D.-J. Lougnot, "Integration of micrometer-sized polymer elements at the end of optical fibers by free-radical photopolymerization", Appl. Opt. 40, 5860 (2001). CrossRef P. Pura, M. Szymanski, M. Dudek, L.R. Jaroszewicz, P. Marc, M. Kujawinska, "Polymer Microtips at Different Types of Optical Fibers as Functional Elements for Sensing Applications", J. Lightwave Techn. 33, 2398 (2015). CrossRef O. Mikami, R. Sato, S. Suzuki, C. Fujikawa, "Polymer Microlens on Pillar Grown From Single-Mode Fiber Core for Silicon Photonics", IEEE Photonics. Technol. Lett. 32, 399 (2020). CrossRef Y. Kamiura, T. Kurisawa, C. Fujikawa, O. Mikami, "High optical coupling efficiency of polymer microlens and pillar on single mode fiber for silicon photonics", Jpn. J. Appl. Phys. 61, SK1009 (2022). CrossRef F. Tan, H. Terasawa, O. Sugihara, A. Kawasaki, T. Yamashita, D. Inoue, M. Kagami, C. Andraud, "Two-Photon Absorption Light-Induced Self-Written Waveguide for Single-Mode Optical Interconnection", J. Lightwave Tech. 36, 2478 (2018). CrossRef H. Terasawa, O. Sugihara, "Near-Infrared Self-Written Optical Waveguides for Fiber-to-Chip Self-Coupling", J. Lightwave Technol. 39, 7472 (2021). CrossRef K. Vanmol, K. Saurav, V. Panapakkam, H. Thienpont, N. Vermeulen, J. Watté, J. Van Erps, "Mode-field Matching Down-Tapers on Single-Mode Optical Fibers for Edge Coupling Towards Generic Photonic Integrated Circuit Platforms", J. Lightwave Tech. 38, 4834 (2020). CrossRef Y. Saito, K. Shikama, T. Tsuchizawa, H. Nishi, A. Aratake, N. Sato, "Tapered Self-Written Waveguide between Silicon Photonics Chip and Standard Single-Mode Fiber", Opt. Fiber Communication Conference (OFC2020), paper W1A.2, (2020). CrossRef Y. Saito, K. Shikama, T. Tsuchizawa, N. Sato, "Tapered self-written waveguide for a silicon photonic chip I/O", Opt. Lett. 47(12), 2971 (2022). CrossRef N.A. Baharudin, C. Fujikawa, O. Mitomi, A. Suzuki, S. Taguchi, O. Mikami, S. Ambran, "Tapered Spot Size Converter by Mask-Transfer Self-Written Technology for Optical Interconnection", Photon. Technol. Lett. 29, 949 (2017). CrossRef H. Nawata, K. Ohmori, Proc. Inte
对单模光纤(smf)的需求日益增加,硅光子学(SiPh)器件的进步导致需要一种有效的方法来实现它们之间的光耦合。为了实现两者之间的高耦合,利用光学衍射效应和高数值孔径光纤自写入波导技术,在SMF的端面制备了聚合物锥形柱。在1.55µm波长处,光斑尺寸从10.4µm减小到4.17µm,具有锥形柱和未固化树脂包层的SMF与HiNA光纤之间的耦合效率最高,为-1.01 dB。全文:PDF。Marchetti, C. Lacava, L. Carroll, K. Gradkowski, P. Minzioni,“硅光子学集成芯片的耦合策略[邀请]”,photonics Res. 7,201(2019)。CrossRef R. Bachelot, C. Ecoffet, D. Deloeil, P. Royer, D.- j。Lougnot,“基于自由基光聚合的微米级聚合物元件在光纤末端的集成”,applied。选择40,5860(2001)。CrossRef P. Pura, M. Szymanski, M. Dudek, L.R. Jaroszewicz, P. Marc, M. Kujawinska,“聚合物微针尖在不同类型光纤传感中的应用”,光波技术,33,2398(2015)。交叉参考O. Mikami, R. Sato, S. Suzuki, C. Fujikawa,“基于单模光纤芯柱的聚合物微透镜”,IEEE Photonics。抛光工艺。《科学通报》,2016年第3期。引用本文:神村,田泽,藤川,三上,“硅光子学单模光纤中聚合物微透镜和光柱的高耦合效率”,日本,j:。物理学报,2003,26(2):444 - 444。CrossRef F. Tan, H. Terasawa, O. Sugihara, A. Kawasaki, T. Yamashita, D. Inoue, M. Kagami, C. Andraud,“双光子吸收光诱导自写波导的单模光互连”,J.光波技术,36(2018)。陈晓明,“近红外自写光波导在光纤芯片自耦合中的应用”,光波学报,39(1)(2013)。CrossRef K. Vanmol, K. Saurav, V. Panapakkam, H. Thienpont, N. Vermeulen, J. watt, J. Van Erps,“面向通用光子集成电路平台的单模光纤边缘耦合的模场匹配下锥”,光波学报,38,34(2020)。交叉参考:齐藤,石山,T. Tsuchizawa, H. Nishi, A. Aratake, N. Sato,“硅光子学芯片与标准单模光纤之间的锥形自写波导”,光纤通信会议(OFC2020),论文W1A。2,(2020)。引用本文:齐藤,石山,土泽,N. Sato,“硅光子芯片I/O的锥形自写波导”,光学学报,47(12),2971(2022)。CrossRef N.A. Baharudin, C. Fujikawa, O. Mitomi, A. Suzuki, S. Taguchi, O. Mikami, S. Ambran,“基于掩模转移自写技术的光斑尺寸变换器”,光子学报。抛光工艺。杂志29,949(2017)。CrossRef H. Nawata, K. Ohmori, Proc. International Conference on Electronics封装(ICEP), paper 23 (2014)CrossRef . Obata, Y. Oyama, H. Ozawa, T. Ito, O. Mikami, T. Uchida,“多阵列自写波导的光表面贴装技术”,国际电子封装会议(ICEP),论文225(2005)。尹鹏,苏志强,刘志强,刘志强,刘志强,刘志强,刘志强,“高数值孔径光纤的低损耗拼接技术”,光子学报,27,24(2019)。CrossRef https://coherentinc.force.com/Coherent/UHNA3?cclcl=en_US,(18/09/2022)。DirectLink
{"title":"Polymer tapered pillar on a fiber end fabricated by UV irradiation using a high-NA fiber","authors":"Taiga Kurisawa, Yoshiki Kamiura, C. Fujikawa, O. Mikami","doi":"10.4302/plp.v14i4.1179","DOIUrl":"https://doi.org/10.4302/plp.v14i4.1179","url":null,"abstract":"The increasing need for single-mode fibers (SMFs) and advances in silicon photonics (SiPh) devices have led to the need for an efficient method of optical coupling between them. To achieve a higher coupling between them, a polymer tapered pillar was fabricated on the end face of the SMF by applying the optical diffraction effect and a self-written waveguide technology using a high numerical aperture (HiNA) fiber. The initial 10.4 µm spot size was reduced to 4.17 µm at 1.55 µm wavelength, and the greatest coupling efficiency of –1.01 dB was reached between an SMF with a tapered pillar and uncured resin cladding and a HiNA fiber. Full Text: PDF ReferencesR. Marchetti, C. Lacava, L. Carroll, K. Gradkowski, P. Minzioni, \"Coupling strategies for silicon photonics integrated chips [Invited]\", Photonics Res. 7, 201 (2019). CrossRef R. Bachelot, C. Ecoffet, D. Deloeil, P. Royer, D.-J. Lougnot, \"Integration of micrometer-sized polymer elements at the end of optical fibers by free-radical photopolymerization\", Appl. Opt. 40, 5860 (2001). CrossRef P. Pura, M. Szymanski, M. Dudek, L.R. Jaroszewicz, P. Marc, M. Kujawinska, \"Polymer Microtips at Different Types of Optical Fibers as Functional Elements for Sensing Applications\", J. Lightwave Techn. 33, 2398 (2015). CrossRef O. Mikami, R. Sato, S. Suzuki, C. Fujikawa, \"Polymer Microlens on Pillar Grown From Single-Mode Fiber Core for Silicon Photonics\", IEEE Photonics. Technol. Lett. 32, 399 (2020). CrossRef Y. Kamiura, T. Kurisawa, C. Fujikawa, O. Mikami, \"High optical coupling efficiency of polymer microlens and pillar on single mode fiber for silicon photonics\", Jpn. J. Appl. Phys. 61, SK1009 (2022). CrossRef F. Tan, H. Terasawa, O. Sugihara, A. Kawasaki, T. Yamashita, D. Inoue, M. Kagami, C. Andraud, \"Two-Photon Absorption Light-Induced Self-Written Waveguide for Single-Mode Optical Interconnection\", J. Lightwave Tech. 36, 2478 (2018). CrossRef H. Terasawa, O. Sugihara, \"Near-Infrared Self-Written Optical Waveguides for Fiber-to-Chip Self-Coupling\", J. Lightwave Technol. 39, 7472 (2021). CrossRef K. Vanmol, K. Saurav, V. Panapakkam, H. Thienpont, N. Vermeulen, J. Watté, J. Van Erps, \"Mode-field Matching Down-Tapers on Single-Mode Optical Fibers for Edge Coupling Towards Generic Photonic Integrated Circuit Platforms\", J. Lightwave Tech. 38, 4834 (2020). CrossRef Y. Saito, K. Shikama, T. Tsuchizawa, H. Nishi, A. Aratake, N. Sato, \"Tapered Self-Written Waveguide between Silicon Photonics Chip and Standard Single-Mode Fiber\", Opt. Fiber Communication Conference (OFC2020), paper W1A.2, (2020). CrossRef Y. Saito, K. Shikama, T. Tsuchizawa, N. Sato, \"Tapered self-written waveguide for a silicon photonic chip I/O\", Opt. Lett. 47(12), 2971 (2022). CrossRef N.A. Baharudin, C. Fujikawa, O. Mitomi, A. Suzuki, S. Taguchi, O. Mikami, S. Ambran, \"Tapered Spot Size Converter by Mask-Transfer Self-Written Technology for Optical Interconnection\", Photon. Technol. Lett. 29, 949 (2017). CrossRef H. Nawata, K. Ohmori, Proc. Inte","PeriodicalId":20055,"journal":{"name":"Photonics Letters of Poland","volume":" ","pages":""},"PeriodicalIF":0.6,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45733273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Color quality consideration when switching from FL to LED 从FL切换到LED时的颜色质量考虑
IF 0.6 Q4 OPTICS Pub Date : 2022-09-30 DOI: 10.4302/plp.v14i3.1159
Maciej Listowski, Robert Supronowicz
Fluorescent lamps (FLs) used for general lighting due to European Union legislation will be withdrawn from sale by 2023. The LEDs which are proposed as substitute of FL should provide the same quality of lighting and visual comfort. The research on substituting FL lamps is based on the multi-criteria parameterization. It is indicates that LEDs substituting the FLs may not meet the end user expectations due to the Color Preference Criteria. The paper compare typical FL (4100 K) lamp named by CIE as illuminant FL3.5 with its corresponding LED substitutes available on the market. The LED substitute selection criterion were value of Corelated Color Temperature (CCT) and chromaticity point which was must be within ellipse provided by ANSI C78.376 document for 4100 K CCT. Full Text: PDF ReferencesW. Żagan, Conditions necessary to replacing the conventional lamps by energy-saving lamps, Przeglad Elektrotechniczny, R. 85, 100 (2009). DirectLink M. Zalesinska, J. Zablocka, K. Wandachowicz, "Measurement and evaluation of selected parameters for non-directional household lamps", Prz. Elektrotech. 94, 188 (2018). CrossRef D. Czyżewski, "LED substitutes of conventional incandescent lamps", Prz. Elektrotech. 88, 123 (2012). DirectLink D. Czyżewski, "LED substitutes of conventional incandescent lamps(2)", Prz. Elektrotech. 91, 199 (2015). CrossRef Document of the International Commission on Illumination CIE 015:2018 "Colorimetry, 4th Edition". CrossRef CIE 13.3-1995: Method of measuring and specifying colour rendering properties of light sources," Commission Internationale de l'Eclairage, Vienna, Austria (1995). DirectLink Y. Ohno, M. Fein, C. Miller, "Vision Experiment on Chroma Saturation 2016 DOE SSL R&D Workshop 14 for Color Quality Preference", CIE 216 :2015, 60 (2015). DirectLink Y. Ohno, "Practical Use and Calculation of CCT and Duv", LEUKOS- J. Illum. Eng. Soc. N. Am. 10, 47, (2014). CrossRef Y. Wang, M. Wei, "Preference among light sources with different Duv but similar colour rendition: a pilot study", Ligh. Res. Technol. 50, 1013 (2018). CrossRef M. Royer, Analysis of color rendition specification criteria, Light-Emitting Devices, Materials, and Applications. 10940. International Society for Optics and Photonics, (2019). CrossRef ANSI/IES TM-30-20, IES Method for Evaluating Light Source Color Rendition. DirectLink J. Kowalska, "Analysis of parameters describing the quality of the color rendering of light sources according to the IES TM-30-15 and the CIE 013.3-1995", Prz. Elektrotech. 93, 50 (2017). CrossRef J. Kowalska, I.Fryc, "Colour rendition quality of typical fluorescent lamps determined by CIE Colour Fidelity Index and Colour Rendering Index", Prz. Elektrotech. 95, 94 (2019). CrossRef D. Aurelien, et al., "Development of the IES method for evaluating the color rendition of light sources", Opt. Express, 23, 15888 (2015). CrossRef W. Żagan, "Honestly and prudently about LED - Future and present state of LED application in lighting", Prz. Elektrot
