Receiving the Nobel Prize in 1971 for the invention and development of the holographic method, Dennis Gabor mentioned Mieczysław Wolfke as the person who proposed this method as early as 1920 (which he did not know, independently making the same discovery). This article describes the history of Wolfke's pioneering work and tries to recreate the thought process that led to it - starting with the task of supplementing and verifying the diffraction grating theory proposed by Ernst Abbe, which he carried out as part of his doctorate at the University of Wrocław and habilitation at the University of Zurich and the Swiss Federal Institute of Technology in Zurich.. Full Text: PDF ReferencesW. Łaniecki, Kwartalnik Historii Nauki i Techniki, 21, 545-553 (1976). DirectLink W. Keesom, "Solidification of Helium", Nature 118, 81 (1926). CrossRef W. Keesom, M. Wolfke, "Two liquid states of helium", Konink. Akad. Wetensch. Amsterdam, Proc, 31(190b), 90-94 (1928).W. Keesom, Helium (Elsevier, Amsterdam 1942).E. Abbe, Die Lehre von der Bildentstehung im Mikroskop (F. Vieweg, Braunschweig 1910). CrossRef R. Torge, Postępy Fizyki, 53, 201-210 (2002). CrossRef A.Kiejna, Kwartalnik Historii Nauki i Techniki, 48, 7 (2003). DirectLink M. Wolfke, "Über die Abbildung eines Gitters bei künstlicher Begrenzung", Ann Phys. 339, 277 (1911). CrossRef M. Wolfke, Prace matematyczno-fizyczne, 22, 135 (1911). DirectLink M. Wolfke, "Über die Abbildung eines Gitters bei asymmetrischer Abblendung", Ann Phys. 342, 96 (1912). CrossRef M. Wolfke, "Über die Abbildung eines durchlässigen Gitters", Ann Phys. 342, 797 (1912). CrossRef M. Wolfke, "Zur Abbildung eines durchlässigen Gitters", Ann Phys. 343, 385 (1912). CrossRef K. Petelczyc, E. Kędzierska, Mieczysław Wolfke. Gdyby mi dali choć pół miliona… (OWPW, Warszawa 2018). DirectLink L.A. Aslanov, G.V. Fetisov, J.A.K. Howard, "Crystallographic Instrumentation", Oxford (1998). CrossRef M. Wolfke, Wiadomości matematyczne 17, 1 (1913). DirectLink M. Wolfke, "Allgemeine Abbildungstheorie selbstleuchtender und nicht selbstleuchtender Objekte", Ann Phys. 344, 569 (1912). CrossRef M. Wolfke, "Über die Abbildung eines Gitters außerhalb der Einstellebene", Ann Phys. 345, 194 (1913). CrossRef M. Wolfke, Verhandlungen der DPG, 15, 1123 (1913).M. Wolfke, Verhandlungen der DPG, 15, 1215 (1913).M. Wolfke, Verhandlungen der DPG, 16, 4 (1914).M. Wolfke, "Fragen zur Pathologie des menschlichen Oedems", Physikalische Zeitschrift, 22, 375 (1921). CrossRef Akta osobowe - Wolfke Mieczysław, Archiwum Akt Nowych sygn. 2/14/0/6/6638, WarszawaM. Wolfke, Physikalische Zeitschrift, 21, 495 (1920). DirectLink S. Lundqvist, Nobel Lectures, Physics 1971-1980 (World Scientific Publishing Co. Singapore 1992) CrossRef
Dennis Gabor在1971年因全息方法的发明和发展而获得诺贝尔奖,他提到Mieczysław Wolfke是早在1920年就提出这种方法的人(他不知道,独立地做出了同样的发现)。本文描述了沃尔夫克的开创性工作的历史,并试图重建导致它的思维过程-从补充和验证由恩斯特阿贝提出的衍射光栅理论的任务开始,他在Wrocław大学和苏黎世大学和瑞士联邦理工学院获得博士学位的一部分。全文:PDFŁaniecki,《历史与技术》,21,545-553(1976)。W. Keesom,“氦的凝固”,《自然》118,81(1926)。CrossRef W. Keesom, M. Wolfke,“氦的两种液态”,中国科学院学报。Akad。Wetensch。阿姆斯特丹,31(1990 b), 90-94 (1928). w。Keesom, Helium (Elsevier, Amsterdam, 1942)。Abbe, Die Lehre von der Bildentstehung in Mikroskop (F. Vieweg,不伦瑞克,1910)。交叉参考学报,Postępy, 53, 201-210(2002)。《中国历史》(英文版),2003年第7期。M. Wolfke,“Über die Abbildung eines Gitters bei k nstlicher Begrenzung”,Ann Phys. 339,277(1911)。交叉参考M. Wolfke,实践数学,22,135(1911)。直接链接M. Wolfke,“Über die Abbildung eines Gitters bei asymmetrischer Abblendung”,Ann Phys. 342, 96(1912)。交叉参考M. Wolfke,“Über die Abbildung eines durchlässigen Gitters”,Ann Phys. 342,797(1912)。CrossRef M. Wolfke,“Zur Abbildung eines durchlässigen Gitters”,Ann Phys. 343, 385(1912)。CrossRef K. Petelczyc, E. Kędzierska, Mieczysław Wolfke。Gdyby mi dali choki pół million…(OWPW,华沙2018)。Aslanov, G.V. Fetisov, J.A.K. Howard,“晶体仪器”,牛津大学(1998)。交叉参考M. Wolfke, Wiadomości matmatyczne 17, 1(1913)。引用本文:伍尔克,“理论与理论的结合”,《科学》,第34卷第569页(1912)。CrossRef M. Wolfke,“Über die Abbildung eines Gitters außerhalb der einstein”,Ann Phys. 345, 194(1913)。[CrossRef .M. Wolfke, Verhandlungen der DPG, 15, 123 (1913).]沃尔夫克,《科学与工程》,15,1215 (1913). m。伍夫克,《科学与工程》,16,4(1914)。沃尔克:《关于人体病理的研究》,《物理学报》,22,375(1921)。交叉ref Akta osobowe - Wolfke Mieczysław, archium Akt Nowych标志。2/14/0/6/6638 WarszawaM。沃尔夫克,《物理学报》,21,495(1920)。Lundqvist,诺贝尔物理学讲座,1971-1980(世界科学出版社,新加坡,1992
{"title":"Mieczysław Wolfke - a pioneer of holography","authors":"K. Petelczyc","doi":"10.4302/plp.v13i4.1107","DOIUrl":"https://doi.org/10.4302/plp.v13i4.1107","url":null,"abstract":"Receiving the Nobel Prize in 1971 for the invention and development of the holographic method, Dennis Gabor mentioned Mieczysław Wolfke as the person who proposed this method as early as 1920 (which he did not know, independently making the same discovery). This article describes the history of Wolfke's pioneering work and tries to recreate the thought process that led to it - starting with the task of supplementing and verifying the diffraction grating theory proposed by Ernst Abbe, which he carried out as part of his doctorate at the University of Wrocław and habilitation at the University of Zurich and the Swiss Federal Institute of Technology in Zurich.. Full Text: PDF ReferencesW. Łaniecki, Kwartalnik Historii Nauki i Techniki, 21, 545-553 (1976). DirectLink W. Keesom, \"Solidification of Helium\", Nature 118, 81 (1926). CrossRef W. Keesom, M. Wolfke, \"Two liquid states of helium\", Konink. Akad. Wetensch. Amsterdam, Proc, 31(190b), 90-94 (1928).W. Keesom, Helium (Elsevier, Amsterdam 1942).E. Abbe, Die Lehre von der Bildentstehung im Mikroskop (F. Vieweg, Braunschweig 1910). CrossRef R. Torge, Postępy Fizyki, 53, 201-210 (2002). CrossRef A.Kiejna, Kwartalnik Historii Nauki i Techniki, 48, 7 (2003). DirectLink M. Wolfke, \"Über die Abbildung eines Gitters bei künstlicher Begrenzung\", Ann Phys. 339, 277 (1911). CrossRef M. Wolfke, Prace matematyczno-fizyczne, 22, 135 (1911). DirectLink M. Wolfke, \"Über die Abbildung eines Gitters bei asymmetrischer Abblendung\", Ann Phys. 342, 96 (1912). CrossRef M. Wolfke, \"Über die Abbildung eines durchlässigen Gitters\", Ann Phys. 342, 797 (1912). CrossRef M. Wolfke, \"Zur Abbildung eines durchlässigen Gitters\", Ann Phys. 343, 385 (1912). CrossRef K. Petelczyc, E. Kędzierska, Mieczysław Wolfke. Gdyby mi dali choć pół miliona… (OWPW, Warszawa 2018). DirectLink L.A. Aslanov, G.V. Fetisov, J.A.K. Howard, \"Crystallographic Instrumentation\", Oxford (1998). CrossRef M. Wolfke, Wiadomości matematyczne 17, 1 (1913). DirectLink M. Wolfke, \"Allgemeine Abbildungstheorie selbstleuchtender und nicht selbstleuchtender Objekte\", Ann Phys. 344, 569 (1912). CrossRef M. Wolfke, \"Über die Abbildung eines Gitters außerhalb der Einstellebene\", Ann Phys. 345, 194 (1913). CrossRef M. Wolfke, Verhandlungen der DPG, 15, 1123 (1913).M. Wolfke, Verhandlungen der DPG, 15, 1215 (1913).M. Wolfke, Verhandlungen der DPG, 16, 4 (1914).M. Wolfke, \"Fragen zur Pathologie des menschlichen Oedems\", Physikalische Zeitschrift, 22, 375 (1921). CrossRef Akta osobowe - Wolfke Mieczysław, Archiwum Akt Nowych sygn. 2/14/0/6/6638, WarszawaM. Wolfke, Physikalische Zeitschrift, 21, 495 (1920). DirectLink S. Lundqvist, Nobel Lectures, Physics 1971-1980 (World Scientific Publishing Co. Singapore 1992) CrossRef","PeriodicalId":20055,"journal":{"name":"Photonics Letters of Poland","volume":" ","pages":""},"PeriodicalIF":0.6,"publicationDate":"2021-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44236823","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In digital holography recording as reconstruction of holograms are performed digitally by modern photonic devices to increase of optical non-contacting measurements of various kinds of surfaces including both specular and rough surfaces. In this article we discusses these features of digital holography using phase shifting techniques that has much extended its capabilities. Full Text: PDF ReferencesG. Bruning, D.R. Herriott, J.E. Gallagher, D.P. Rosenfeld, A.D. White, D.J. Brangaccio, "Digital Wavefront Measuring Interferometer for Testing Optical Surfaces and Lenses", Appl. Opt. 13, 2693 (1974). CrossRef I. Yamaguchi, T. Zhang, "Phase-shifting digital holography", Opt. Lett. 22, 1268 (1997). CrossRef F. Zhang, I. Yamaguchi, L.P. Yaroslavsky, "Algorithm for reconstruction of digital holograms with adjustable magnification", Opt. Lett. 29, 1668 (2004). CrossRef I. Yamaguchi, "Holography, speckle, and computers", Optics and Lasers in Engineering 39, 411 (2003). CrossRef I. Yamaguchi, M. Yokota, "Speckle noise suppression in measurement by phase-shifting digital holography", Opt. Eng. 48 085602 (2009). CrossRef I. Yamaguchi, J. Kato, S. Ohta, "Surface Shape Measurement by Phase-Shifting Digital Holography", Opt. Rev. 8, 85 (2001). CrossRef I. Yamaguchi, J. Kato, H. Matsuzaki, "Measurement of surface shape and deformation by phase-shifting image digital holography", Opt. Eng. 42, 1267 (2003). CrossRef F. Zhang, J.D.R. Valera, I. Yamaguchi, M. Yokota, G. Mills, "Vibration Analysis by Phase Shifting Digital Holography", Opt. Rev. 11, 5 (2004). CrossRef
在数字全息术中,记录作为全息图的重建是由现代光子器件进行的,以增加对各种表面(包括镜面和粗糙表面)的光学非接触测量。在这篇文章中,我们讨论了这些特点的数字全息使用相移技术,有很大的扩展其能力。全文:PDFBruning, D.R. Herriott, J.E. Gallagher, D.P. Rosenfeld, A.D. White, D.J. Brangaccio,“用于光学表面和透镜测试的数字波前测量干涉仪”,中国科学院学报。选择13,2693(1974)。交叉参考:张涛,“相移数字全息”,光学学报22,1268(1997)。交叉参考:张福峰,山口一,雅罗夫斯基,“可调放大数字全息图的重建算法”,光学学报,29,1668(2004)。CrossRef . Yamaguchi,“全息、散斑与计算机”,光学与激光工程39,411(2003)。CrossRef . Yamaguchi, M. Yokota,“相移数字全息测量中的散斑噪声抑制”,光学工程,48(05)- 602(2009)。交叉ref . Yamaguchi, J. Kato, S. Ohta,“基于相移数字全息的表面形状测量”,光学学报,第8卷,85(2001)。交叉ref . Yamaguchi, J. Kato, H. Matsuzaki,“用相移图像数字全息法测量表面形状和变形”,光学工程42,1267(2003)。CrossRef . Zhang F., J.D.R. Valera, I. Yamaguchi, M. Yokota, G. Mills,“相移数字全息的振动分析”,光学学报,11,5(2004)。CrossRef
{"title":"Shape and deformation measurements of rough surfaces by phase-shifting digital holography","authors":"I. Yamaguchi","doi":"10.4302/plp.v13i4.1127","DOIUrl":"https://doi.org/10.4302/plp.v13i4.1127","url":null,"abstract":"In digital holography recording as reconstruction of holograms are performed digitally by modern photonic devices to increase of optical non-contacting measurements of various kinds of surfaces including both specular and rough surfaces. In this article we discusses these features of digital holography using phase shifting techniques that has much extended its capabilities. Full Text: PDF ReferencesG. Bruning, D.R. Herriott, J.E. Gallagher, D.P. Rosenfeld, A.D. White, D.J. Brangaccio, \"Digital Wavefront Measuring Interferometer for Testing Optical Surfaces and Lenses\", Appl. Opt. 13, 2693 (1974). CrossRef I. Yamaguchi, T. Zhang, \"Phase-shifting digital holography\", Opt. Lett. 22, 1268 (1997). CrossRef F. Zhang, I. Yamaguchi, L.P. Yaroslavsky, \"Algorithm for reconstruction of digital holograms with adjustable magnification\", Opt. Lett. 29, 1668 (2004). CrossRef I. Yamaguchi, \"Holography, speckle, and computers\", Optics and Lasers in Engineering 39, 411 (2003). CrossRef I. Yamaguchi, M. Yokota, \"Speckle noise suppression in measurement by phase-shifting digital holography\", Opt. Eng. 48 085602 (2009). CrossRef I. Yamaguchi, J. Kato, S. Ohta, \"Surface Shape Measurement by Phase-Shifting Digital Holography\", Opt. Rev. 8, 85 (2001). CrossRef I. Yamaguchi, J. Kato, H. Matsuzaki, \"Measurement of surface shape and deformation by phase-shifting image digital holography\", Opt. Eng. 42, 1267 (2003). CrossRef F. Zhang, J.D.R. Valera, I. Yamaguchi, M. Yokota, G. Mills, \"Vibration Analysis by Phase Shifting Digital Holography\", Opt. Rev. 11, 5 (2004). CrossRef","PeriodicalId":20055,"journal":{"name":"Photonics Letters of Poland","volume":" ","pages":""},"PeriodicalIF":0.6,"publicationDate":"2021-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45379856","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this paper we briefly present the history and outlook on the development of two seemingly distant techniques which may be brought close together with a unified theoretical model described as common k-space theory. This theory also known as the Fourier diffraction theorem is much less common in optical coherence tomography than its traditional mathematical model, but it has been extensively studied in digital holography and, more importantly, optical diffraction tomography. As demonstrated with several examples, this link is one of the important factors for future development of both techniques. Full Text: PDF ReferencesN. Leith, J. Upatnieks, "Reconstructed Wavefronts and Communication Theory", J. Opt. Soc. Am. 52(10), 1123 (1962). CrossRef Y. Park, C. Depeursinge, G. Popescu, "Quantitative phase imaging in biomedicine", Nat. Photonics 12, 578 (2018). CrossRef D. Huang et al., "Optical Coherence Tomography", Science 254(5035), 1178 (1991). CrossRef D. P. Popescu, C. Flueraru, S. Chang, J. Disano, S. Sherif, M.G. Sowa, "Optical coherence tomography: fundamental principles, instrumental designs and biomedical applications", Biophys. Rev. 3(3), 155 (2011). CrossRef M. Wojtkowski, V. Srinivasan, J.G. Fujimoto, T. Ko, J.S. Schuman, A. Kowalczyk, J.S. Duker, "Three-dimensional Retinal Imaging with High-Speed Ultrahigh-Resolution Optical Coherence Tomography", Ophthalmology 112(10), 1734 (2005). CrossRef K.C. Zhou, R. Qian, A.-H. Dhalla, S. Farsiu, J.A. Izatt, "Unified k-space theory of optical coherence tomography", Adv. Opt. Photon. 13(2), 462 (2021). CrossRef A.F. Fercher, C.K. Hitzenberger, G. Kamp, S.Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry", Opt. Comm. 117(1-2), 43 (1995). CrossRef E. Wolf, "Determination of the Amplitude and the Phase of Scattered Fields by Holography", J. Opt. Soc. Am. 60(1), 18 (1970). CrossRef E. Wolf, "Three-dimensional structure determination of semi-transparent objects from holographic data", Opt. Comm. 1(4), 153 (1969). CrossRef V. Balasubramani et al., "Roadmap on Digital Holography-Based Quantitative Phase Imaging", J. Imaging 7(12), 252 (2021). CrossRef A. Kuś, W. Krauze, P.L. Makowski, M. Kujawińska, "Holographic tomography: hardware and software solutions for 3D quantitative biomedical imaging (Invited paper)", ETRI J. 41(1), 61 (2019). CrossRef A. Kuś, M. Dudek, M. Kujawińska, B. Kemper, A. Vollmer, "Tomographic phase microscopy of living three-dimensional cell cultures", J. Biomed. Opt. 19(4), 46009 (2014). CrossRef O. Haeberlé, K. Belkebir, H. Giovaninni, A. Sentenac, "Tomographic diffractive microscopy: basics, techniques and perspectives", J. Mod. Opt. 57(9), 686 (2010). CrossRef B. Simon et al., "Tomographic diffractive microscopy with isotropic resolution", Optica 4(4), 460 (2017). CrossRef B.A. Roberts, A.C. Kak, "Reflection Mode Diffraction Tomography", Ultrason. Imag. 7, 300 (1985). CrossRef M. Sarmis et al., "High resolution reflection tomographic diffr
{"title":"From digital holographic microscopy to optical coherence tomography – separate past and a common goal","authors":"A. Kuś, W. Krauze, M. Kujawińska","doi":"10.4302/plp.v13i4.1130","DOIUrl":"https://doi.org/10.4302/plp.v13i4.1130","url":null,"abstract":"In this paper we briefly present the history and outlook on the development of two seemingly distant techniques which may be brought close together with a unified theoretical model described as common k-space theory. This theory also known as the Fourier diffraction theorem is much less common in optical coherence tomography than its traditional mathematical model, but it has been extensively studied in digital holography and, more importantly, optical diffraction tomography. As demonstrated with several examples, this link is one of the important factors for future development of both techniques. Full Text: PDF ReferencesN. Leith, J. Upatnieks, \"Reconstructed Wavefronts and Communication Theory\", J. Opt. Soc. Am. 52(10), 1123 (1962). CrossRef Y. Park, C. Depeursinge, G. Popescu, \"Quantitative phase imaging in biomedicine\", Nat. Photonics 12, 578 (2018). CrossRef D. Huang et al., \"Optical Coherence Tomography\", Science 254(5035), 1178 (1991). CrossRef D. P. Popescu, C. Flueraru, S. Chang, J. Disano, S. Sherif, M.G. Sowa, \"Optical coherence tomography: fundamental principles, instrumental designs and biomedical applications\", Biophys. Rev. 3(3), 155 (2011). CrossRef M. Wojtkowski, V. Srinivasan, J.G. Fujimoto, T. Ko, J.S. Schuman, A. Kowalczyk, J.S. Duker, \"Three-dimensional Retinal Imaging with High-Speed Ultrahigh-Resolution Optical Coherence Tomography\", Ophthalmology 112(10), 1734 (2005). CrossRef K.C. Zhou, R. Qian, A.-H. Dhalla, S. Farsiu, J.A. Izatt, \"Unified k-space theory of optical coherence tomography\", Adv. Opt. Photon. 