根据欧盟立法,用于普通照明的荧光灯将于2023年停止销售。被提议作为FL的替代品的LED应提供相同质量的照明和视觉舒适性。FL灯的替代研究是基于多准则参数化的。这表明,由于颜色偏好标准,取代FL的LED可能无法满足最终用户的期望。本文将CIE命名为光源FL3.5的典型FL(4100K)灯与其市场上相应的LED替代品进行了比较。LED替代品的选择标准是核心色温(CCT)和色度点的值,该值必须在ANSI C78.376文件为4100 K CCT提供的椭圆内。全文:PDF参考资料W。Żagan,用节能灯取代传统灯具的必要条件,Przegled Elektrotechniczny,R.85100(2009)。DirectLink M.Zalesinska,J.Zablock,K.Wandachowicz,“非定向家用灯选定参数的测量和评估”,Prz。Elektrotech。94188(2018)。CrossRef D.Czyżewski,“传统白炽灯的LED替代品”,Prz。Elektrotech。88123(2012)。DirectLink D.Czyżewski,“传统白炽灯的LED替代品(2)”,Prz。Elektrotech。91199(2015)。国际照明委员会的CrossRef文件CIE 015:2018“比色法,第4版”。CrossRef CIE 13.3-1995:测量和规定光源显色性能的方法,“国际照明委员会,奥地利维也纳(1995)。DirectLink Y.Ohno,M.Fein,C.Miller,“色度饱和度视觉实验2016 DOE SSL颜色质量偏好研发研讨会14”,CIE 216:2015,60(2015)。DirectLink Y。Ohno,“CCT和Duv的实际应用和计算”,LEUKOS-J.Illum。Eng.Soc.N.Am.10,47,(2014)。王,魏,“具有不同Duv但颜色表现相似的光源之间的偏好:一项初步研究”,李。Res.Technol。501013(2018)。CrossRef M.Royer,色彩再现规范标准分析,发光器件、材料和应用。10940.国际光学与光子学会,(2019)。CrossRef ANSI/IES TM-30-20,评估光源颜色再现的IES方法。DirectLink J.Kowalska,“根据IES TM-30-15和CIE 013.3-1995描述光源显色质量的参数分析”,Prz。Elektrotech。93,50(2017)。CrossRef J.Kowalska,I.Fric,“由CIE保真度指数和显色指数确定的典型荧光灯的显色质量”,Prz。Elektrotech。95,94(2019)。CrossRef D.Aurelian等人,“评估光源颜色再现的IES方法的发展”,Opt。Express,2315888(2015)。CrossRef W.Żagan,“关于LED的诚实和谨慎-LED在照明中应用的未来和现状”,Prz。Elektrotech。84,1(2008)。DirectLink W.Żagan,“光源的发光效率和显色的理论考虑”,Prz。Elektrotech。89284,(2013)。DirectLink M.Listowski,“在宽温度范围内运行的白色LED的光度和色度参数比较的真实值和建模值”,Prz。Elektrotech。98,57(2022)。CrossRef R.Supronovicz,J.Fan,M.Listowski,A.Watras,I.Fric,“不同指标在描述白色LED光色质量中的应用”。光子通讯。波尔。13,31(2021)。CrossRef I.Fryc,“符合CIE 127:2007标准的光学LED性能测量技术”,Prz。Elektrotech。85117(2009)。DirectLink I.Fryc,T.Dimitrova Grekow,“光源质量评估的自动化系统”,2016年维谢格拉德国家IEEE照明会议论文集(Lumen V4),CrossRef P.Jakubowski,J.Kowalska,R.Suproowicz,I.Fryc,“荧光灯光谱测量不确定度对其相对黑色素加权辐照度和色质参数计算值的影响”,2018 VII。维谢格拉德国家照明会议(Lumen V4),1(2018)。CrossRef P.Zhu,H.Zhu,G.C.Adhikari,S.Thapa,“具有可调色温和近乎完美色彩再现的昼夜节律白色发光二极管的设计”,OSA Contin。24213(2019)。戴,黄,郝,林,陈,“节能昼夜节律照明的空间和光谱照明设计”,建筑。包围146216(2018)。CrossRef A.Sánchez Cano,J.Aporta,“包括摄影和昼夜节律标准在内的照明项目优化:简化行动方案”。Appl。科学。108068(2020)。CrossRef CIE国际标准DIS 026/E:2018受ipRGC影响的光响应的光辐射计量CIE系统,CrossRef I.Fryc,P.Jakubowski,K。
{"title":"Color quality consideration when switching from FL to LED","authors":"Maciej Listowski, Robert Supronowicz","doi":"10.4302/plp.v14i3.1159","DOIUrl":"https://doi.org/10.4302/plp.v14i3.1159","url":null,"abstract":"Fluorescent lamps (FLs) used for general lighting due to European Union legislation will be withdrawn from sale by 2023. The LEDs which are proposed as substitute of FL should provide the same quality of lighting and visual comfort. The research on substituting FL lamps is based on the multi-criteria parameterization. It is indicates that LEDs substituting the FLs may not meet the end user expectations due to the Color Preference Criteria. The paper compare typical FL (4100 K) lamp named by CIE as illuminant FL3.5 with its corresponding LED substitutes available on the market. The LED substitute selection criterion were value of Corelated Color Temperature (CCT) and chromaticity point which was must be within ellipse provided by ANSI C78.376 document for 4100 K CCT. Full Text: PDF ReferencesW. Żagan, Conditions necessary to replacing the conventional lamps by energy-saving lamps, Przeglad Elektrotechniczny, R. 85, 100 (2009). DirectLink M. Zalesinska, J. Zablocka, K. Wandachowicz, \"Measurement and evaluation of selected parameters for non-directional household lamps\", Prz. Elektrotech. 94, 188 (2018). CrossRef D. Czyżewski, \"LED substitutes of conventional incandescent lamps\", Prz. Elektrotech. 88, 123 (2012). DirectLink D. Czyżewski, \"LED substitutes of conventional incandescent lamps(2)\", Prz. Elektrotech. 91, 199 (2015). CrossRef Document of the International Commission on Illumination CIE 015:2018 \"Colorimetry, 4th Edition\". CrossRef CIE 13.3-1995: Method of measuring and specifying colour rendering properties of light sources,\" Commission Internationale de l'Eclairage, Vienna, Austria (1995). DirectLink Y. Ohno, M. Fein, C. Miller, \"Vision Experiment on Chroma Saturation 2016 DOE SSL R&D Workshop 14 for Color Quality Preference\", CIE 216 :2015, 60 (2015). DirectLink Y. Ohno, \"Practical Use and Calculation of CCT and Duv\", LEUKOS- J. Illum. Eng. Soc. N. Am. 10, 47, (2014). CrossRef Y. Wang, M. Wei, \"Preference among light sources with different Duv but similar colour rendition: a pilot study\", Ligh. Res. Technol. 50, 1013 (2018). CrossRef M. Royer, Analysis of color rendition specification criteria, Light-Emitting Devices, Materials, and Applications. 10940. International Society for Optics and Photonics, (2019). CrossRef ANSI/IES TM-30-20, IES Method for Evaluating Light Source Color Rendition. DirectLink J. Kowalska, \"Analysis of parameters describing the quality of the color rendering of light sources according to the IES TM-30-15 and the CIE 013.3-1995\", Prz. Elektrotech. 93, 50 (2017). CrossRef J. Kowalska, I.Fryc, \"Colour rendition quality of typical fluorescent lamps determined by CIE Colour Fidelity Index and Colour Rendering Index\", Prz. Elektrotech. 95, 94 (2019). CrossRef D. Aurelien, et al., \"Development of the IES method for evaluating the color rendition of light sources\", Opt. Express, 23, 15888 (2015). CrossRef W. Żagan, \"Honestly and prudently about LED - Future and present state of LED application in lighting\", Prz. Elektrot","PeriodicalId":20055,"journal":{"name":"Photonics Letters of Poland","volume":" ","pages":""},"PeriodicalIF":0.6,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44403390","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The influence of the oxidation method on the properties of reduced graphene oxide 氧化方法对还原氧化石墨烯性能的影响
IF 0.6 Q4 OPTICS Pub Date : 2022-09-30 DOI: 10.4302/plp.v14i3.1154
Ł. Drewniak, S. Drewniak
Derivatives of graphene have become important materials due to their excellent properties. Graphene oxide and reduced graphene oxide are especially interesting because they are produced relatively easily, cheaply and quickly. Among many possible applications, reduced graphene oxide is a good candidate for sensor applications. Its properties can be controlled at the production stage. The precursor used and the method of oxidation have a significant influence on its properties. Therefore, it is worth take a closer look at them. In this paper we analyse the influence of the oxidation method on the size of the reduced graphene stock which determine the sensitivity of the rGO layer. We used AFM microscopy for this purpose. Full Text: PDF ReferencesS.M. Majhi, A. Mirzaei, H.W. Kim, S.S. Kim, "Reduced Graphene Oxide (rGO)-Loaded Metal-Oxide Nanofiber Gas Sensors: An Overview", Sensors 21, 4 (2021). CrossRef M. Pumera, "Graphene-based nanomaterials for energy storage", Energy Environ. Sci. 4 3 (2011). CrossRef X. Yu, H. Cheng, M. Zhang, Y. Zhao, L. Qu, G. Shi, "Graphene-based smart materials", Nat. Rev. Mater. 2, 9 (2017). CrossRef M.Y. Xia, Y. Xie, C.H. Yu, G.Y. Chen, Y.H. Li, T., Zhang, Q. Peng, "Graphene-based nanomaterials: the promising active agents for antibiotics-independent antibacterial applications", J. Control. Release 10 (2019). CrossRef X. Zhu, Y. Zhou, Y. Guo, H. Ren, C. Gao, "Nitrogen dioxide sensing based on multiple-morphology cuprous oxide mixed structures anchored on reduced graphene oxide nanosheets at room temperature", Nanotechnology 30 45 (2019). CrossRef Z. Wu, Y. Wang, S. Ying, M. Huang, C. Peng, "Fabrication of rGO/Cuprous Oxide Nanocomposites for Gas Sensing", IOP Conf. Ser.: Earth Environ. Sci. 706, 1 (2021). CrossRef S. Pei, H.M. Cheng, "The reduction of graphene oxide", Carbon 50, 9 (2012). CrossRef K. Spilarewicz-Stanek, A. Kisielewska, J. Ginter, K. Bałuszyńska, I. Piwoński, "Elucidation of the function of oxygen moieties on graphene oxide and reduced graphene oxide in the nucleation and growth of silver nanoparticles", RSC Adv. 6, 65 (2016). CrossRef R. Muzyka, S. Drewniak, T. Pustelny, M. Sajdak, Ł. Drewniak, "Characterization of Graphite Oxide and Reduced Graphene Oxide Obtained from Different Graphite Precursors and Oxidized by Different Methods Using Raman Spectroscopy Statistical Analysis", Materials 14, 4 (2021) CrossRef B. Lesiak, G. Trykowski, J. Tóth, et al. "Chemical and structural properties of reduced graphene oxide—dependence on the reducing agent", J Mater. Sci. 56 (2021). CrossRef .