13(2), 462 (2021). CrossRef A.F. Fercher, C.K. Hitzenberger, G. Kamp, S.Y. El-Zaiat, \"Measurement of intraocular distances by backscattering spectral interferometry\", Opt. Comm. 117(1-2), 43 (1995). CrossRef E. Wolf, \"Determination of the Amplitude and the Phase of Scattered Fields by Holography\", J. Opt. Soc. Am. 60(1), 18 (1970). CrossRef E. Wolf, \"Three-dimensional structure determination of semi-transparent objects from holographic data\", Opt. Comm. 1(4), 153 (1969). CrossRef V. Balasubramani et al., \"Roadmap on Digital Holography-Based Quantitative Phase Imaging\", J. Imaging 7(12), 252 (2021). CrossRef A. Kuś, W. Krauze, P.L. Makowski, M. Kujawińska, \"Holographic tomography: hardware and software solutions for 3D quantitative biomedical imaging (Invited paper)\", ETRI J. 41(1), 61 (2019). CrossRef A. Kuś, M. Dudek, M. Kujawińska, B. Kemper, A. Vollmer, \"Tomographic phase microscopy of living three-dimensional cell cultures\", J. Biomed. Opt. 19(4), 46009 (2014). CrossRef O. Haeberlé, K. Belkebir, H. Giovaninni, A. Sentenac, \"Tomographic diffractive microscopy: basics, techniques and perspectives\", J. Mod. Opt. 57(9), 686 (2010). CrossRef B. Simon et al., \"Tomographic diffractive microscopy with isotropic resolution\", Optica 4(4), 460 (2017). CrossRef B.A. Roberts, A.C. Kak, \"Reflection Mode Diffraction Tomography\", Ultrason. Imag. 7, 300 (1985). CrossRef M. Sarmis et al., \"High resolution reflection tomographic diffr","PeriodicalId":20055,"journal":{"name":"Photonics Letters of Poland","volume":" ","pages":""},"PeriodicalIF":0.6,"publicationDate":"2021-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41662243","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Liquid crystal on silicon (LCOS) spatial light modulator (SLM) is the most widely used optical engine for digital holography. This paper aims to provide an overview of the applications of phase-only LCOS in two-dimensional (2D) holography. It begins with a brief introduction to the holography theory along with its development trajectory, followed by the fundamental operating principle of phase-only LCOS SLMs. Hardware performance of LCOS SLMs (in terms of frame rate, phase linearity and flicker) and related experimental results are presented. Finally, potential improvements and applications are discussed for futuristic holographic displays. Full Text: PDF ReferencesM. Wolfke, Physikalische Zeitschrift 21, 495 (1920). DirectLink D. Gabor, "A New Microscopic Principle", Nature 161, 777 (1948). CrossRef H. Haken, "Laser Theory", Light and Matter 5, 14 (1970). CrossRef S. Benton, "Selected Papers on Three-dimensional displays", SPIE Press (2001). DirectLink X. Liang et al, "3D holographic display with optically addressed spatial light modulator", 3DTV-CON 2009 - 3rd 3DTV-Conference (2009). CrossRef J. Chen, W. Cranton, M. Fihn, "Handbook of Visual Display Technology", Springer (2012). CrossRef D. Rogers, "The chemistry of photography: From classical to digital technologies", Royal Society of Chemistry (2007). CrossRef S. Reichelt et al, "Depth cues in human visual perception and their realization in 3D displays", Proc. SPIE 7690, 76900B (2010). CrossRef A.W. Lohmann, D. Paris, "Binary Fraunhofer Holograms, Generated by Computer", Appl. Opt. 6, 1739 (1967). CrossRef J.W. Goodman, R.W. Lawrence, "Digital Image Formation from Electronically Detected Hologtrams", Appl. Phys. Lett 17, 77 (1967). CrossRef D.C. O'Brien, R.J. Mears, and W.A. Crossland, "Dynamic holographic interconnects that use ferroelectric liquid-crystal spatial light modulators", Appl. Opt. 33, 2795, (1994). CrossRef R.W. Gerchberg, and W.O. Saxton, "A practical algorithm for the determination of phase from image and diffraction plane pictures", Optik 35, 237 (1972). DirectLink M. Ernstoff, A. Leupp, M. Little, and H. Peterson, "Liquid crystal pictorial display", Proceedings of the 1973 International Electron Devices Meeting, IEEE, 548 (1973). CrossRef W.A. Crossland, P.J. Ayliffe, and P.W. Ross, "A dyed-phase-change liquid crystal display over a MOSFET switching array", Proc SID 23, 15 (1982). DirectLink M. Tang, and J. Wu, "Optical Correlation recoginition based on LCOS", Internation Symposium on Photoelectronic Detection and Imaging 2013, Optical Storage and Display Tech., 8913 (2013). CrossRef A. Hermerschmidt, et al. Holographic optical tweezers with real-time hologram calculation using a phase-only modulating LCOS-based SLM at 1064 nm, Complex Light and Optical Forces II, International Society for Optics and Photonics, 30282 (2008). CrossRef M. Wang, et al. "LCoS SLM Study and Its Application in Wavelength Selective Switch", Photonics 4, 22 (2017). CrossRef Z. Zhang, Z. You, and D.
硅基液晶(LCOS)空间光调制器(SLM)是应用最广泛的数字全息光引擎。本文综述了纯相位LCOS在二维全息中的应用。首先简要介绍了全息理论及其发展轨迹,然后介绍了纯相位LCOS slm的基本工作原理。介绍了LCOS slm的硬件性能(帧率、相位线性度和闪烁)和相关实验结果。最后,讨论了未来全息显示的潜在改进和应用。全文:PDF参考文献沃尔夫克,《物理学报》21,495(1920)。D. Gabor,《一种新的微观原理》,《自然》161,777(1948)。CrossRef H. Haken,“激光理论”,光与物质5,14(1970)。CrossRef S. Benton,“三维显示论文选集”,SPIE出版社(2001)。DirectLink X. Liang等,“基于光学寻址空间光调制器的3D全息显示”,第三届3DTV-CON(2009)。CrossRef J. Chen, W. Cranton, M. Fihn,“视觉显示技术手册”,vol . 10(2012)。CrossRef D. Rogers,“摄影的化学:从古典到数字技术”,英国皇家化学学会(2007)。CrossRef S. Reichelt等,“深度线索在人类视觉感知中的应用及其在3D显示中的实现”,中国机械工程学报(自然科学版),7690,76900b(2010)。A.W. Lohmann, D. Paris,“计算机生成的二进制弗劳恩霍夫全息图”,applied。选择6,1739(1967)。J.W. Goodman, R.W. Lawrence,“从电子检测全息图中生成数字图像”,苹果。理论物理。左17,77(1967)。R.J. Mears和W.A. Crossland,“使用铁电液晶空间光调制器的动态全息互连”,applied。选择33,2795,(1994)。CrossRef R.W. Gerchberg和W.O. Saxton,“从图像和衍射平面图像中确定相位的实用算法”,Optik 35, 237(1972)。M. Ernstoff, A. Leupp, M. Little和H. Peterson,“液晶图像显示”,1973年国际电子器件会议论文集,IEEE, 548(1973)。王晓明,王晓明,“一种基于MOSFET开关阵列的染料相变液晶显示技术”,电子工程学报,2003,15(1982)。唐明,吴军,“基于LCOS的光学相关识别”,2013年国际光电检测与成像学术研讨会,光学存储与显示技术,8913(2013)。CrossRef A. Hermerschmidt,等。全息光镊在1064nm的实时全息图计算中的应用,复杂光与光学力II,国际光学与光子学会,30282(2008)。CrossRef . Wang M.等。“LCoS SLM研究及其在波长选择开关中的应用”,光子学4,22(2017)。张志强,尤志强,朱德德,“LCOS器件上纯相位液晶的基本原理”,光学科学。[j] .科学与应用,2014(1)。CrossRef D. Yang和S. Wu,液晶器件基础,第2版(Wiley 2015)。CrossRef B. Prince,半导体存储器:设计,制造和应用手册,第2版(John Wiley & Sons 1996)。DirectLink J.C. Jones,液晶显示器,光电子手册:使能技术,第2版(CRC出版社2018)。A. Ayriyan等。“静电场对向列液晶过渡态指向取向影响的模拟”,物理学报(自然科学版)。波浪现象。27,67(2019)。[CrossRef]陈晓明,王晓明,液晶在光电领域的应用,光子材料与器件学报,7,15(2000)。季艳,等,“术中对明胶可吸收止血海绵的过敏反应”,中华临床医学杂志,22,46(2015)。CrossRef . Chang,溶液处理ZnO纳米粒子用于光学寻址空间光调制器及其他应用,博士论文,(University of Cambridge, 2019)“基于RGB发光二极管光源的全息头戴式显示器”,光电学报22,6526(2014)。CrossRef G. Aad,等。“利用ATLAS探测器研究√s=7 TeV的pp碰撞中包含射流产生的射流形状”,物理学报,83,05 - 2003(2011)。李建军,李建军,朱建军,“基于多尺度液晶的空间光调制器”,光学学报,29(4),2014。CrossRef杨辉,朱德平,“基于硅器件的数字液晶相位闪烁优化”,光学学报,27,24556(2019)。CrossRef P. Bach-Y-Rita,等。“用大脑看”,Int。j .的嗡嗡声。第一版。扶轮社15,285(2003)。CrossRef . Tong, M. Pivnenko, D。 Chu,“全息应用中纯相位LCoS器件的相位线性和相位闪烁的改进”,applied。光电58,G248(2019)。CrossRef . Tong, M. Pivnenko, D. Chu,“基于深度学习的纯相位LCOS器件的10位相位调制实现”,软件开发与应用,1(2020)。杨辉,朱德华,“基于硅器件的数字液晶的相位闪烁优化”,光学学报,27,24(2019)。CrossRef J. García-Márquez,等。“去极化液晶的Mueller-Stokes表征与优化”,光学快报16,8431(2008)。CrossRef
{"title":"LCOS Spatial Light Modulator for Digital Holography","authors":"Weijie Wu, M. Pivnenko, D. Chu","doi":"10.4302/plp.v13i4.1123","DOIUrl":"https://doi.org/10.4302/plp.v13i4.1123","url":null,"abstract":"Liquid crystal on silicon (LCOS) spatial light modulator (SLM) is the most widely used optical engine for digital holography. This paper aims to provide an overview of the applications of phase-only LCOS in two-dimensional (2D) holography. It begins with a brief introduction to the holography theory along with its development trajectory, followed by the fundamental operating principle of phase-only LCOS SLMs. Hardware performance of LCOS SLMs (in terms of frame rate, phase linearity and flicker) and related experimental results are presented. Finally, potential improvements and applications are discussed for futuristic holographic displays. Full Text: PDF ReferencesM. Wolfke, Physikalische Zeitschrift 21, 495 (1920). DirectLink D. Gabor, \"A New Microscopic Principle\", Nature 161, 777 (1948). CrossRef H. Haken, \"Laser Theory\", Light and Matter 5, 14 (1970). CrossRef S. Benton, \"Selected Papers on Three-dimensional displays\", SPIE Press (2001). DirectLink X. Liang et al, \"3D holographic display with optically addressed spatial light modulator\", 3DTV-CON 2009 - 3rd 3DTV-Conference (2009). CrossRef J. Chen, W. Cranton, M. Fihn, \"Handbook of Visual Display Technology\", Springer (2012). CrossRef D. Rogers, \"The chemistry of photography: From classical to digital technologies\", Royal Society of Chemistry (2007). CrossRef S. Reichelt et al, \"Depth cues in human visual perception and their realization in 3D displays\", Proc. SPIE 7690, 76900B (2010). CrossRef A.W. Lohmann, D. Paris, \"Binary Fraunhofer Holograms, Generated by Computer\", Appl. Opt. 6, 1739 (1967). CrossRef J.W. Goodman, R.W. Lawrence, \"Digital Image Formation from Electronically Detected Hologtrams\", Appl. Phys. Lett 17, 77 (1967). CrossRef D.C. O'Brien, R.J. Mears, and W.A. Crossland, \"Dynamic holographic interconnects that use ferroelectric liquid-crystal spatial light modulators\", Appl. Opt. 33, 2795, (1994). CrossRef R.W. Gerchberg, and W.O. Saxton, \"A practical algorithm for the determination of phase from image and diffraction plane pictures\", Optik 35, 237 (1972). DirectLink M. Ernstoff, A. Leupp, M. Little, and H. Peterson, \"Liquid crystal pictorial display\", Proceedings of the 1973 International Electron Devices Meeting, IEEE, 548 (1973). CrossRef W.A. Crossland, P.J. Ayliffe, and P.W. Ross, \"A dyed-phase-change liquid crystal display over a MOSFET switching array\", Proc SID 23, 15 (1982). DirectLink M. Tang, and J. Wu, \"Optical Correlation recoginition based on LCOS\", Internation Symposium on Photoelectronic Detection and Imaging 2013, Optical Storage and Display Tech., 8913 (2013). CrossRef A. Hermerschmidt, et al. Holographic optical tweezers with real-time hologram calculation using a phase-only modulating LCOS-based SLM at 1064 nm, Complex Light and Optical Forces II, International Society for Optics and Photonics, 30282 (2008). CrossRef M. Wang, et al. \"LCoS SLM Study and Its Application in Wavelength Selective Switch\", Photonics 4, 22 (2017). CrossRef Z. Zhang, Z. You, and D.","PeriodicalId":20055,"journal":{"name":"Photonics Letters of Poland","volume":"1 1","pages":""},"PeriodicalIF":0.6,"publicationDate":"2021-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41439024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jędrzej Szpygiel, Maksymilian Chlipala, Rafał Kukołowicz, M. Idicula, T. Kozacki
This letter presents distortion correction method enabling distortion minimized, large size image in wide angle holographic projector. The technique applies numerical predistortion of an input image used for hologram generation. It is based on estimation of distortion coefficients by comparing optically reconstructed point test chart with the original one. Obtained experimental results prove that the technique allows reconstruction of high-quality image. Full Text: PDF ReferencesM. Makowski, Experimental Aspects of Holographic Projection with a Liquid-Crystal-on-Silicon Spatial Light Modulator, in Holographic Materials and Optical Systems, M. Kumar, ed. (IntechOpen, 2019). CrossRef H. Pang, A. Cao, W. Liu, L. Shi, and Q. Deng, "Effective method for further magnifying the image in holographic projection under divergent light illumination", Appl. Opt. 58, 8713 (2019). CrossRef Y. Qi, C. Chang, and J. Xia, "Speckleless holographic display by complex modulation based on double-phase method", Opt. Express 24, 30368 (2016). CrossRef E. Buckley, "Holographic Laser Projection", J. Display Technol. 99, 1 (2010). DirectLink M. Chlipała, T. Kozacki, H. Yeom, J. Martinez-Carranza, R. Kukołowicz, J. Kim, J. Yang, J. Choi, J. Pi, and C. Hwang, "Wide angle holographic video projection display", Opt. Lett. 46, 4956 (2021). CrossRef Z. He, X. Sui, L. Cao and G. Jin, "Image-Distortion Correction Algorithm for Computer-Generated Holographic Display," 2018 IEEE 27th International Symposium on Industrial Electronics (ISIE), 1331 (2018). CrossRef A. Kaczorowski, G.S. Gordon, A. Palani, S. Czerniawski and T.D. Wilkinson, "Optimization-Based Adaptive Optical Correction for Holographic Projectors", J. Display Technol. 11(7), 596 (2015). CrossRef Z. He, X. Sui, G. Jin, L. Cao, "Distortion-Correction Method Based on Angular Spectrum Algorithm for Holographic Display", IEEE Trans. Industr. Inform. 15, 6162 (2019). CrossRef O. Mendoza-Yero, G. Mínguez-Vega, and J. Lancis, "Encoding complex fields by using a phase-only optical element", Opt. Lett. 39, 1740 (2014). CrossRef T. Kozacki, K. Falaggis, "Angular spectrum method with compact space–bandwidth: generalization and full-field accuracy", Appl. Opt. 55, 5014 (2016). CrossRef
{"title":"Distortion correction for wide angle holographic projector","authors":"Jędrzej Szpygiel, Maksymilian Chlipala, Rafał Kukołowicz, M. Idicula, T. Kozacki","doi":"10.4302/plp.v13i4.1125","DOIUrl":"https://doi.org/10.4302/plp.v13i4.1125","url":null,"abstract":"This letter presents distortion correction method enabling distortion minimized, large size image in wide angle holographic projector. The technique applies numerical predistortion of an input image used for hologram generation. It is based on estimation of distortion coefficients by comparing optically reconstructed point test chart with the original one. Obtained experimental results prove that the technique allows reconstruction of high-quality image. Full Text: PDF ReferencesM. Makowski, Experimental Aspects of Holographic Projection with a Liquid-Crystal-on-Silicon Spatial Light Modulator, in Holographic Materials and Optical Systems, M. Kumar, ed. (IntechOpen, 2019). CrossRef H. Pang, A. Cao, W. Liu, L. Shi, and Q. Deng, \"Effective method for further magnifying the image in holographic projection under divergent light illumination\", Appl. Opt. 58, 8713 (2019). CrossRef Y. Qi, C. Chang, and J. Xia, \"Speckleless holographic display by complex modulation based on double-phase method\", Opt. Express 24, 30368 (2016). CrossRef E. Buckley, \"Holographic Laser Projection\", J. Display Technol. 99, 1 (2010). DirectLink M. Chlipała, T. Kozacki, H. Yeom, J. Martinez-Carranza, R. Kukołowicz, J. Kim, J. Yang, J. Choi, J. Pi, and C. Hwang, \"Wide angle holographic video projection display\", Opt. Lett. 46, 4956 (2021). CrossRef Z. He, X. Sui, L. Cao and G. Jin, \"Image-Distortion Correction Algorithm for Computer-Generated Holographic Display,\" 2018 IEEE 27th International Symposium on Industrial Electronics (ISIE), 1331 (2018). CrossRef A. Kaczorowski, G.S. Gordon, A. Palani, S. Czerniawski and T.D. Wilkinson, \"Optimization-Based Adaptive Optical Correction for Holographic Projectors\", J. Display Technol. 11(7), 596 (2015). CrossRef Z. He, X. Sui, G. Jin, L. Cao, \"Distortion-Correction Method Based on Angular Spectrum Algorithm for Holographic Display\", IEEE Trans. Industr. Inform. 15, 6162 (2019). CrossRef O. Mendoza-Yero, G. Mínguez-Vega, and J. Lancis, \"Encoding complex fields by using a phase-only optical element\", Opt. Lett. 39, 1740 (2014). CrossRef T. Kozacki, K. Falaggis, \"Angular spectrum method with compact space–bandwidth: generalization and full-field accuracy\", Appl. Opt. 55, 5014 (2016). CrossRef","PeriodicalId":20055,"journal":{"name":"Photonics Letters of Poland","volume":" ","pages":""},"PeriodicalIF":0.6,"publicationDate":"2021-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43822795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Recent developments in binary photo-magnetic materials showed efficient and ultra-fast rewriting of holograms where the intensity threshold allows for a dense, sub-diffraction limit packing of hologram points. This paper describes the numerical optimization of the process of writing and reconstructing of 2-D images in a binary-phase computer-generated holograms stored in the said threshold-like medium. Global optimization of the free parameters of the writing process is shown, including the intensity threshold level, propagation distance, hologram spot size and the shape of the boundary regions of the written spots. We present the optimal set of parameters for the best possible writing quality. Full Text: PDF ReferencesA. Stupakiewicz, K. Szerenos, D. Afanasiev et al., "Ultrafast nonthermal photo-magnetic recording in a transparent medium", Nature 542, 71 (2017). CrossRef J. Starobrat, A. Frej, J. Bolek, R. Trybus, A. Stupakiewicz, and M. Makowski, "Photo-magnetic recording of randomized holographic diffraction patterns in a transparent medium", Opt. Lett. 45, 5177 (2020). CrossRef V. Ostroverkhov, et al., "Micro-Holographic Storage and Threshold Holographic Recording Materials", Jap. J. App. Phys. 48.3S1, 03A035 (2009). CrossRef K. Matsushima, T. Shimobaba, "Band-Limited Angular Spectrum Method for Numerical Simulation of Free-Space Propagation in Far and Near Fields", Opt. Express 17, 19662 (2009). CrossRef F. Wyrowski, O. Bryngdahl, "Iterative Fourier-transform algorithm applied to computer holography", JOSA A 5.7, 1058 (1988). CrossRef I. Ducin, T. Shimobaba, M. Makowski, K. Kakarenko, A. Kowalczyk, Jaroslaw Suszek, M. Bieda, A. Kolodziejczyk, M. Sypek, "Holographic projection of images with step-less zoom and noise suppression by pixel separation", Opt. Comm. 340, 131 (2015). CrossRef M. Makowski, "Minimized speckle noise in lens-less holographic projection by pixel separation", Opt. Express 21, 29205 (2013). CrossRef