石墨烯衍生物因其优异的性能而成为重要的材料。氧化石墨烯和还原氧化石墨烯尤其令人感兴趣,因为它们的生产相对容易、便宜和快速。在许多可能的应用中,还原氧化石墨烯是传感器应用的良好候选者。它的性能可以在生产阶段进行控制。所使用的前驱体和氧化方法对其性能有显著影响。因此,有必要仔细研究一下它们。本文分析了氧化方法对还原石墨烯原材尺寸的影响,这决定了还原氧化石墨烯层的灵敏度。为此,我们使用了AFM显微镜。全文:PDF马吉,金洪伟,金世生,“还原氧化石墨烯(rGO)负载金属氧化物纳米纤维气体传感器:综述”,传感器,21(2021)。CrossRef M. Pumera,“基于石墨烯的纳米储能材料”,能源环境,自然科学进展3(2011)。交叉参考:余新,程华,张明,赵艳,曲丽丽,石国光,“基于石墨烯的智能材料”,高分子学报,2,9(2017)。引用本文:夏明艳,谢艳,于春华,陈广银,李艳华,张涛,彭清,“石墨烯基纳米材料:用于非抗生素抗菌应用的有前景的活性剂”,J. Control。版本10(2019)。[CrossRef]朱晓霞,周艳,郭艳,任宏,高超,“基于氧化亚铜混合结构的二氧化氮传感技术”,纳米技术,30(2019)。引用本文:吴志强,王勇,应生,黄明,彭长鹏,“气敏氧化石墨烯/氧化亚铜纳米复合材料的制备”,中国机械工程学报,2003,17(4):428 - 428。地球环境。科学通报,2016,33(6):1145 - 1145。交叉参考裴思,程宏明,“氧化石墨烯的还原”,碳50,9(2012)。[CrossRef] K. Spilarewicz-Stanek, A. Kisielewska, J. Ginter, K. Bałuszyńska, I. Piwoński,“氧化石墨烯和还原性氧化石墨烯在银纳米粒子成核和生长中的作用研究”,材料工程,6(2016)。CrossRef R. Muzyka, S. Drewniak, T. Pustelny, M. Sajdak, Ł。Drewniak,“用拉曼光谱统计分析表征不同氧化方法制备的氧化石墨和还原氧化石墨烯”,材料14,4 (2021)CrossRef B. Lesiak, G. Trykowski, J. Tóth,等。“还原氧化石墨烯的化学和结构性质——对还原剂的依赖”,《材料》杂志。科学通报56(2021)。CrossRef。
{"title":"The influence of the oxidation method on the properties of reduced graphene oxide","authors":"Ł. Drewniak, S. Drewniak","doi":"10.4302/plp.v14i3.1154","DOIUrl":"https://doi.org/10.4302/plp.v14i3.1154","url":null,"abstract":"Derivatives of graphene have become important materials due to their excellent properties. Graphene oxide and reduced graphene oxide are especially interesting because they are produced relatively easily, cheaply and quickly. Among many possible applications, reduced graphene oxide is a good candidate for sensor applications. Its properties can be controlled at the production stage. The precursor used and the method of oxidation have a significant influence on its properties. Therefore, it is worth take a closer look at them. In this paper we analyse the influence of the oxidation method on the size of the reduced graphene stock which determine the sensitivity of the rGO layer. We used AFM microscopy for this purpose. Full Text: PDF ReferencesS.M. Majhi, A. Mirzaei, H.W. Kim, S.S. Kim, \"Reduced Graphene Oxide (rGO)-Loaded Metal-Oxide Nanofiber Gas Sensors: An Overview\", Sensors 21, 4 (2021). CrossRef M. Pumera, \"Graphene-based nanomaterials for energy storage\", Energy Environ. Sci. 4 3 (2011). CrossRef X. Yu, H. Cheng, M. Zhang, Y. Zhao, L. Qu, G. Shi, \"Graphene-based smart materials\", Nat. Rev. Mater. 2, 9 (2017). CrossRef M.Y. Xia, Y. Xie, C.H. Yu, G.Y. Chen, Y.H. Li, T., Zhang, Q. Peng, \"Graphene-based nanomaterials: the promising active agents for antibiotics-independent antibacterial applications\", J. Control. Release 10 (2019). CrossRef X. Zhu, Y. Zhou, Y. Guo, H. Ren, C. Gao, \"Nitrogen dioxide sensing based on multiple-morphology cuprous oxide mixed structures anchored on reduced graphene oxide nanosheets at room temperature\", Nanotechnology 30 45 (2019). CrossRef Z. Wu, Y. Wang, S. Ying, M. Huang, C. Peng, \"Fabrication of rGO/Cuprous Oxide Nanocomposites for Gas Sensing\", IOP Conf. Ser.: Earth Environ. Sci. 706, 1 (2021). CrossRef S. Pei, H.M. Cheng, \"The reduction of graphene oxide\", Carbon 50, 9 (2012). CrossRef K. Spilarewicz-Stanek, A. Kisielewska, J. Ginter, K. Bałuszyńska, I. Piwoński, \"Elucidation of the function of oxygen moieties on graphene oxide and reduced graphene oxide in the nucleation and growth of silver nanoparticles\", RSC Adv. 6, 65 (2016). CrossRef R. Muzyka, S. Drewniak, T. Pustelny, M. Sajdak, Ł. Drewniak, \"Characterization of Graphite Oxide and Reduced Graphene Oxide Obtained from Different Graphite Precursors and Oxidized by Different Methods Using Raman Spectroscopy Statistical Analysis\", Materials 14, 4 (2021) CrossRef B. Lesiak, G. Trykowski, J. Tóth, et al. \"Chemical and structural properties of reduced graphene oxide—dependence on the reducing agent\", J Mater. Sci. 56 (2021). CrossRef .","PeriodicalId":20055,"journal":{"name":"Photonics Letters of Poland","volume":"1 1","pages":""},"PeriodicalIF":0.6,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41336059","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Broadband differential interference in a waveguide with a gradient refractive index distribution 具有梯度折射率分布的波导中的宽带差分干涉
IF 0.6 Q4 OPTICS Pub Date : 2022-09-30 DOI: 10.4302/plp.v14i3.1157
K. Gut
The paper presents a model of a planar broadband differential waveguide interferometer with a gradient refractive index distribution. Its response to the change in the refractive index of the waveguide cover layer is presented. The analysis was performed for the wavelength range from 0.5um to 0.7um. The orthogonal TE0 and TM0 modes propagating in this wavelength range are considered. The influence of the coverage refractive index change on the output characteristics of the system is shown. Full Text: PDF ReferencesP. Kozma, F. Kehl, E.Ehrentreich-Forster, C. Stamm and F.F. Bier, "Integrated planar optical waveguide interferometer biosensors: A comparative review", Biosens. Bioelectron. 58, 287 (2014), CrossRef M. Kitsara, K. Misiakos, I. Raptis, and E. Makarona, "Integrated optical frequency-resolved Mach-Zehnder interferometers for label-free affinity sensing", Opt. Express 18, 8193 (2010). CrossRef K. Misiakos, I. Raptis, A. Salapatas, E. Makarona, A. Bostials, et al., "Broad-band Mach-Zehnder interferometers as high performance refractive index sensors: Theory and monolithic implementation", Opt. Express 22, 8856 (2014). CrossRef K. Misiakos, I. Raptis, E. Makarona, A. Botsialas, A. Salapatas, et al, "All-silicon monolithic Mach-Zehnder interferometer as a refractive index and bio-chemical sensor", Opt. Express 22, 26803 (2014) CrossRef K. Misiakos, E. Makarona, M. Hoekman, R. Fyrogenis, K. Tukkiniemi, et al., "All-Silicon Spectrally Resolved Interferometric Circuit for Multiplexed Diagnostics: A Monolithic Lab-on-a-Chip Integrating All Active and Passive Components", ACS Photonics 6, 1694 (2019). CrossRef E. Makarona, A. Salapatas, I. Raptis, P. Petrou, S. Kakabakos, et al., "Broadband Young interferometry for simultaneous dual polarization bioanalytics", J Opt Soc Am B 34, 1691 (2017). CrossRef K. Gut, "Broad-band difference interferometer as a refractive index sensor", Opt. Express 25, 3111 (2017), CrossRef K. Gut, "Study of a Broadband Difference Interferometer Based on Low-Cost Polymer Slab Waveguides", Nanomaterials 9, 729 (2019), CrossRef T. Pustelny, J. Ignac-Nowacka and Z. Opilski, "Optical investigations on layered metalphthalocyanine nanostructures affected by NO2 applying the surface plasmon resonance method", Opt. Appl. 34, 563 (2004). CrossRef W. Lukosz, Sensor Actuat. B-Chem. "Integrated optical chemical and direct biochemical sensors", 29, 37 (1995). CrossRef Z. Qi, S. Xia and N. Matsuda, "Spectropolarimetric interferometer based on single-mode glass waveguides", Opt. Express, 16, 2245 (2008). CrossRef K. Gut, A. Zakrzewski, T. Pustelny, "Sensitivity of Polarimetric Waveguide Interferometer for Different Wavelengths", Acta Phys. Pol. 118, 1140 (2010). CrossRef J.E. Broquin, S. Honkanen, "Integrated Photonics on Glass: A Review of the Ion-Exchange Technology Achievements", Appl.Sci. 11, 4472 (2021). CrossRef G.C. Righini, J. Linares, "Active and Quantum Integrated Photonic Elements by Ion Exchange in Glass", Appl.Sci. 11, 5222 (
本文提出了一种具有梯度折射率分布的平面宽带差分波导干涉仪的模型。给出了其对波导覆盖层折射率变化的响应。分析的波长范围为0.5 ~ 0.7um。考虑了在该波长范围内传播的正交TE0和TM0模式。给出了覆盖折射率变化对系统输出特性的影响。全文:PDF陈晓明,陈晓明,陈晓明,“集成平面光波导干涉仪生物传感器的比较研究”,生物工程学报。陈晓明,陈晓明,陈晓明,等,“基于光学频率分辨的马赫-曾德干涉仪无标签亲和检测技术”,生物电子学报,2018,58,287(2014)。CrossRef K. Misiakos, I. Raptis, A. Salapatas, E. Makarona, A. Bostials,等,“宽带Mach-Zehnder干涉仪的高性能折射率传感器:理论与集成实现”,光子学报,22(2014)。CrossRef K. Misiakos, I. Raptis, E. Makarona, a . Botsialas, a . Salapatas等,“全硅单片macho - zehnder干涉仪作为折射率和生物化学传感器”,光学学报22,26803 (2014)CrossRef E. Makarona, A. Salapatas, I. Raptis, P. Petrou, S. Kakabakos等,“宽带Young干涉法同步双偏振生物分析”,中国生物工程学报,34,(2017)。CrossRef K. Gut,“基于低成本聚合物平板波导的宽带差分干涉仪的研究”,纳米材料9,729 (2019),CrossRef T. Pustelny, J. Ignac-Nowacka和Z. Opilski,“NO2对层状金属酞菁纳米结构影响的光学研究”,光学学报,34,563(2004)。CrossRef W. Lukosz,传感器实测仪。B-Chem。“综合光学化学和直接生化传感器”,29,37(1995)。CrossRef齐志强,夏世生,Matsuda,“基于单模玻璃波导的偏振光谱干涉仪”,光学学报,16,2245(2008)。CrossRef K. Gut, A. Zakrzewski, T. Pustelny,“不同波长偏振波导干涉仪的灵敏度”,物理学报。科学通报,2011(2)。J.E. Broquin, S. Honkanen,“集成光子学在玻璃上的应用:离子交换技术的研究进展”,应用科学。11, 4472(2021)。引用本文:王志强,李志强,“玻璃中离子交换的有源量子集成光子元件”,应用物理学报。11, 5222(2021)。CrossRef
{"title":"Broadband differential interference in a waveguide with a gradient refractive index distribution","authors":"K. Gut","doi":"10.4302/plp.v14i3.1157","DOIUrl":"https://doi.org/10.4302/plp.v14i3.1157","url":null,"abstract":"The paper presents a model of a planar broadband differential waveguide interferometer with a gradient refractive index distribution. Its response to the change in the refractive index of the waveguide cover layer is presented. The analysis was performed for the wavelength range from 0.5um to 0.7um. The orthogonal TE0 and TM0 modes propagating in this wavelength range are considered. The influence of the coverage refractive index change on the output characteristics of the system is shown. Full Text: PDF ReferencesP. Kozma, F. Kehl, E.Ehrentreich-Forster, C. Stamm and F.F. Bier, \"Integrated planar optical waveguide interferometer biosensors: A comparative review\", Biosens. Bioelectron. 58, 287 (2014), CrossRef M. Kitsara, K. Misiakos, I. Raptis, and E. Makarona, \"Integrated optical frequency-resolved Mach-Zehnder interferometers for label-free affinity sensing\", Opt. Express 18, 8193 (2010). CrossRef K. Misiakos, I. Raptis, A. Salapatas, E. Makarona, A. Bostials, et al., \"Broad-band Mach-Zehnder interferometers as high performance refractive index sensors: Theory and monolithic implementation\", Opt. Express 22, 8856 (2014). CrossRef K. Misiakos, I. Raptis, E. Makarona, A. Botsialas, A. Salapatas, et al, \"All-silicon monolithic Mach-Zehnder interferometer as a refractive index and bio-chemical sensor\", Opt. Express 22, 26803 (2014) CrossRef K. Misiakos, E. Makarona, M. Hoekman, R. Fyrogenis, K. Tukkiniemi, et al., \"All-Silicon Spectrally Resolved Interferometric Circuit for Multiplexed Diagnostics: A Monolithic Lab-on-a-Chip Integrating All Active and Passive Components\", ACS Photonics 6, 1694 (2019). CrossRef E. Makarona, A. Salapatas, I. Raptis, P. Petrou, S. Kakabakos, et al., \"Broadband Young interferometry for simultaneous dual polarization bioanalytics\", J Opt Soc Am B 34, 1691 (2017). CrossRef K. Gut, \"Broad-band difference interferometer as a refractive index sensor\", Opt. Express 25, 3111 (2017), CrossRef K. Gut, \"Study of a Broadband Difference Interferometer Based on Low-Cost Polymer Slab Waveguides\", Nanomaterials 9, 729 (2019), CrossRef T. Pustelny, J. Ignac-Nowacka and Z. Opilski, \"Optical investigations on layered metalphthalocyanine nanostructures affected by NO2 applying the surface plasmon resonance method\", Opt. Appl. 34, 563 (2004). CrossRef W. Lukosz, Sensor Actuat. B-Chem. \"Integrated optical chemical and direct biochemical sensors\", 29, 37 (1995). CrossRef Z. Qi, S. Xia and N. Matsuda, \"Spectropolarimetric interferometer based on single-mode glass waveguides\", Opt. Express, 16, 2245 (2008). CrossRef K. Gut, A. Zakrzewski, T. Pustelny, \"Sensitivity of Polarimetric Waveguide Interferometer for Different Wavelengths\", Acta Phys. Pol. 118, 1140 (2010). CrossRef J.E. Broquin, S. Honkanen, \"Integrated Photonics on Glass: A Review of the Ion-Exchange Technology Achievements\", Appl.Sci. 11, 4472 (2021). CrossRef G.C. Righini, J. Linares, \"Active and Quantum Integrated Photonic Elements by Ion Exchange in Glass\", Appl.Sci. 11, 5222 (","PeriodicalId":20055,"journal":{"name":"Photonics Letters of Poland","volume":" ","pages":""},"PeriodicalIF":0.6,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44676502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
50th Edition of WILGA Symposium on Photonics Applications 第50届WILGA光子应用研讨会
IF 0.6 Q4 OPTICS Pub Date : 2022-09-30 DOI: 10.4302/plp.v14i3.1169
Ryszard S. Romaniuk
The Jubilee 50th edition of WILGA Symposium on Photonics Applications crowns 25 years of diligent service by this exceptional series of scientific and technical meetings to the local and international photonics research, academic, industrial, business and societal communities. The paper reviews concisely, and only generally without details, some of the chosen topical tracks related to photonics present during the previous meetings and in particular during WILGA 2022 sessions. The paper summarizes shortly the achievements of WILGA Photonics Applications meetings of young researchers, during the quarter of a century, and gives a general sense of the unique nature of these meetings. Wider description of WILGA achievements are available in around 30 Proc. SPIE volumes published continuously under the common title Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments in the years 2002-2022. Full Text: PDF ReferencesWILGA Symposium on Photonics Applications DirectLink Sympozjum WILGA CrossRef R.S.Romaniuk, "Photonics Applications, WILGA Symposium 1998-2022", Elektronika 63(4) 30, 2022 CrossRef R.R. Romaniuk, "More light in Polish optical fibers", Proc. SPIE 5125 (2002) CrossRef WILGA Photonics Applications 2021, Proc. SPIE 12040 CrossRef WILGA Photonics Applications 2022, Proc. SPIE, in press CrossRef United Nations International Year of Glass 2022 DirectLink .
第50届WILGA光子学应用研讨会的周年纪念为25年的辛勤服务加冕,这是一系列为当地和国际光子学研究、学术、工业、商业和社会社区举办的特殊科学和技术会议。该论文简要回顾了在之前的会议上,特别是在2022年WILGA会议上,与光子学相关的一些选定主题曲目,但总体上没有详细信息。本文简要总结了四分之一个世纪以来年轻研究人员在WILGA光子应用会议上取得的成就,并对这些会议的独特性质有了大致的了解。对WILGA成就的更广泛描述可在大约30 Proc。2002年至2022年,SPIE连续出版了多卷,共同标题为“光子学在天文学、通信、工业和高能物理实验中的应用”。全文:PDF参考文献WILGA光子应用研讨会DirectLink Sympozjum WILGA CrossRef R.S.Romaniuk,“光子应用,WILGA研讨会1998-2022”,Elektronika 63(4)302022CrossRef R.Romaniuk“波兰光纤中的更多光”,Proc。SPIE 5125(2002)CrossRef WILGA Photonics Applications 2021,Proc。SPIE 12040 CrossRef WILGA Photonics Applications 2022,Proc。SPIE,正在印刷CrossRef联合国2022国际玻璃年DirectLink。
{"title":"50th Edition of WILGA Symposium on Photonics Applications","authors":"Ryszard S. Romaniuk","doi":"10.4302/plp.v14i3.1169","DOIUrl":"https://doi.org/10.4302/plp.v14i3.1169","url":null,"abstract":"The Jubilee 50th edition of WILGA Symposium on Photonics Applications crowns 25 years of diligent service by this exceptional series of scientific and technical meetings to the local and international photonics research, academic, industrial, business and societal communities. The paper reviews concisely, and only generally without details, some of the chosen topical tracks related to photonics present during the previous meetings and in particular during WILGA 2022 sessions. The paper summarizes shortly the achievements of WILGA Photonics Applications meetings of young researchers, during the quarter of a century, and gives a general sense of the unique nature of these meetings. Wider description of WILGA achievements are available in around 30 Proc. SPIE volumes published continuously under the common title Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments in the years 2002-2022. Full Text: PDF ReferencesWILGA Symposium on Photonics Applications DirectLink Sympozjum WILGA CrossRef R.S.Romaniuk, \"Photonics Applications, WILGA Symposium 1998-2022\", Elektronika 63(4) 30, 2022 CrossRef R.R. Romaniuk, \"More light in Polish optical fibers\", Proc. SPIE 5125 (2002) CrossRef WILGA Photonics Applications 2021, Proc. SPIE 12040 CrossRef WILGA Photonics Applications 2022, Proc. SPIE, in press CrossRef United Nations International Year of Glass 2022 DirectLink .","PeriodicalId":20055,"journal":{"name":"Photonics Letters of Poland","volume":" ","pages":""},"PeriodicalIF":0.6,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43724902","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Polymer Spot Size Expanders for High Efficiency Optical Coupling in Optical Interconnection 用于光互连中高效光耦合的聚合物光斑尺寸扩展器
IF 0.6 Q4 OPTICS Pub Date : 2022-09-30 DOI: 10.4302/plp.v14i3.1163
Yoshiki Kamiura, Taiga Kurisawa, C. Fujikawa, O. Mikami
Improving the low coupling efficiency due to spot size differences remains a challenge for achieving high bit-rate optical interconnections. To solve this problem, the test spot size expander device is fabricated using UV-curable resin on the end face of a fiber with a high numerical aperture. The expanded spot size of 9.38 μm from the original 3.2 μm at a wavelength of 1.55 μm and the maximum coupling efficiency with a single mode fiber of –1.19 dB are achieved. In addition, the –3 dB tolerance of the coupling efficiency along the vertical optical axis was ±4.1 µm.