最近二元光磁材料的发展显示出全息图的高效和超快速重写,其中强度阈值允许全息图点的密集,亚衍射极限包装。本文描述了存储在上述阈值介质中的二相计算机生成全息图中二维图像的写入和重建过程的数值优化。给出了书写过程自由参数的全局优化,包括强度阈值、传播距离、全息光斑尺寸和书写光斑边界区域形状。我们提出了最佳的一组参数,以达到最佳的写作质量。全文:PDFStupakiewicz, K. Szerenos, D. Afanasiev等,“透明介质中的超快非热光磁记录”,Nature 542, 71(2017)。CrossRef J. Starobrat, a . Frej, J. Bolek, R. Trybus, a . Stupakiewicz, M. Makowski,“透明介质中随机全息衍射图案的光磁记录”,光学学报,45,577(2020)。[j],“微全息存储与阈值全息记录材料”,中国科学院学报。[j] .物理应用,48(1),35 - 35(2009)。张晓明,“自由空间远场和近场传播数值模拟的带限制角谱方法”,光学学报,1996,6(2009)。CrossRef F. Wyrowski, O. Bryngdahl,“迭代傅里叶变换算法在计算机全息成像中的应用”,计算机科学学报,5.7,1058(1988)。CrossRef . Ducin, T. Shimobaba, M. Makowski, K. Kakarenko, A. Kowalczyk, Jaroslaw Suszek, M. Bieda, A. Kolodziejczyk, M. Sypek,“基于像素分离的无级变焦图像全息投影”,光学学报,34,31(2015)。CrossRef M. Makowski,“基于像素分离的无透镜全息投影的最小散斑噪声”,光学学报,21(2013)。CrossRef
{"title":"Numerical optimization of writing computer-generated holograms in threshold media","authors":"M. Makowski, Mateusz Sadowski","doi":"10.4302/plp.v13i4.1108","DOIUrl":"https://doi.org/10.4302/plp.v13i4.1108","url":null,"abstract":"Recent developments in binary photo-magnetic materials showed efficient and ultra-fast rewriting of holograms where the intensity threshold allows for a dense, sub-diffraction limit packing of hologram points. This paper describes the numerical optimization of the process of writing and reconstructing of 2-D images in a binary-phase computer-generated holograms stored in the said threshold-like medium. Global optimization of the free parameters of the writing process is shown, including the intensity threshold level, propagation distance, hologram spot size and the shape of the boundary regions of the written spots. We present the optimal set of parameters for the best possible writing quality. Full Text: PDF ReferencesA. Stupakiewicz, K. Szerenos, D. Afanasiev et al., \"Ultrafast nonthermal photo-magnetic recording in a transparent medium\", Nature 542, 71 (2017). CrossRef J. Starobrat, A. Frej, J. Bolek, R. Trybus, A. Stupakiewicz, and M. Makowski, \"Photo-magnetic recording of randomized holographic diffraction patterns in a transparent medium\", Opt. Lett. 45, 5177 (2020). CrossRef V. Ostroverkhov, et al., \"Micro-Holographic Storage and Threshold Holographic Recording Materials\", Jap. J. App. Phys. 48.3S1, 03A035 (2009). CrossRef K. Matsushima, T. Shimobaba, \"Band-Limited Angular Spectrum Method for Numerical Simulation of Free-Space Propagation in Far and Near Fields\", Opt. Express 17, 19662 (2009). CrossRef F. Wyrowski, O. Bryngdahl, \"Iterative Fourier-transform algorithm applied to computer holography\", JOSA A 5.7, 1058 (1988). CrossRef I. Ducin, T. Shimobaba, M. Makowski, K. Kakarenko, A. Kowalczyk, Jaroslaw Suszek, M. Bieda, A. Kolodziejczyk, M. Sypek, \"Holographic projection of images with step-less zoom and noise suppression by pixel separation\", Opt. Comm. 340, 131 (2015). CrossRef M. Makowski, \"Minimized speckle noise in lens-less holographic projection by pixel separation\", Opt. Express 21, 29205 (2013). CrossRef","PeriodicalId":20055,"journal":{"name":"Photonics Letters of Poland","volume":" ","pages":""},"PeriodicalIF":0.6,"publicationDate":"2021-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44511254","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
N. Hussain, M. Salim, A. Azmi, M. Y. M. Noor, A. S. Abdullah, F. Ahmad, Ibrahim Mohd Haniff
This paper explains about the performance of graphene nanopowder (GNP) based saturable absorber (SA) at 1.5-micron region which is prepared by dissolution in polyvinyl alcohol (PVA) polymer. Two different GNP flakes thickness (AO2-8 nm and AO4-60 nm) are tested. By applying a solution casting method, three weight ratio of GNP to PVA (12.04, 8.03 and 3.11 wt.%) have been prepared and fabricated as a composite thin film. To characterize for the SA performance, 4 mm2 area of GNP-PVA thin film is embedded in a 14 meters long ring cavity with 3 meters Erbium doped fiber (EDF) as a gain medium. Our characterization results show that the GNP-PVA thin film act as a Q-switcher which produce stable laser pulses for 12.04 wt.% with maximum repetition rate of 39.22 kHz and shortest pulse width of 11.79 µs. Meanwhile, unstable Q-switched pulses of 8.03 wt.% and 3.11 wt.% have been observed with recorded signal to noise ratio (SNR) of only 21 dB and 17 dB, respectively. The threshold pumping power for Q-switched lasing to emerge is recorded as low as 30 mW. Apparently, it shows that GNP concentration and flakes thickness in fabricated SA composite plays vital role in the performance of generated Q-switch laser, particularly at 1.5 µm region. Full Text: PDF ReferencesT. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P.H. Tan, A.G. Rozhin, A.C. Ferrari, "Nanotube–Polymer Composites for Ultrafast Photonics", Adv. Mater. 21, 3874 (2009). CrossRef Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z.X. Shen, K.P. Loh, D.Y. Tang, "Atomic-Layer Graphene as a Saturable Absorber for Ultrafast Pulsed Lasers", Adv. Funct. Mater. 19, 3077 (2009). CrossRef Z. Luo, M. Zhou, J. Weng, G. Huang, H. Xu, C. Ye, Z. Cai, Opt. Lett. 35(21), 3709 (2010). CrossRef D. Popa, Z. Sun, T. Hasan, F. Torrisi, F. Wang, A.C. Ferrari, "Graphene Q-switched, tunable fiber laser", Appl. Phys. Lett. 98, 3106 (2011). CrossRef Y.M. Chang, H. Kim, J.H. Lee, Y. Song, "Multilayered graphene efficiently formed by mechanical exfoliation for nonlinear saturable absorbers in fiber mode-locked lasers", Appl. Phys. Lett. 97, 211102 (2010). CrossRef M. Jiang, Z. Ren, Y. Zhang, B. Lu, R. Zhang, J. Guo, Y. Zhou, J. Bai, "Passive Q-Switching with Graphene Saturable Absorber in Nd:YAG Operating at 1064nm", Mater. Sci. Forum 694, 700 (2011). CrossRef N. Hussin, M.H. Ibrahim, F. Ahmad, H. Yahaya, S.W. Harun, "Graphene Nanoplatelets (GnP)-PVA Based Passive Saturable Absorber", Telkomnika 15(2), 814 (2017). CrossRef F.C. Mat, M. Yasin, A.A. Latiff, S.W. Harun, Photonics Letters of Poland 9, 100 (2017). CrossRef E.K. Ng, K.Y. Lau, H.K. Lee, N.M. Yusoff, A.R. Sarmani, M.F. Omar, M.A. Mahdi, "L-band femtosecond fiber laser based on a reduced graphene oxide polymer composite saturable absorber", Opt. Mater. Express 11, 59 (2021). CrossRef N.H.M. Apandi, S.N.F. Zuikafly, N. Kasim, M.A. Mohamed, S.W. Harun, F. Ahmad, "Observation of dark and bright pulses in q-switched erbium doped fiber laser using graphene nano-platelets as saturable abs