改善由于光斑尺寸差异而导致的低耦合效率仍然是实现高比特率光互连的一个挑战。为了解决这一问题,采用紫外光固化树脂在高数值孔径光纤的端面上制备了测试光斑尺寸膨胀装置。在1.55 μm波长处,光斑尺寸由原来的3.2 μm扩大到9.38 μm,与单模光纤的最大耦合效率为-1.19 dB。垂直光轴方向耦合效率的-3 dB公差为±4.1µm。
{"title":"Polymer Spot Size Expanders for High Efficiency Optical Coupling in Optical Interconnection","authors":"Yoshiki Kamiura, Taiga Kurisawa, C. Fujikawa, O. Mikami","doi":"10.4302/plp.v14i3.1163","DOIUrl":"https://doi.org/10.4302/plp.v14i3.1163","url":null,"abstract":"Improving the low coupling efficiency due to spot size differences remains a challenge for achieving high bit-rate optical interconnections. To solve this problem, the test spot size expander device is fabricated using UV-curable resin on the end face of a fiber with a high numerical aperture. The expanded spot size of 9.38 μm from the original 3.2 μm at a wavelength of 1.55 μm and the maximum coupling efficiency with a single mode fiber of –1.19 dB are achieved. In addition, the –3 dB tolerance of the coupling efficiency along the vertical optical axis was ±4.1 µm.","PeriodicalId":20055,"journal":{"name":"Photonics Letters of Poland","volume":" ","pages":""},"PeriodicalIF":0.6,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43620811","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Influence of photopolymerization on propagation properties of photonic crystal fiber infiltrated with liquid crystal mixture 光聚合对液晶混合物渗透光子晶体光纤传输特性的影响
IF 0.6 Q4 OPTICS Pub Date : 2022-09-30 DOI: 10.4302/plp.v14i3.1166
Marta Kajkowska, M. Chychłowski, P. Lesiak
In this paper we analyze the influence of the photopolymerization process on propagation properties of photonic crystal fiber infiltrated with liquid crystal doped with a mixture of reactive monomer and photoinitiator. The obtained results showed changes in photonic band gap of the fiber due to refractive index change of the liquid crystal mixture caused by the polymerization process. Moreover, the research demonstrated the possibility of preserving the desired molecular orientation of liquid crystal initially stabilized by placing the sample in the external electric field. This was achieved by simultaneously irradiating the sample and controlling the orientation of liquid crystal molecules with the electric field. The spectral analysis of the polymerized sample showed no visible difference in propagation spectra when the electric field was turned off after the process was finished. Full Text: PDF ReferencesK. Yin et al., "Advanced liquid crystal devices for augmented reality and virtual reality displays: principles and applications", Light Sci Appl. 11, 161 (2022). CrossRef S. Singh, "Phase transitions in liquid crystals", Phys. Rep. 324, 107 (2000). CrossRef N. Tarjányi, M. Veveričík, D. Káčik, M. Timko, P. Kopčanský, "Birefringence dispersion of 6CHBT liquid crystal determined in VIS-NIR spectral range", Appl. Surf. Sci. 542, 148525 (2021). CrossRef R. Dąbrowski, P. Kula, J. Herman, "High Birefringence Liquid Crystals", Crystals 3, 443 (2013). CrossRef R. H. Self, C. P. Please, T. J. Sluckin, "Deformation of nematic liquid crystals in an electric field", Eur. J. Appl. Math. 13, 1 (2002). CrossRef T. Hegmann, H. Qi, V. M. Marx, "Nanoparticles in Liquid Crystals: Synthesis, Self-Assembly, Defect Formation and Potential Applications", J. Inorg. Organomet. Polym. 17, 483 (2007). CrossRef S. Kaur, S. P. Singh, A. M. Biradar, A. Choudhary, K. Sreenivas, "Enhanced electro-optical properties in gold nanoparticles doped ferroelectric liquid crystals", Appl. Phys. Lett. 91, 023120 (2007). CrossRef I. Dierking, "Polymer Network–Stabilized Liquid Crystals", Adv. Mater. 12, 167 (2000). CrossRef D. C. Hoekstra et al., "Wavelength-Selective Photopolymerization of Hybrid Acrylate-Oxetane Liquid Crystals", Angew. Chem. Int. Ed. 60, 10935 (2021). CrossRef Z. Ge, S. Gauza, M. Jiao, H. Xianyu, S.-T. Wu, "Electro-optics of polymer-stabilized blue phase liquid crystal displays", Appl. Phys. Lett. 94, 101104 (2009). CrossRef M. S. Chychłowski et al., "Locally-induced permanent birefringence by polymer-stabilization of liquid crystal in cells and photonic crystal fibers", Opto-electron. Rev. 26, 242 (2018). CrossRef R. Dąbrowski, J. Dziaduszek, T. Szczuciński, "Mesomorphic Characteristics of Some New Homologous Series with the Isothiocyanato Terminal Group", Mol. Cryst. Liq. Cryst. 124, 241 (1985). CrossRef
本文分析了光聚合过程对掺有反应性单体和光引发剂混合物的液晶渗透光子晶体光纤传输性能的影响。所得结果表明,由于聚合过程引起液晶混合物折射率的变化,光纤的光子带隙发生了变化。此外,该研究表明,通过将样品置于外电场中,可以保持液晶初始稳定所需的分子取向。这是通过同时照射样品和用电场控制液晶分子的取向来实现的。对聚合后的样品进行光谱分析,结果表明,当该过程结束后关闭电场时,其传播光谱无明显差异。全文:PDF ReferencesK尹等人,“用于增强现实和虚拟现实显示的先进液晶设备:原理和应用”,光科学应用,11,161(2022)。CrossRef S. Singh,“液晶的相变”,物理学报。众议员324,107(2000)。CrossRef N. Tarjányi, M. Veveričík, D. Káčik, M. Timko, P. Kopčanský,“6CHBT液晶在VIS-NIR光谱范围内的双折射色散测定”,applied。冲浪。自然科学学报,2003,14(5):557 - 557。CrossRef R. Dąbrowski, P. Kula, J. Herman,“高双折射液晶”,晶体学报,2013,43(2013)。陈志强,陈志强,“向列型液晶在电场作用下的变形”,电子学报。j:。数学,13,1(2002)。* * * * * *,“纳米颗粒在液晶中的合成、自组装、缺陷形成及潜在应用”,吉林大学学报(自然科学版)。Organomet。高分子学报,17,483(2007)。CrossRef S. Kaur, S. P. Singh, A. M. Biradar, A. Choudhary, K. Sreenivas,“金纳米颗粒掺杂铁电液晶的增强电光性能”,applied。理论物理。快报,91,023120(2007)。王晓明,“聚合物网络稳定液晶”,高分子学报,12,167(2000)。CrossRef D. C. Hoekstra et al.,“波长选择性光聚合丙烯酸酯-氧乙烷杂化液晶”,高分子学报。化学。Int。编辑60,10935(2021)。交叉参考:葛振杰,高泽,焦敏,胡先宇,孙涛。吴,“聚合物稳定蓝相液晶显示器的电光学”,苹果。理论物理。科学通报,1999,101104 (2009)CrossRef M. S. Chychłowski et al.,“聚合物稳定液晶在细胞和光子晶体光纤中的局部诱导永久双折射”,光电。Rev. 26,242(2018)。CrossRef R. Dąbrowski, J. Dziaduszek, T. Szczuciński,“具有异硫氰酸酯末端基的新同源序列的亚形态特征”,Mol. crystal。酒精。晶体。124,241(1985)。CrossRef
{"title":"Influence of photopolymerization on propagation properties of photonic crystal fiber infiltrated with liquid crystal mixture","authors":"Marta Kajkowska, M. Chychłowski, P. Lesiak","doi":"10.4302/plp.v14i3.1166","DOIUrl":"https://doi.org/10.4302/plp.v14i3.1166","url":null,"abstract":"In this paper we analyze the influence of the photopolymerization process on propagation properties of photonic crystal fiber infiltrated with liquid crystal doped with a mixture of reactive monomer and photoinitiator. The obtained results showed changes in photonic band gap of the fiber due to refractive index change of the liquid crystal mixture caused by the polymerization process. Moreover, the research demonstrated the possibility of preserving the desired molecular orientation of liquid crystal initially stabilized by placing the sample in the external electric field. This was achieved by simultaneously irradiating the sample and controlling the orientation of liquid crystal molecules with the electric field. The spectral analysis of the polymerized sample showed no visible difference in propagation spectra when the electric field was turned off after the process was finished. Full Text: PDF ReferencesK. Yin et al., \"Advanced liquid crystal devices for augmented reality and virtual reality displays: principles and applications\", Light Sci Appl. 11, 161 (2022). CrossRef S. Singh, \"Phase transitions in liquid crystals\", Phys. Rep. 324, 107 (2000). CrossRef N. Tarjányi, M. Veveričík, D. Káčik, M. Timko, P. Kopčanský, \"Birefringence dispersion of 6CHBT liquid crystal determined in VIS-NIR spectral range\", Appl. Surf. Sci. 542, 148525 (2021). CrossRef R. Dąbrowski, P. Kula, J. Herman, \"High Birefringence Liquid Crystals\", Crystals 3, 443 (2013). CrossRef R. H. Self, C. P. Please, T. J. Sluckin, \"Deformation of nematic liquid crystals in an electric field\", Eur. J. Appl. Math. 13, 1 (2002). CrossRef T. Hegmann, H. Qi, V. M. Marx, \"Nanoparticles in Liquid Crystals: Synthesis, Self-Assembly, Defect Formation and Potential Applications\", J. Inorg. Organomet. Polym. 17, 483 (2007). CrossRef S. Kaur, S. P. Singh, A. M. Biradar, A. Choudhary, K. Sreenivas, \"Enhanced electro-optical properties in gold nanoparticles doped ferroelectric liquid crystals\", Appl. Phys. Lett. 91, 023120 (2007). CrossRef I. Dierking, \"Polymer Network–Stabilized Liquid Crystals\", Adv. Mater. 12, 167 (2000). CrossRef D. C. Hoekstra et al., \"Wavelength-Selective Photopolymerization of Hybrid Acrylate-Oxetane Liquid Crystals\", Angew. Chem. Int. Ed. 60, 10935 (2021). CrossRef Z. Ge, S. Gauza, M. Jiao, H. Xianyu, S.-T. Wu, \"Electro-optics of polymer-stabilized blue phase liquid crystal displays\", Appl. Phys. Lett. 94, 101104 (2009). CrossRef M. S. Chychłowski et al., \"Locally-induced permanent birefringence by polymer-stabilization of liquid crystal in cells and photonic crystal fibers\", Opto-electron. Rev. 26, 242 (2018). CrossRef R. Dąbrowski, J. Dziaduszek, T. Szczuciński, \"Mesomorphic Characteristics of Some New Homologous Series with the Isothiocyanato Terminal Group\", Mol. Cryst. Liq. Cryst. 124, 241 (1985). CrossRef","PeriodicalId":20055,"journal":{"name":"Photonics Letters of Poland","volume":" ","pages":""},"PeriodicalIF":0.6,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45314266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
High sensitivity and low detection limit sensor based on a slotted nanobeam cavity 基于开槽纳米束腔的高灵敏度低检测限传感器
IF 0.6 Q4 OPTICS Pub Date : 2022-09-30 DOI: 10.4302/plp.v14i3.1161
M. Al-Hmoud, Rasha Alyahyan
In this work, the three-dimensional finite-difference time-domain (3D-FDTD) method is used to design and analyze a refractive index sensor based on a slotted photonic crystal nanobeam cavity. These type of cavities support a high quality-factor and a small volume, and therefore is attractive for optical sensing. We demonstrate that when immersing our proposed sensor in water it can possess a high-quality factor of 2.0×10^6, high sensitivity of 325 nm/RIU, and a detection limit of 2.4×10^(-7) RIU. We believe that our proposed sensor is a promising candidate for potential applications sensing like in optofluidic- and bio-sensing. Full Text: PDF ReferencesE. Chow, A. Grot, L. Mirkarimi, M. Sigalas, G. Girolami, "Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity", OSA Trends Opt. Photonics Ser. 97 909 (2004). CrossRef S. Kim, H-M. Kim, Y-H. Lee, "Single nanobeam optical sensor with a high Q-factor and high sensitivity", Opt. Lett. 40 5351 (2015). CrossRef D-Q, Yang, B Duan, X, Liu, A-Q, Wang, X-G, Li, Y-F, Ji, "Photonic Crystal Nanobeam Cavities for Nanoscale Optical Sensing: A Review", Micromachines 11 (2020). CrossRef P.B. Deotare, M.W. McCutcheon, I.W. Frank, M. Khan, M. Lončar, "High quality factor photonic crystal nanobeam cavities", Appl. Phys. Lett. 94 121106 (2009). CrossRef P. Seidler, K. Lister, U. Drechsler, J. Hofrichter, T. Stöferle, "Slotted photonic crystal nanobeam cavity with an ultrahigh quality factor-to-mode volume ratio", Opt. Express 21 32468 (2013). CrossRef H. Choi, M. Heuck, D. Englund, "Self-Similar Nanocavity Design with Ultrasmall Mode Volume for Single-Photon Nonlinearities", Phys. Rev. Lett. 118 223605 (2017). CrossRef M. Al-Hmoud, S. Bougouffa, "Simultaneous high Q/V-ratio and optimized far-field emission pattern in diamond slot-bridge nanobeam cavity", Results Phys. 26 104314 (2021). CrossRef Q. Quan (2014). CrossRef M.A. Butt, C. Tyszkiewicz, P. Karasiński, M. Zięba, D. Hlushchenko, T. Baraniecki, A. Kaźmierczak, R. Piramidowicz, M. Guzik, A. Bachmatiuk, "Development of a low-cost silica-titania optical platform for integrated photonics applications", Opt. Express 30 23678 (2022). CrossRef D-Q. Yang, B. Duan, X. Liu, A-Q. Wang, X-G. Li, Y-F. Ji, ""Photonic Crystal Nanobeam Cavities for Nanoscale Optical Sensing: A Review", Micromachines 72, 11 (2020). CrossRef Y.N. Zhang, Y. Zhao, R.Q Lv, "A review for optical sensors based on photonic crystal cavities", Sens. Actuators A: Phys. 233 374 (2015). CrossRef P. Lalanne, S. Mias, and J.P. Hugonin, "Two physical mechanisms for boosting the quality factor to cavity volume ratio of photonic crystal microcavities", Opt. Express 12 458 (2004). CrossRef C. Sauvan, G. Lecamp, P. Lalanne, J.P Hugonin, "Modal-reflectivity enhancement by geometry tuning in Photonic Crystal microcavities", Opt. Express 13 245 (2005). CrossRef J.T. Robinson, C. Manolatou, L. Chen, M. Lipson, "Ultrasmall Mode Volumes in Dielectric Optical Microcavities", Phys. Rev.
本文采用三维时域有限差分(3D-FDTD)方法设计并分析了基于狭缝光子晶体纳米束腔的折射率传感器。这种类型的空腔支持高质量因子和小体积,因此对光学传感具有吸引力。我们证明,当将我们提出的传感器浸入水中时,它可以具有2.0×10^6的高质量因子,325 nm/RIU的高灵敏度和2.4×10^(-7) RIU的检测限。我们相信我们提出的传感器是一个很有前途的潜在应用,如光流体和生物传感。全文:PDF参考文献。周,A. Grot, L. Mirkarimi, M. Sigalas, G. Girolami,“基于二维光子晶体微腔的超紧凑生物化学传感器”,光子学报,97(2004)。CrossRef S. Kim, h . m .;金,Y-H。李,“具有高q因子和高灵敏度的单纳米光束光学传感器”,光学学报,40 5351(2015)。cross - ref,杨德强,段斌,刘晓东,王爱强,李晓刚,季云峰,“纳米尺度光传感的光子晶体纳米光束腔研究进展”,微机械11(2020)。CrossRef P.B. Deotare, M.W. McCutcheon, I.W. Frank, M. Khan, M. lonar,“高质量因子光子晶体纳米束腔”,applied。理论物理。杂志。94 121106(2009)。交叉ref P. Seidler, K. Lister, U. Drechsler, J. Hofrichter, T. Stöferle,“超高质量因子模体积比的开槽光子晶体纳米束腔”,光子学报21(2013)。CrossRef H. Choi, M. Heuck, D. Englund,“单光子非线性的自相似纳米腔设计”,物理学报。Rev. Lett. 118 223605(2017)。CrossRef M. al - houd, S. Bougouffa,“高Q/ v比的金刚石槽桥纳米波束腔远场发射模式优化”,物理学报,26(10):1414(2021)。CrossRef Quan Q.(2014)。CrossRef M. a . Butt, C. Tyszkiewicz, P. Karasiński, M. Zięba, D. Hlushchenko, T. Baraniecki, a . Kaźmierczak, R. Piramidowicz, M. Guzik, a . Bachmatiuk,“集成光子学应用的低成本二氧化硅-二氧化钛光学平台的开发”,光子学报,30(2):23678(2022)。CrossRef dq。杨斌,段斌,刘晓霞,阿强。王,X-G。李,yf。“基于光子晶体的纳米光传感技术研究进展”,《光子学报》,第7期,第11期(2020)。CrossRef Y.N.张、赵y R.Q Lv,“回顾基于光子晶体的光学传感器腔”,参议员驱动器A:理论物理233 374(2015)。王晓明,王晓明,“提高光子晶体微腔质量因子与腔体体积比的两种物理机制”,光子学报,12(2004)。[CrossRef] C. Sauvan, G. Lecamp, P. Lalanne, J.P Hugonin,“光子晶体微腔几何调谐的模态反射率增强”,光子学报,13(2005)。J.T. Robinson, C. Manolatou, L. Chen, M. Lipson,“介质光学微腔的超小模体积”,物理学报。Rev. Lett. 95 143901(2005)。CrossRef S. Olyaee, M. Seifouri, R. Karami, A. Mohebzadeh-Bahabady,“用于光学集成电路的低功耗和高对比度全光非逻辑门设计”,量子电子学报,51(2019)。CrossRef
{"title":"High sensitivity and low detection limit sensor based on a slotted nanobeam cavity","authors":"M. Al-Hmoud, Rasha Alyahyan","doi":"10.4302/plp.v14i3.1161","DOIUrl":"https://doi.org/10.4302/plp.v14i3.1161","url":null,"abstract":"In this work, the three-dimensional finite-difference time-domain (3D-FDTD) method is used to design and analyze a refractive index sensor based on a slotted photonic crystal nanobeam cavity. These type of cavities support a high quality-factor and a small volume, and therefore is attractive for optical sensing. We demonstrate that when immersing our proposed sensor in water it can possess a high-quality factor of 2.0×10^6, high sensitivity of 325 nm/RIU, and a detection limit of 2.4×10^(-7) RIU. We believe that our proposed sensor is a promising candidate for potential applications sensing like in optofluidic- and bio-sensing. Full Text: PDF ReferencesE. Chow, A. Grot, L. Mirkarimi, M. Sigalas, G. Girolami, \"Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity\", OSA Trends Opt. Photonics Ser. 97 909 (2004). CrossRef S. Kim, H-M. Kim, Y-H. Lee, \"Single nanobeam optical sensor with a high Q-factor and high sensitivity\", Opt. Lett. 40 5351 (2015). CrossRef D-Q, Yang, B Duan, X, Liu, A-Q, Wang, X-G, Li, Y-F, Ji, \"Photonic Crystal Nanobeam Cavities for Nanoscale Optical Sensing: A Review\", Micromachines 11 (2020). CrossRef P.B. Deotare, M.W. McCutcheon, I.W. Frank, M. Khan, M. Lončar, \"High quality factor photonic crystal nanobeam cavities\", Appl. Phys. Lett. 94 121106 (2009). CrossRef P. Seidler, K. Lister, U. Drechsler, J. Hofrichter, T. Stöferle, \"Slotted photonic crystal nanobeam cavity with an ultrahigh quality factor-to-mode volume ratio\", Opt. Express 21 32468 (2013). CrossRef H. Choi, M. Heuck, D. Englund, \"Self-Similar Nanocavity Design with Ultrasmall Mode Volume for Single-Photon Nonlinearities\", Phys. Rev. Lett. 118 223605 (2017). CrossRef M. Al-Hmoud, S. Bougouffa, \"Simultaneous high Q/V-ratio and optimized far-field emission pattern in diamond slot-bridge nanobeam cavity\", Results Phys. 26 104314 (2021). CrossRef Q. Quan (2014). CrossRef M.A. Butt, C. Tyszkiewicz, P. Karasiński, M. Zięba, D. Hlushchenko, T. Baraniecki, A. Kaźmierczak, R. Piramidowicz, M. Guzik, A. Bachmatiuk, \"Development of a low-cost silica-titania optical platform for integrated photonics applications\", Opt. Express 30 23678 (2022). CrossRef D-Q. Yang, B. Duan, X. Liu, A-Q. Wang, X-G. Li, Y-F. Ji, \"\"Photonic Crystal Nanobeam Cavities for Nanoscale Optical Sensing: A Review\", Micromachines 72, 11 (2020). CrossRef Y.N. Zhang, Y. Zhao, R.Q Lv, \"A review for optical sensors based on photonic crystal cavities\", Sens. Actuators A: Phys. 233 374 (2015). CrossRef P. Lalanne, S. Mias, and J.P. Hugonin, \"Two physical mechanisms for boosting the quality factor to cavity volume ratio of photonic crystal microcavities\", Opt. Express 12 458 (2004). CrossRef C. Sauvan, G. Lecamp, P. Lalanne, J.P Hugonin, \"Modal-reflectivity enhancement by geometry tuning in Photonic Crystal microcavities\", Opt. Express 13 245 (2005). CrossRef J.T. Robinson, C. Manolatou, L. Chen, M. Lipson, \"Ultrasmall Mode Volumes in Dielectric Optical Microcavities\", Phys. Rev. ","PeriodicalId":20055,"journal":{"name":"Photonics Letters of Poland","volume":" ","pages":""},"PeriodicalIF":0.6,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45739665","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fiber-coupled fluorescence light source suitable for spectroscopic applications 适用于光谱应用的光纤耦合荧光光源