{"title":"Performance of Graphene Nanopowder-Polyvinyl Alcohol in Optical Pulse Generation at 1.5 Micron Region","authors":"N. Hussain, M. Salim, A. Azmi, M. Y. M. Noor, A. S. Abdullah, F. Ahmad, Ibrahim Mohd Haniff","doi":"10.4302/PLP.V13I3.1113","DOIUrl":"https://doi.org/10.4302/PLP.V13I3.1113","url":null,"abstract":"This paper explains about the performance of graphene nanopowder (GNP) based saturable absorber (SA) at 1.5-micron region which is prepared by dissolution in polyvinyl alcohol (PVA) polymer. Two different GNP flakes thickness (AO2-8 nm and AO4-60 nm) are tested. By applying a solution casting method, three weight ratio of GNP to PVA (12.04, 8.03 and 3.11 wt.%) have been prepared and fabricated as a composite thin film. To characterize for the SA performance, 4 mm2 area of GNP-PVA thin film is embedded in a 14 meters long ring cavity with 3 meters Erbium doped fiber (EDF) as a gain medium. Our characterization results show that the GNP-PVA thin film act as a Q-switcher which produce stable laser pulses for 12.04 wt.% with maximum repetition rate of 39.22 kHz and shortest pulse width of 11.79 µs. Meanwhile, unstable Q-switched pulses of 8.03 wt.% and 3.11 wt.% have been observed with recorded signal to noise ratio (SNR) of only 21 dB and 17 dB, respectively. The threshold pumping power for Q-switched lasing to emerge is recorded as low as 30 mW. Apparently, it shows that GNP concentration and flakes thickness in fabricated SA composite plays vital role in the performance of generated Q-switch laser, particularly at 1.5 µm region. Full Text: PDF ReferencesT. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P.H. Tan, A.G. Rozhin, A.C. Ferrari, \"Nanotube–Polymer Composites for Ultrafast Photonics\", Adv. Mater. 21, 3874 (2009). CrossRef Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z.X. Shen, K.P. Loh, D.Y. Tang, \"Atomic-Layer Graphene as a Saturable Absorber for Ultrafast Pulsed Lasers\", Adv. Funct. Mater. 19, 3077 (2009). CrossRef Z. Luo, M. Zhou, J. Weng, G. Huang, H. Xu, C. Ye, Z. Cai, Opt. Lett. 35(21), 3709 (2010). CrossRef D. Popa, Z. Sun, T. Hasan, F. Torrisi, F. Wang, A.C. Ferrari, \"Graphene Q-switched, tunable fiber laser\", Appl. Phys. Lett. 98, 3106 (2011). CrossRef Y.M. Chang, H. Kim, J.H. Lee, Y. Song, \"Multilayered graphene efficiently formed by mechanical exfoliation for nonlinear saturable absorbers in fiber mode-locked lasers\", Appl. Phys. Lett. 97, 211102 (2010). CrossRef M. Jiang, Z. Ren, Y. Zhang, B. Lu, R. Zhang, J. Guo, Y. Zhou, J. Bai, \"Passive Q-Switching with Graphene Saturable Absorber in Nd:YAG Operating at 1064nm\", Mater. Sci. Forum 694, 700 (2011). CrossRef N. Hussin, M.H. Ibrahim, F. Ahmad, H. Yahaya, S.W. Harun, \"Graphene Nanoplatelets (GnP)-PVA Based Passive Saturable Absorber\", Telkomnika 15(2), 814 (2017). CrossRef F.C. Mat, M. Yasin, A.A. Latiff, S.W. Harun, Photonics Letters of Poland 9, 100 (2017). CrossRef E.K. Ng, K.Y. Lau, H.K. Lee, N.M. Yusoff, A.R. Sarmani, M.F. Omar, M.A. Mahdi, \"L-band femtosecond fiber laser based on a reduced graphene oxide polymer composite saturable absorber\", Opt. Mater. Express 11, 59 (2021). CrossRef N.H.M. Apandi, S.N.F. Zuikafly, N. Kasim, M.A. Mohamed, S.W. Harun, F. Ahmad, \"Observation of dark and bright pulses in q-switched erbium doped fiber laser using graphene nano-platelets as saturable abs","PeriodicalId":20055,"journal":{"name":"Photonics Letters of Poland","volume":" ","pages":""},"PeriodicalIF":0.6,"publicationDate":"2021-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48359270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fiber optic interferometers have a wide range of applications including biological and chemical measurements. Nevertheless, in case of a reflective interferometer setup, standard silver mirrors cannot be used in every measurement, due to their chemical activity. In this work, we investigate the surface quality of a thin optical layer of silicon nitride (SiN) which can serve as an alternative material for silver mirrors. We present measurements carried out with a Fabry-Perot fiber optic interferometer working in a reflective mode. Measurement results allow us to determine the surface quality of the investigated layer. Full Text: PDF ReferencesK. Karpienko, M.S. Wróbel, M. Jedrzejewska-Szczerska, "Determination of refractive index dispersion using fiber-optic low-coherence Fabry-Perot interferometer: implementation and validation", Opt Express, 53, 077103 (2014). CrossRef Jedrzejewska-Szczerska M., Gnyba M., Kosmowski B. B. "Low-coherence fibre-optic interferometric sensors", Acta Phys. Pol. A 120, 621 (2011). CrossRef M. Jedrzejewska-Szczerska "Response of a new low-coherence Fabry-Perot sensor to hematocrit levels in human blood",Sensors 14(4), 6965 (2014). CrossRef M. Kosowska, D. Majchrowicz, K.J. Sankaran, M. Ficek, K. Haenen, M. Szczerska, "Doped Nanocrystalline Diamond Films as Reflective Layers for Fiber-Optic Sensors of Refractive Index of Liquids", Materials 12, 2124 (2019). CrossRef Shou-YiChang, Yi-Chung Huang, "Analyses of interface adhesion between porous SiO2 low-k film and SiC/SiN layers by nanoindentation and nanoscratch tests", Microelectron. Eng. 84(2), 319 (2007). CrossRef X. Wang, C. Wang, X. Shen, F. Sun, "Potential Material for Fabricating Optical Mirrors: Polished Diamond Coated Silicon Carbide". Appl. Opt. 56, 4113 (2017). CrossRef G. Coppola, P. Ferraro, M. Iodice, S. De Nicola, "Method for measuring the refractive index and the thickness of transparent plates with a lateral-shear, wavelength-scanning interferometer", Appl. Opt. 42, 3882 (2003). CrossRef H. Mäckel, R. Lüdemann, "Detailed study of the composition of hydrogenated SiNx layers for high-quality silicon surface passivation", J. Appl, Phys. 92, 2602 (2002). CrossRef N. Atman, M. Krzywinski, "Visualizing samples with box plots", Nat. Methods, 11(2), 119 (2014). CrossRef M. Vignesh, R. Balaji, "Data analysis using Box and Whisker Plot for Lung Cancer", International Conference on Innovations in Power and Advanced Computing Technologies,(2017). CrossRef
光纤干涉仪具有广泛的应用,包括生物和化学测量。然而,在反射干涉仪设置的情况下,由于其化学活性,标准银镜不能用于每次测量。在这项工作中,我们研究了氮化硅(SiN)薄光学层的表面质量,它可以作为银镜的替代材料。我们介绍了在反射模式下工作的法布里-珀罗光纤干涉仪进行的测量。测量结果使我们能够确定所研究层的表面质量。全文:PDF ReferencesKKarpienko, M.S. Wróbel, M. Jedrzejewska-Szczerska,“光纤低相干法布里-珀罗干涉仪的折射率色散测定:实现与验证”,光学精密工程,53,077103(2014)。[8]刘建军,刘建军,刘建军,等。“低相干光纤干涉传感器”,物理学报。波尔。[j] .中国科学院学报,2011。[10]王晓峰,王晓峰,王晓峰,等。一种新型低相干法布里-珀罗传感器对人体血液红细胞比容的响应研究[j] .中国生物医学工程学报,2014,33(4):663 - 667。CrossRef M. Kosowska, D. Majchrowicz, K. j . Sankaran, M. Ficek, K. Haenen, M. Szczerska,“液体折射率光纤传感器中掺杂纳米晶金刚石薄膜的反射层”,材料12,21(2019)。黄义忠,“基于纳米压痕和纳米划痕测试的多孔SiO2低k膜与SiC/SiN层界面黏附分析”,《微电子》。工程物理学报,2004,26(2),319(2007)。引用本文:王晓霞,王春霞,沈晓霞,孙峰,“制备光学镜面的潜在材料:抛光金刚石涂层碳化硅”。达成。选择56,4113(2017)。CrossRef G. Coppola, P. Ferraro, M. Iodice, S. De Nicola,“用横向剪切波长扫描干涉仪测量透明板折射率和厚度的方法”,applied。选择42,3882(2003)。CrossRef H. Mäckel, R. l demann,“高质量硅表面钝化的氢化SiNx层组成的详细研究”,J. applied, Phys. 92, 2602(2002)。CrossRef N. Atman, M. Krzywinski,“基于箱形图的样本可视化”,数学学报,11(2),119(2014)。CrossRef M. Vignesh, R. Balaji,“基于Box and Whisker Plot的肺癌数据分析”,计算机科学与技术,(2017)。CrossRef
{"title":"Surface quality control of thin SiN layer by optical measurements","authors":"Jakub Gierowski, Sandra Pawłowska","doi":"10.4302/PLP.V13I3.1096","DOIUrl":"https://doi.org/10.4302/PLP.V13I3.1096","url":null,"abstract":"Fiber optic interferometers have a wide range of applications including biological and chemical measurements. Nevertheless, in case of a reflective interferometer setup, standard silver mirrors cannot be used in every measurement, due to their chemical activity. In this work, we investigate the surface quality of a thin optical layer of silicon nitride (SiN) which can serve as an alternative material for silver mirrors. We present measurements carried out with a Fabry-Perot fiber optic interferometer working in a reflective mode. Measurement results allow us to determine the surface quality of the investigated layer. Full Text: PDF ReferencesK. Karpienko, M.S. Wróbel, M. Jedrzejewska-Szczerska, \"Determination of refractive index dispersion using fiber-optic low-coherence Fabry-Perot interferometer: implementation and validation\", Opt Express, 53, 077103 (2014). CrossRef Jedrzejewska-Szczerska M., Gnyba M., Kosmowski B. B. \"Low-coherence fibre-optic interferometric sensors\", Acta Phys. Pol. A 120, 621 (2011). CrossRef M. Jedrzejewska-Szczerska \"Response of a new low-coherence Fabry-Perot sensor to hematocrit levels in human blood\",Sensors 14(4), 6965 (2014). CrossRef M. Kosowska, D. Majchrowicz, K.J. Sankaran, M. Ficek, K. Haenen, M. Szczerska, \"Doped Nanocrystalline Diamond Films as Reflective Layers for Fiber-Optic Sensors of Refractive Index of Liquids\", Materials 12, 2124 (2019). CrossRef Shou-YiChang, Yi-Chung Huang, \"Analyses of interface adhesion between porous SiO2 low-k film and SiC/SiN layers by nanoindentation and nanoscratch tests\", Microelectron. Eng. 84(2), 319 (2007). CrossRef X. Wang, C. Wang, X. Shen, F. Sun, \"Potential Material for Fabricating Optical Mirrors: Polished Diamond Coated Silicon Carbide\". Appl. Opt. 56, 4113 (2017). CrossRef G. Coppola, P. Ferraro, M. Iodice, S. De Nicola, \"Method for measuring the refractive index and the thickness of transparent plates with a lateral-shear, wavelength-scanning interferometer\", Appl. Opt. 42, 3882 (2003). CrossRef H. Mäckel, R. Lüdemann, \"Detailed study of the composition of hydrogenated SiNx layers for high-quality silicon surface passivation\", J. Appl, Phys. 92, 2602 (2002). CrossRef N. Atman, M. Krzywinski, \"Visualizing samples with box plots\", Nat. Methods, 11(2), 119 (2014). CrossRef M. Vignesh, R. Balaji, \"Data analysis using Box and Whisker Plot for Lung Cancer\", International Conference on Innovations in Power and Advanced Computing Technologies,(2017). CrossRef","PeriodicalId":20055,"journal":{"name":"Photonics Letters of Poland","volume":" ","pages":""},"PeriodicalIF":0.6,"publicationDate":"2021-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45384771","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A glucose meter has been developed utilizing boric acid-modified carbon dots as a fluorescence probe. Boric acid-modified carbon dots produces varying fluorescence emission with varying glucose concentration in water. Boric acid-modified carbon dots mixed with glucose addition was excited by a violet laser (405 nm), then the emission intensity was detected by a photodetector to be converted to an electrical signal that as an input signal for a microcontroller for glucose concentration measurement. The output voltage of the glucose meter is corresponding to the fluorescence emission measured by using a spectrofluorometer with glucose concentration in the boric acid-modified carbon dots. Full Text: PDF ReferencesH. Teymourian, A. Barfidokht, J. Wang, "Electrochemical glucose sensors in diabetes management: an updated review (2010–2020)", Chem. Soc. Rev. 49, 7671 (2020). CrossRef D.C. Klonoff, "Overview of Fluorescence Glucose Sensing: A Technology with a Bright Future", J Diabetes Sci. Technol. 6(6), 1242 (2012). CrossRef J.C. Pickup, F. Hussain, N.D. Evans, O.J. Rolinski, David J.S. Birch, "Fluorescence-based glucose sensors", Biosens. Bioelectron. 20, 2555 (2005). CrossRef H. Fang, G. Kaur, B. Wang, "Progress in Boronic Acid-Based Fluorescent Glucose Sensors", J. Fluoresc. 14(5), 481 (2004). CrossRef T. Kawanishi, M.A. Romey, P.C. Zhu, M.Z. Holody, S. Shinkai, "A Study of Boronic Acid Based Fluorescent Glucose Sensors", J. Fluoresc. 14(5), 499 (2004). CrossRef A.S. Krishna, P.A. Nair, C. Radhakumary, K. Sreenivasan, "Carbon dot based non enzymatic approach for the detection and estimation of glucose in blood serum", Mater. Res. Express 3(1), 055001 (2016). CrossRef G.P.C. Mello, E.F.C. Simões, D.M.A. Crista, J.M.M. Leitão, L. Pinto da Silva, J.C.G. Esteves da Silva, "Glucose Sensing by Fluorescent Nanomaterials", Crit. Rev. Anal. Chem. 49(6), 542 (2019). CrossRef X. Shan, L. Chai, J. Ma, Z. Qian, J. Chen, H. Feng, "B-doped carbon quantum dots as a sensitive fluorescence probe for hydrogen peroxide and glucose detection", Analyst 139, 2322 (2014). CrossRef J. Dong, S. Li, H. Wang, Q. Meng, L. Fan, H. Xie, C. Cao, W. Zhang, "Simple Boric Acid-Based Fluorescent Focusing for Sensing of Glucose and Glycoprotein via Multipath Moving Supramolecular Boundary Electrophoresis Chip", Anal. Chem. 85(12), 5884 (2013). CrossRef Y. Cui, F. Chen, X-B. Yin, "A ratiometric fluorescence platform based on boric-acid-functional Eu-MOF for sensitive detection of H2O2 and glucose", Biosens. Bioelectron. 135, 208 (2019). CrossRef
利用硼酸修饰的碳点作为荧光探针开发了葡萄糖计。硼酸修饰的碳点随着水中葡萄糖浓度的变化而产生不同的荧光发射。通过紫激光(405nm)激发与添加葡萄糖混合的硼酸改性碳点,然后通过光电检测器检测发射强度,以将其转换为电信号,该电信号作为用于葡萄糖浓度测量的微控制器的输入信号。葡萄糖计的输出电压对应于通过使用具有硼酸改性碳点中的葡萄糖浓度的分光荧光计测量的荧光发射。全文:PDF参考文献H。Teymourian,A.Barfidokht,J.Wang,“糖尿病管理中的电化学葡萄糖传感器:最新综述(2010-2020)”,化学。Soc.修订版49/7671(2020)。CrossRef D.C.Klonoff,“荧光葡萄糖传感综述:一项前景光明的技术”,糖尿病科学杂志。Technol。6(6),1242(2012)。CrossRef J.C.Pickup,F.Hussain,N.D.Evans,O.J.Rolinski,David J.S.Birch,“基于荧光的葡萄糖传感器”,Biosens。生物电子。2022555(2005)。CrossRef H.Fang,G.Kaur,B.Wang,“硼酸基荧光葡萄糖传感器的研究进展”,J.Fluoresc。14(5),481(2004)。CrossRef T.Kawanishi,M.A.Romey,P.C.Zhu,M.Z.Holody,S.Shinkai,“硼酸基荧光葡萄糖传感器的研究”,J.Fluoresc。14(5),499(2004)。CrossRef A.S.Krishna,P.A.Nair,C.Radhakumary,K.Sreenivasan,“检测和估计血清中葡萄糖的基于碳点的非酶法”,Mater。Res.Express 3(1),055001(2016)。CrossRef G.P.C.Mello、E.F.C.Simões、D.M.A.Crista、J.M.M.Leitão、L.Pinto da Silva、J.C.G.Esteves da Silva,“荧光纳米材料的葡萄糖传感”,Crit。修订版分析。化学。49(6),542(2019)。CrossRef Shan,L.Chai,J.Ma,Z.Qian,J.Chen,H.Feng,“掺硼碳量子点作为过氧化氢和葡萄糖检测的灵敏荧光探针”,分析师1392322(2014)。CrossRef董,李,王,孟,范,谢,曹,张,“基于简单硼酸的多路径移动超分子边界电泳芯片检测葡萄糖和糖蛋白的荧光聚焦”,分析。化学。85(12),5884(2013)。交叉参考崔,陈,X-B。Yin,“基于硼酸功能性Eu-MOF的比率荧光平台,用于H2O2和葡萄糖的灵敏检测”,Biosens。生物电子。135208(2019)。CrossRef
{"title":"Development of Glucose Meter Using Boric Acid-Modified Carbon Dots as Fluorescent Probe","authors":"A. Maddu, Sejahtera Ahmad, T. Sumaryada","doi":"10.4302/plp.v13i3.1080","DOIUrl":"https://doi.org/10.4302/plp.v13i3.1080","url":null,"abstract":"A glucose meter has been developed utilizing boric acid-modified carbon dots as a fluorescence probe. Boric acid-modified carbon dots produces varying fluorescence emission with varying glucose concentration in water. Boric acid-modified carbon dots mixed with glucose addition was excited by a violet laser (405 nm), then the emission intensity was detected by a photodetector to be converted to an electrical signal that as an input signal for a microcontroller for glucose concentration measurement. The output voltage of the glucose meter is corresponding to the fluorescence emission measured by using a spectrofluorometer with glucose concentration in the boric acid-modified carbon dots. Full Text: PDF ReferencesH. Teymourian, A. Barfidokht, J. Wang, \"Electrochemical glucose sensors in diabetes management: an updated review (2010–2020)\", Chem. Soc. Rev. 49, 7671 (2020). CrossRef D.C. Klonoff, \"Overview of Fluorescence Glucose Sensing: A Technology with a Bright Future\", J Diabetes Sci. Technol. 6(6), 1242 (2012). CrossRef J.C. Pickup, F. Hussain, N.D. Evans, O.J. Rolinski, David J.S. Birch, \"Fluorescence-based glucose sensors\", Biosens. Bioelectron. 20, 2555 (2005). CrossRef H. Fang, G. Kaur, B. Wang, \"Progress in Boronic Acid-Based Fluorescent Glucose Sensors\", J. Fluoresc. 14(5), 481 (2004). CrossRef T. Kawanishi, M.A. Romey, P.C. Zhu, M.Z. Holody, S. Shinkai, \"A Study of Boronic Acid Based Fluorescent Glucose Sensors\", J. Fluoresc. 14(5), 499 (2004). CrossRef A.S. Krishna, P.A. Nair, C. Radhakumary, K. Sreenivasan, \"Carbon dot based non enzymatic approach for the detection and estimation of glucose in blood serum\", Mater. Res. Express 3(1), 055001 (2016). CrossRef G.P.C. Mello, E.F.C. Simões, D.M.A. Crista, J.M.M. Leitão, L. Pinto da Silva, J.C.G. Esteves da Silva, \"Glucose Sensing by Fluorescent Nanomaterials\", Crit. Rev. Anal. Chem. 49(6), 542 (2019). CrossRef X. Shan, L. Chai, J. Ma, Z. Qian, J. Chen, H. Feng, \"B-doped carbon quantum dots as a sensitive fluorescence probe for hydrogen peroxide and glucose detection\", Analyst 139, 2322 (2014). CrossRef J. Dong, S. Li, H. Wang, Q. Meng, L. Fan, H. Xie, C. Cao, W. Zhang, \"Simple Boric Acid-Based Fluorescent Focusing for Sensing of Glucose and Glycoprotein via Multipath Moving Supramolecular Boundary Electrophoresis Chip\", Anal. Chem. 85(12), 5884 (2013). CrossRef Y. Cui, F. Chen, X-B. Yin, \"A ratiometric fluorescence platform based on boric-acid-functional Eu-MOF for sensitive detection of H2O2 and glucose\", Biosens. Bioelectron. 135, 208 (2019). CrossRef","PeriodicalId":20055,"journal":{"name":"Photonics Letters of Poland","volume":" ","pages":""},"PeriodicalIF":0.6,"publicationDate":"2021-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48140347","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Nisha, P. Maheswari, S. Subanya, P. M. Anbarasan, K. B. Rajesh, Z. Jaroszewicz