IF 0.6 Q4 OPTICS Pub Date : 2022-09-30 DOI: 10.4302/plp.v14i3.1164
V. Vladev, T. Eftimov, S. Bozhkov, K. Nikolova, S. Minkova, Denitsa E Blazheva, G. Angelova, Maria S Brazkova
An experimental study of a fluorescent broadband light source fully compatible with optical fibers is presented in the article, with the aim of using it for excitation-emission matrix fluorescence spectroscopy. A fiber optic glass ferrule filled with a solution of Rhodamine 6G in glycerin was used for the basic construction of the light source. The ferrule is coupled with optical fibers to illuminate the dye medium and to receive the fluorescent signal. A tuning of the light spectrum from the source between 528 nm and 660 nm with a shift of 1 nm is achieved by means of a monochromator. Full Text: PDF ReferencesN. Hoinka and T. Fuhrmann-Lieker, "Amplified Spontaneous Emission in Paper", Sci. Rep. 9, 1 (2019), CrossRef J. Włodarski, M. Chychłowski, "Chemically tuned light source with an optical pump", Photonics Lett. Pol. 13(2), 46 (2021). CrossRef J. Żmojda, P. Miluski, M. Kochanowicz, J. Dorosz, A. Baranowska, M. Leśniak and D. Dorosz, "Luminescent properties of active optical fibers", Photonics Lett. Pol. 11(2), 50 (2019). CrossRef K. Jakubowski, W. Kerkemeyer, E. Perret, M. Heuberger, R. Hufenus, "Liquid-core polymer optical fibers for luminescent waveguide applications", Mater. Des. 196, 1 (2020). CrossRef V. Vladev, T. Eftimov, "Fiberized fluorescent dye microtubes", Proc. SPIE 8770, 87700V-1 (2013). CrossRef V. Vladev, T. Eftimov, W. Bock, "Broad-band fluorescent all-fiber source based on microstructured optical fibers", Photonics Lett. Pol., 7(2), 41 (2015). CrossRef V. Vladev, T. Eftimov, W. Bock, "Fluorescent all-fiber light source based on micro-capillaries and on microstructured optical fibers terminated with a microbulb", Opt. Comm. 356, 34 (2015). CrossRef V. Vladev, T. Eftimov, S. Nedev, "Excitation efficiency of a side-pumped fiberized fluorescent dye microcapillary", Opt. Fib. Tech. 28, 28 (2016). CrossRef V. Vladev, M. Todorova, V. Slavchev, M. Brazkova, E. Belina, S. Bozhkov, P. Radusheva, "A new basic structure suitable for a fully integrated all-fiber-optic stimulated emission dye source", J. Phys.: Conf. Ser. 1859 (012059), 1 (2021). CrossRef V. P. Vladev, M. M. Todorova, M. S. Brazkova, S. I. Bozhkov, "Diode-pumped all-fiber-optic liquid dye laser", Laser Phys. Lett. 18 (11), 115103 (2021), CrossRef G. Dyankov, T. A. Eftimov, N. Malinowski, E. Belina, H. Kisov, P. Mikulic, W. J. Bock, "A highly efficient biosensor based on MAPLE deposited hemoglobin on LPGs around phase matching turning point", Opt. Laser Technol. 123, 1 (2020). CrossRef T. Eftimov, G. Dyankov, A. Arapova, P. Kolev and V. Vladev, W4.73 , OFS-27, Optical Fiber Sensor Conference - 2022, 29 Aug- 2 Sept., The Westin Alexandria, Alexandria, Virginia, USA. CrossRef G. Rossi, J. Durek, S. Ojha, O. K. Schlüter, "Fluorescence-based characterisation of selected edible insect species: Excitation emission matrix (EEM) and parallel factor (PARAFAC) analysis", CRFS 4, 862 (2021). CrossRef L. Li, Y. Wang, W. Zhang, S. Yu, X. Wang, N. Gao, "New advances in fluorescence excit
本文介绍了一种与光纤完全兼容的荧光宽带光源的实验研究,目的是将其用于激发发射矩阵荧光光谱。将填充有罗丹明6G甘油溶液的光纤玻璃套圈用于光源的基本构造。套圈与光纤耦合以照射染料介质并接收荧光信号。通过单色仪实现了以1nm的偏移在528nm和660nm之间调谐来自光源的光谱。全文:PDF参考文献。Hoinka和T.Fuhrmann Lieker,“论文中的放大自发辐射”,科学。Rep.9,1(2019),CrossRef J.Włodarski,M.Chychł; owski,“带光泵的化学调谐光源”,Photonics Lett。波尔。13(2),46(2021)。CrossRef J.Żmojda、P.Miluski、M.Kochanowicz、J.Dorosz、A.Baranowska、M.Leśniak和D.Dorosz,“有源光纤的发光特性”,Photonics Lett。波尔。11(2),50(2019)。CrossRef K.Jakubowski,W.Kerkemeyer,E.Perret,M.Heuberger,R.Huvenus,“用于发光波导应用的液芯聚合物光纤”,Mater。Des。196,1(2020)。CrossRef V.Vladev,T.Eftimov,“纤维化荧光染料微管”,Proc。SPIE 877087700v-1(2013)。CrossRef V.Vladev,T.Eftimov,W.Bock,“基于微结构光纤的宽带荧光全光纤源”,Photonics Lett。Pol。,7(2),41(2015)。CrossRef V.Vladev,T.Eftimov,W.Bock,“基于微毛细管和用微棒端接的微结构化光纤的荧光全光纤光源”,Opt。Comm.356,34(2015)。CrossRef V.Vladev,T.Eftimov,S.Nedev,“侧面泵浦纤维化荧光染料微毛细管的激发效率”,Opt。纤维。Tech.28,28(2016)。CrossRef V.Vladev,M.Todorova,V.Slavchev,M.Brazkova,E.Belina,S.Bozhkov,P.Radusheva,“适用于完全集成的全光纤受激发射染料源的新的基本结构”,J.Phys.:Conf.Ser。1859(012059),1(2021)。CrossRef V.P.Vladev,M.M.Todorova,M.S.Brazkova,S.I.Bozhkov,“二极管泵浦全光纤液体染料激光器”,激光物理。Lett。18(11),115103(2021),CrossRef G.Dyankov,T.A.Eftimov,N.Malinowski,E.Belina,H.Kisov,P.Mikulic,W.J.Bock,“一种基于MAPLE的高效生物传感器,在相位匹配转折点附近将血红蛋白沉积在LPG上”,Opt。激光技术。123,1(2020)。CrossRef T.Eftimov、G.Dyankov、A.Arapova、P.Kolev和V.Vladev,W4.73,OFS-27,光纤传感器会议-2022,8月29日至9月2日,美国弗吉尼亚州亚历山大市威斯汀酒店,862(2021)。CrossRef L.Li,Y.Wang,W.Zhang,S.Yu,X.Wang,N.Gao,“荧光激发发射矩阵光谱法表征饮用水处理中溶解有机物的新进展:综述作者链接开放覆盖面板”,化学。Eng.J.381,1(2020)。CrossRef
{"title":"Fiber-coupled fluorescence light source suitable for spectroscopic applications","authors":"V. Vladev, T. Eftimov, S. Bozhkov, K. Nikolova, S. Minkova, Denitsa E Blazheva, G. Angelova, Maria S Brazkova","doi":"10.4302/plp.v14i3.1164","DOIUrl":"https://doi.org/10.4302/plp.v14i3.1164","url":null,"abstract":"An experimental study of a fluorescent broadband light source fully compatible with optical fibers is presented in the article, with the aim of using it for excitation-emission matrix fluorescence spectroscopy. A fiber optic glass ferrule filled with a solution of Rhodamine 6G in glycerin was used for the basic construction of the light source. The ferrule is coupled with optical fibers to illuminate the dye medium and to receive the fluorescent signal. A tuning of the light spectrum from the source between 528 nm and 660 nm with a shift of 1 nm is achieved by means of a monochromator. Full Text: PDF ReferencesN. Hoinka and T. Fuhrmann-Lieker, \"Amplified Spontaneous Emission in Paper\", Sci. Rep. 9, 1 (2019), CrossRef J. Włodarski, M. Chychłowski, \"Chemically tuned light source with an optical pump\", Photonics Lett. Pol. 13(2), 46 (2021). CrossRef J. Żmojda, P. Miluski, M. Kochanowicz, J. Dorosz, A. Baranowska, M. Leśniak and D. Dorosz, \"Luminescent properties of active optical fibers\", Photonics Lett. Pol. 11(2), 50 (2019). CrossRef K. Jakubowski, W. Kerkemeyer, E. Perret, M. Heuberger, R. Hufenus, \"Liquid-core polymer optical fibers for luminescent waveguide applications\", Mater. Des. 196, 1 (2020). CrossRef V. Vladev, T. Eftimov, \"Fiberized fluorescent dye microtubes\", Proc. SPIE 8770, 87700V-1 (2013). CrossRef V. Vladev, T. Eftimov, W. Bock, \"Broad-band fluorescent all-fiber source based on microstructured optical fibers\", Photonics Lett. Pol., 7(2), 41 (2015). CrossRef V. Vladev, T. Eftimov, W. Bock, \"Fluorescent all-fiber light source based on micro-capillaries and on microstructured optical fibers terminated with a microbulb\", Opt. Comm. 356, 34 (2015). CrossRef V. Vladev, T. Eftimov, S. Nedev, \"Excitation efficiency of a side-pumped fiberized fluorescent dye microcapillary\", Opt. Fib. Tech. 28, 28 (2016). CrossRef V. Vladev, M. Todorova, V. Slavchev, M. Brazkova, E. Belina, S. Bozhkov, P. Radusheva, \"A new basic structure suitable for a fully integrated all-fiber-optic stimulated emission dye source\", J. Phys.: Conf. Ser. 1859 (012059), 1 (2021). CrossRef V. P. Vladev, M. M. Todorova, M. S. Brazkova, S. I. Bozhkov, \"Diode-pumped all-fiber-optic liquid dye laser\", Laser Phys. Lett. 18 (11), 115103 (2021), CrossRef G. Dyankov, T. A. Eftimov, N. Malinowski, E. Belina, H. Kisov, P. Mikulic, W. J. Bock, \"A highly efficient biosensor based on MAPLE deposited hemoglobin on LPGs around phase matching turning point\", Opt. Laser Technol. 123, 1 (2020). CrossRef T. Eftimov, G. Dyankov, A. Arapova, P. Kolev and V. Vladev, W4.73 , OFS-27, Optical Fiber Sensor Conference - 2022, 29 Aug- 2 Sept., The Westin Alexandria, Alexandria, Virginia, USA. CrossRef G. Rossi, J. Durek, S. Ojha, O. K. Schlüter, \"Fluorescence-based characterisation of selected edible insect species: Excitation emission matrix (EEM) and parallel factor (PARAFAC) analysis\", CRFS 4, 862 (2021). CrossRef L. Li, Y. Wang, W. Zhang, S. Yu, X. Wang, N. Gao, \"New advances in fluorescence excit","PeriodicalId":20055,"journal":{"name":"Photonics Letters of Poland","volume":" ","pages":""},"PeriodicalIF":0.6,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41354656","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analysis of ridges and grooves shape in grating coupler for optimization of integrated optics sensor structures. 用于集成光学传感器结构优化的光栅耦合器中的脊和槽形状分析。
IF 0.6 Q4 OPTICS Pub Date : 2022-09-30 DOI: 10.4302/plp.v14i3.1151
P. Struk
The paper presents a theoretical analysis of a sensor structure based on a planar waveguide and grating coupler designed to determine selected physical properties of blood – hemoglobin concentration and oxidation level. In particular analysis were focused on optimization of selected geometrical properties of grating coupler (shape of ridges and grooves) to obtain maximum efficiency of uncoupling of light from the sensor structure. The analysis were carried out for three type of ridges and grooves shape in grating coupler: rectangular, triangular and sinusoidal. Full Text: PDF ReferencesI. . Singh, A.Weston, A. Kundur, G. Dobie, Haematology Case Studies with Blood Cell Morphology and Pathophysiology; Elsevier: Amsterdam, The Netherlands, (2017). DirectLink P. Jarolim, M. Lahav, SC. Liu, J. Palek, "Effect of hemoglobin oxidation products on the stability of red cell membrane skeletons and the associations of skeletal proteins: correlation with a release of hemin", Blood 76, 10 (1990). CrossRef E. Beutler, J. Waalen, "The definition of anemia: what is the lower limit of normal of the blood hemoglobin concentration?", Blood 107, 5 (2006). CrossRef M. Kiroriwal, P. Singal M. Sharma, A. Singal, "Hemoglobin sensor based on external gold-coated photonic crystal fiber", Optics & Laser Technology 149, 107817 (2022). CrossRef A. A. Boiarski, J. R. Busch, B. S. Bhullar, R. W. Ridgway, V. E. Wood, "Integrated optic sensor with macro-flow cell", Proc. SPIE Integrated Optics and Microstructures 1793 (1993). CrossRef L. Cheng, S. Mao, Z. Li, Y. Han and H. Y. Fu, "Grating Couplers on Silicon Photonics: Design Principles, Emerging Trends and Practical Issues", Micromachines 11, 666 (2020). CrossRef P. Struk, "Design of an Integrated Optics Sensor Structure Based on Diamond Waveguide for Hemoglobin Property Detection", Materials 12, 175 (2019). CrossRef P. Struk, "Numerical analysis of integrated photonics structures for hemoglobin sensor application", Phot. Lett. Poland 12, 2 (2020). CrossRef P.V. Lambeck, "Integrated optical sensors for the chemical domain", Meas. Sci. Technol. 17, (2006). CrossRef W. Lukosz, "Integrated optical chemical and direct biochemical sensors", Sens. Actuators B Chem 29 (1995). CrossRef P. Struk, T. Pustelny, K. Gołaszewska,E. Kaminska, M.A. Borysiewicz, M. Ekielski, A. Piotrowska, "Hybrid photonics structures with grating and prism couplers based on ZnO waveguides", Opto-Electron. Rev. 21, (2013). CrossRef P. Struk, "Design of an integrated optics sensor structure for hemoglobin property detection", Proc. SPIE 11204, (2019). CrossRef OptiFDTD Technical Background and Tutorials - Finite Difference Time Domain Photonics Simulation Software, Optiwave Systems Inc. (2008). DirectLink K. Yee, "Cutoff Frequencies of Eccentric Waveguides", IEEE Transactions 14, 3 (1966). CrossRef
本文介绍了一种基于平面波导和光栅耦合器的传感器结构的理论分析,该传感器结构用于测定血液中血红蛋白浓度和氧化水平的选定物理性质。重点分析了光栅耦合器的几何特性(脊线和凹槽的形状)的优化,以获得最大的光从传感器结构解耦效率。分析了矩形、三角形和正弦三种光栅耦合器的脊槽形状。全文:PDF参考文献。Singh, A. weston, A. Kundur, G. Dobie,血液学案例研究与血细胞形态学和病理生理学;爱思唯尔:荷兰阿姆斯特丹,(2017)。刘建军,刘建军,刘建军,“血红蛋白氧化产物对血红蛋白骨架稳定性的影响:与血红蛋白释放的相关性”,中国生物医学工程学报(英文版),2010(10)。CrossRef E. Beutler, J. Waalen,“贫血的定义:血血红蛋白浓度正常下限是什么?”,《血液》107,5(2006)。[CrossRef] M. Kiroriwal, P. Singal, M. Sharma, A. Singal,“基于外部金包覆光子晶体光纤的血红蛋白传感器”,光学与激光技术,49(10):2023 - 2023。王晓明,王晓明,王晓明,“集成光学传感器的设计与实现”,光学工程学报,2003,12(12):626 - 626。引用本文:程磊,李志明,韩勇,傅海燕,“硅光子学光栅耦合器的设计原理、发展趋势和实践问题”,微机械,11,666 (2020)CrossRef P. Struk,“基于金刚石波导的血红蛋白特性检测集成光学传感器结构设计”,材料12,175(2019)。CrossRef P. Struk,“血红蛋白传感器中集成光子结构的数值分析”,光子学报。列托人。波兰12,2(2020)。CrossRef P.V. Lambeck,“化学领域的集成光学传感器”,机械工程学报。科学。科技,17,(2006)。CrossRef W. Lukosz,“集成光学化学和直接生物化学传感器”,sens Actuators B . Chem 29(1995)。CrossRef P. Struk, T. Pustelny, K. Gołaszewska,E。Kaminska, M.A. Borysiewicz, M. Ekielski, A. Piotrowska,“基于ZnO波导的光栅和棱镜耦合器的混合光子学结构”,光电。Rev. 21,(2013)。CrossRef P. Struk,“血红蛋白特性检测的集成光学传感器结构设计”,工程物理学报,(2019)。CrossRef OptiFDTD技术背景和教程-有限差分时域光子学仿真软件,Optiwave Systems Inc.(2008)。余建平,“偏心波导的截止频率”,电子工程学报,第14卷第3期(1966)。CrossRef
{"title":"Analysis of ridges and grooves shape in grating coupler for optimization of integrated optics sensor structures.","authors":"P. Struk","doi":"10.4302/plp.v14i3.1151","DOIUrl":"https://doi.org/10.4302/plp.v14i3.1151","url":null,"abstract":"The paper presents a theoretical analysis of a sensor structure based on a planar waveguide and grating coupler designed to determine selected physical properties of blood – hemoglobin concentration and oxidation level. In particular analysis were focused on optimization of selected geometrical properties of grating coupler (shape of ridges and grooves) to obtain maximum efficiency of uncoupling of light from the sensor structure. The analysis were carried out for three type of ridges and grooves shape in grating coupler: rectangular, triangular and sinusoidal. Full Text: PDF ReferencesI. . Singh, A.Weston, A. Kundur, G. Dobie, Haematology Case Studies with Blood Cell Morphology and Pathophysiology; Elsevier: Amsterdam, The Netherlands, (2017). DirectLink P. Jarolim, M. Lahav, SC. Liu, J. Palek, \"Effect of hemoglobin oxidation products on the stability of red cell membrane skeletons and the associations of skeletal proteins: correlation with a release of hemin\", Blood 76, 10 (1990). CrossRef E. Beutler, J. Waalen, \"The definition of anemia: what is the lower limit of normal of the blood hemoglobin concentration?\", Blood 107, 5 (2006). CrossRef M. Kiroriwal, P. Singal M. Sharma, A. Singal, \"Hemoglobin sensor based on external gold-coated photonic crystal fiber\", Optics & Laser Technology 149, 107817 (2022). CrossRef A. A. Boiarski, J. R. Busch, B. S. Bhullar, R. W. Ridgway, V. E. Wood, \"Integrated optic sensor with macro-flow cell\", Proc. SPIE Integrated Optics and Microstructures 1793 (1993). CrossRef L. Cheng, S. Mao, Z. Li, Y. Han and H. Y. Fu, \"Grating Couplers on Silicon Photonics: Design Principles, Emerging Trends and Practical Issues\", Micromachines 11, 666 (2020). CrossRef P. Struk, \"Design of an Integrated Optics Sensor Structure Based on Diamond Waveguide for Hemoglobin Property Detection\", Materials 12, 175 (2019). CrossRef P. Struk, \"Numerical analysis of integrated photonics structures for hemoglobin sensor application\", Phot. Lett. Poland 12, 2 (2020). CrossRef P.V. Lambeck, \"Integrated optical sensors for the chemical domain\", Meas. Sci. Technol. 17, (2006). CrossRef W. Lukosz, \"Integrated optical chemical and direct biochemical sensors\", Sens. Actuators B Chem 29 (1995). CrossRef P. Struk, T. Pustelny, K. Gołaszewska,E. Kaminska, M.A. Borysiewicz, M. Ekielski, A. Piotrowska, \"Hybrid photonics structures with grating and prism couplers based on ZnO waveguides\", Opto-Electron. Rev. 21, (2013). CrossRef P. Struk, \"Design of an integrated optics sensor structure for hemoglobin property detection\", Proc. SPIE 11204, (2019). CrossRef OptiFDTD Technical Background and Tutorials - Finite Difference Time Domain Photonics Simulation Software, Optiwave Systems Inc. (2008). DirectLink K. Yee, \"Cutoff Frequencies of Eccentric Waveguides\", IEEE Transactions 14, 3 (1966). CrossRef","PeriodicalId":20055,"journal":{"name":"Photonics Letters of Poland","volume":" ","pages":""},"PeriodicalIF":0.6,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47887227","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Photonics Letters of Poland
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1