We present a surface plasmon resonance (SPR) structure based on Kretschmann configuration incorporating bimetallic layers of noble (Ag) and magnetic materials (Ni) over CaF2 prism. Extensive numerical analysis based on transfer matrix theory has been performed to characterize the sensor response considering sensitivity, full width at half maxima, and minimum reflection. Notably, the proposed structure, upon suitably optimizing the thickness of bimetallic layer provides consistent enhancement of sensitivity over other competitive SPR structures. Hence we believe that this proposed SPR sensor could find the new platform for the medical diagnosis, chemical examination and biological detection. Full Text: PDF ReferencesJ. Homola, S.S. Yee, G. Gauglitz, "Surface plasmon resonance sensor based on planar light pipe: theoretical optimization analysis", Sens. Actuators B Chem. 54, 3 (1999). CrossRef X.D. Hoa, A.G. Kirk, M. Tabrizian, "Towards integrated and sensitive surface plasmon resonance biosensors: A review of recent progress", Bioelectron, 23, 151 (2007). CrossRef Z. Lin, L. Jiang, L. Wu, J. Guo, X. Dai, Y. Xiang, D. Fan, "Tuning and Sensitivity Enhancement of Surface Plasmon Resonance Biosensor With Graphene Covered Au-MoS 2-Au Films", IEEE Photonics J. 8(6), 4803308 (2016). CrossRef T. Srivastava, R. Jha, R. Das, "High-Performance Bimetallic SPR Sensor Based on Periodic-Multilayer-Waveguides", IEEE Photonics Technol. Lett. 23(20), 1448 (2011). CrossRef P.K. Maharana, R. Jha, "Chalcogenide prism and graphene multilayer based surface plasmon resonance affinity biosensor for high performance", Sens. Actuators B Chem. 169, 161 (2012). CrossRef R. Verma, B.D. Gupta, R. Jha, "Sensitivity enhancement of a surface plasmon resonance based biomolecules sensor using graphene and silicon layers", Sens. Actuators B Chem. 160, 623 (2011). CrossRef I. Pockrand, "Surface plasma oscillations at silver surfaces with thin transparent and absorbing coatings", Surf. Sci. 72, 577 (1978). CrossRef R. Jha, A. Sharma, "High-performance sensor based on surface plasmon resonance with chalcogenide prism and aluminum for detection in infrared", Opt. Lett. 34(6), 749 (2009). CrossRef E.V. Alieva, V.N. Konopsky, "Biosensor based on surface plasmon interferometry independent on variations of liquid’s refraction index", Sens. Actuators B Chem. 99, 90 (2004). CrossRef S.A. Zynio, A. Samoylov, E. Surovtseva, V. Mirsky, Y. Shirshov, "Bimetallic Layers Increase Sensitivity of Affinity Sensors Based on Surface Plasmon Resonance", Sensors 2, 62 (2002). CrossRef S.Y. Wu, H.P. Ho, "Sensitivity improvement of the surface plasmon resonance optical sensor by using a gold-silver transducing layer", Proceedings IEEE Hong Kong Electron Devices Meeting 63 (2002). CrossRef B.H. Ong, X. Yuan, S. Tjin, J. Zhang, H. Ng, "Optimised film thickness for maximum evanescent field enhancement of a bimetallic film surface plasmon resonance biosensor", Sens. Actuators B Chem. 114, 1028 (2006). CrossRef B.H
我们提出了一种基于Kretschmann构型的表面等离子体共振(SPR)结构,该结构在CaF2棱镜上结合了贵金属(Ag)和磁性材料(Ni)的双金属层。基于传递矩阵理论进行了广泛的数值分析,以表征传感器响应,考虑灵敏度,半最大值全宽度和最小反射。值得注意的是,在适当优化双金属层厚度后,所提出的结构比其他竞争性的SPR结构具有一致的灵敏度增强。因此,我们认为该传感器可以为医学诊断、化学检查和生物检测提供新的平台。全文:PDF参考文献李志强,“基于平面光管的表面等离子体共振传感器的理论优化分析”,光学精密工程学报,1999,11(3)。[CrossRef]郝晓东,陈晓明,“表面等离子体共振生物传感器的研究进展”,电子工程学报,23,51(2007)。引用本文:林志强,姜丽,吴丽,郭军,戴晓霞,向勇,范东,“石墨烯覆盖Au-MoS - au薄膜表面等离子体共振生物传感器的调谐和灵敏度增强”,光子学报,8(6),4803308(2016)。CrossRef T. Srivastava, R. Jha, R. Das,“基于周期性多层波导的高性能双金属SPR传感器”,IEEE Photonics technology。左23(20),1448(2011)。陈晓明,“基于石墨烯的表面等离子体共振生物传感器的研究进展”,中国机械工程,2012,32(4)。CrossRef R. Verma, B.D. Gupta, R. Jha,“基于石墨烯和硅层的表面等离子体共振生物分子传感器的灵敏度增强”,光子学报,2004,16(2011)。CrossRef . Pockrand,“银表面的等离子体振荡”,science and technology。科学72,577(1978)。王晓明,王晓明,“基于表面等离子体共振的红外光谱传感器”,光学学报,34(6),749(2009)。CrossRef E.V. Alieva, V.N. Konopsky,“基于表面等离子体干涉测量的液体折射率变化生物传感器”,光学学报,1999,90(2004)。CrossRef s.a Zynio, A. Samoylov, E. Surovtseva, V. Mirsky, Y. Shirshov,“基于表面等离子体共振的双金属层增强亲和传感器的灵敏度”,传感器2,62(2002)。吴世义,何厚平,“利用金-银换能层提高表面等离子体共振光学传感器的灵敏度”,电子器件学报,63(2002)。[CrossRef]王宝辉,袁晓明,张建军,吴宏辉,“双金属薄膜表面等离子体共振生物传感器的优化膜厚度研究”,光子学报,2004,28(2006)。[CrossRef]王宝辉,袁晓明,谭勇,Irawan R.,方新,张丽玲,金淑娟,“片上波导中两层金属薄膜诱导表面等离子体激元的荧光发射增强”,中国机械工程,2007,506。引用本文:袁新祥,王斌,谭勇,张德东,Irawan, ts .,“双金属层表面等离子体共振传感的灵敏度-稳定性优化”,J.光学,A:纯物理学报。选择8,959,(2006)。CrossRef M. Ghorbanpour,“一种用于表面等离子体共振分析的玻璃基板上高粘附金层的新方法:用银层取代中间层和最佳退火处理”,纳米结构,33,309,(2013)。陈艳,郑荣生,张东刚,卢永华,王鹏,明辉,罗志峰,阚强,“表面等离子体共振仪器的双金属芯片”,应用科学,光学学报,50,387(2011)。陈新涛,潘宝涛,尹文杰,周洪辉,“基于介质金属的表面等离子体共振材料的研究”,电子学报。材料,46,3654(2017)。CrossRef D. Nesterenko Z. Sekkat,“Au, Ag, Cu, Al表面等离子体传感器在紫外,可见光和红外区域的分辨率估计”,等离子体学报8,1585(2013)。M.A. Ordal, R.J. Bell, R.W. Alexander, L.L. Long, M.R. Querry,“14种金属的红外和远红外光学性质:Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V和W.”,applied。选择24,4493(1985)。CrossRef H. Ehrenreich, H. r . Philipp, D.J. Olechna,“镍的光学性质和费米表面”,物理学报。Rev. 31,2469(1963)。CrossRef S. Shukla, N.K. Sharma, V. Sajal,“基于钴和镍薄膜的表面等离子体共振光纤传感器的理论研究”,中国光学学报。物理学报,46,288(2016)。王晓东,王晓东,王晓东,等。激光激光技术与应用研究进展,2009,40(2018)。[10] G. AlaguVibisha, Jeeban Kumar Nayak, P. Maheswari, N. Priyadharsini, A。 张晓明,张晓明,“基于双金属层的表面等离子体共振传感器的灵敏度增强研究”,光子学报,36(6),1237(2020)。CrossRef A. Nisha, P. Maheswari, P.M.Anbarasan, K.B. Rajesh, Z. Jaroszewicz,“覆盖贵金属和磁性材料(Ni)的二维材料表面等离子体共振传感器的灵敏度增强”,量子电子学报,51,19(2019)。陈晓明,陈晓明,陈晓明,“基于表面等离子体共振的生物传感器”,中国科学院学报(自然科学版)物质4,49,(2019)。CrossRef S. Herminjard, L. Sirigu, H. P. Herzig, E. Studemann, A. Crottini, J. Pellaux, T. Gresch, M. Fischer, J. Faist,“表面等离子体共振传感器在中红外范围内检测CO2的增强灵敏度”,光子学报,17(2009)。交叉参考王明明,霍勇,蒋树生,张春春,杨春涛。刘晓霞,李超,张伟,马斌,“基于石墨烯- ws2杂化纳米结构和Au-Ag双金属薄膜的高灵敏度和高分辨率表面等离子体共振传感器的理论设计”,金属学报,7,(2017)P. k . Maharana, P. Padhy, R. Jha,“基于石墨烯的超稳定SPR生物传感器的场增强和性能研究”,IEEE Photonics technology。快报25,2156(2013)。CrossRef
{"title":"Ag-Ni bimetallic film on CaF2 prism for high sensitive surface plasmon resonance sensor","authors":"A. Nisha, P. Maheswari, S. Subanya, P. M. Anbarasan, K. B. Rajesh, Z. Jaroszewicz","doi":"10.4302/PLP.V13I3.1114","DOIUrl":"https://doi.org/10.4302/PLP.V13I3.1114","url":null,"abstract":"We present a surface plasmon resonance (SPR) structure based on Kretschmann configuration incorporating bimetallic layers of noble (Ag) and magnetic materials (Ni) over CaF2 prism. Extensive numerical analysis based on transfer matrix theory has been performed to characterize the sensor response considering sensitivity, full width at half maxima, and minimum reflection. Notably, the proposed structure, upon suitably optimizing the thickness of bimetallic layer provides consistent enhancement of sensitivity over other competitive SPR structures. Hence we believe that this proposed SPR sensor could find the new platform for the medical diagnosis, chemical examination and biological detection. Full Text: PDF ReferencesJ. Homola, S.S. Yee, G. Gauglitz, \"Surface plasmon resonance sensor based on planar light pipe: theoretical optimization analysis\", Sens. Actuators B Chem. 54, 3 (1999). CrossRef X.D. Hoa, A.G. Kirk, M. Tabrizian, \"Towards integrated and sensitive surface plasmon resonance biosensors: A review of recent progress\", Bioelectron, 23, 151 (2007). CrossRef Z. Lin, L. Jiang, L. Wu, J. Guo, X. Dai, Y. Xiang, D. Fan, \"Tuning and Sensitivity Enhancement of Surface Plasmon Resonance Biosensor With Graphene Covered Au-MoS 2-Au Films\", IEEE Photonics J. 8(6), 4803308 (2016). CrossRef T. Srivastava, R. Jha, R. Das, \"High-Performance Bimetallic SPR Sensor Based on Periodic-Multilayer-Waveguides\", IEEE Photonics Technol. Lett. 23(20), 1448 (2011). CrossRef P.K. Maharana, R. Jha, \"Chalcogenide prism and graphene multilayer based surface plasmon resonance affinity biosensor for high performance\", Sens. Actuators B Chem. 169, 161 (2012). CrossRef R. Verma, B.D. Gupta, R. Jha, \"Sensitivity enhancement of a surface plasmon resonance based biomolecules sensor using graphene and silicon layers\", Sens. Actuators B Chem. 160, 623 (2011). CrossRef I. Pockrand, \"Surface plasma oscillations at silver surfaces with thin transparent and absorbing coatings\", Surf. Sci. 72, 577 (1978). CrossRef R. Jha, A. Sharma, \"High-performance sensor based on surface plasmon resonance with chalcogenide prism and aluminum for detection in infrared\", Opt. Lett. 34(6), 749 (2009). CrossRef E.V. Alieva, V.N. Konopsky, \"Biosensor based on surface plasmon interferometry independent on variations of liquid’s refraction index\", Sens. Actuators B Chem. 99, 90 (2004). CrossRef S.A. Zynio, A. Samoylov, E. Surovtseva, V. Mirsky, Y. Shirshov, \"Bimetallic Layers Increase Sensitivity of Affinity Sensors Based on Surface Plasmon Resonance\", Sensors 2, 62 (2002). CrossRef S.Y. Wu, H.P. Ho, \"Sensitivity improvement of the surface plasmon resonance optical sensor by using a gold-silver transducing layer\", Proceedings IEEE Hong Kong Electron Devices Meeting 63 (2002). CrossRef B.H. Ong, X. Yuan, S. Tjin, J. Zhang, H. Ng, \"Optimised film thickness for maximum evanescent field enhancement of a bimetallic film surface plasmon resonance biosensor\", Sens. Actuators B Chem. 114, 1028 (2006). CrossRef B.H","PeriodicalId":20055,"journal":{"name":"Photonics Letters of Poland","volume":" ","pages":""},"PeriodicalIF":0.6,"publicationDate":"2021-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45950949","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}