首页 > 最新文献

Plant Physiology最新文献

英文 中文
Virulence effectors encoded in the rice yellow dwarf phytoplasma genome participate in pathogenesis 水稻黄矮病病原菌基因组编码的病毒效应子参与致病过程
IF 7.4 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-11-07 DOI: 10.1093/plphys/kiae601
Shuai Zhang, Peng Gan1, Huiting Xie, Chuan Li, Tianxin Tang, Qiong Hu, Zhihong Zhu, Zhongkai Zhang, Jisen Zhang, Yongsheng Zhu, Qun Hu, Jie Hu, Hongxin Guan, Shanshan Zhao, Jianguo Wu
Bacteria-like phytoplasmas alternate between plant and insect hosts, secreting proteins that disrupt host development. In this study, we sequenced the complete genome of ‘Candidatus Phytoplasma oryzae’ strain HN2022, associated with rice yellow dwarf (RYD) disease, using PacBio HiFi technology. The strain was classified within the 16Sr XI-B subgroup. Through SignalP v5.0 for prediction and subsequent expression analysis of secreted proteins in Nicotiana benthamiana and rice (Oryza sativa L.), we identified the key virulence effector proteins RY348 and RY378. RY348, a homologue of Secreted Aster Yellows Phytoplasma Effector 54 (SAP54), targets and degrades the MADS-box transcription factors MADS1 and MADS15, causing pollen sterility. Meanwhile, RY378 impacts the strigolactone and auxin signaling pathways, substantially increasing tillering. These findings offer insights into the interactions between plants and phytoplasmas.
类细菌植原体在植物和昆虫宿主之间交替繁殖,分泌的蛋白质会破坏宿主的发育。在本研究中,我们利用 PacBio HiFi 技术对与水稻黄矮病(RYD)相关的 "Candidatus Phytoplasma oryzae "菌株 HN2022 进行了全基因组测序。该菌株被归入 16Sr XI-B 亚群。通过 SignalP v5.0 对烟草和水稻(Oryza sativa L.)分泌蛋白的预测和后续表达分析,我们确定了关键的毒力效应蛋白 RY348 和 RY378。RY348 是分泌型翠菊黄化病病原体效应蛋白 54(SAP54)的同源物,能靶向降解 MADS-box 转录因子 MADS1 和 MADS15,导致花粉不育。同时,RY378 会影响绞股蓝内酯和辅助素信号通路,大幅增加分蘖。这些发现为植物与植物病原体之间的相互作用提供了启示。
{"title":"Virulence effectors encoded in the rice yellow dwarf phytoplasma genome participate in pathogenesis","authors":"Shuai Zhang, Peng Gan1, Huiting Xie, Chuan Li, Tianxin Tang, Qiong Hu, Zhihong Zhu, Zhongkai Zhang, Jisen Zhang, Yongsheng Zhu, Qun Hu, Jie Hu, Hongxin Guan, Shanshan Zhao, Jianguo Wu","doi":"10.1093/plphys/kiae601","DOIUrl":"https://doi.org/10.1093/plphys/kiae601","url":null,"abstract":"Bacteria-like phytoplasmas alternate between plant and insect hosts, secreting proteins that disrupt host development. In this study, we sequenced the complete genome of ‘Candidatus Phytoplasma oryzae’ strain HN2022, associated with rice yellow dwarf (RYD) disease, using PacBio HiFi technology. The strain was classified within the 16Sr XI-B subgroup. Through SignalP v5.0 for prediction and subsequent expression analysis of secreted proteins in Nicotiana benthamiana and rice (Oryza sativa L.), we identified the key virulence effector proteins RY348 and RY378. RY348, a homologue of Secreted Aster Yellows Phytoplasma Effector 54 (SAP54), targets and degrades the MADS-box transcription factors MADS1 and MADS15, causing pollen sterility. Meanwhile, RY378 impacts the strigolactone and auxin signaling pathways, substantially increasing tillering. These findings offer insights into the interactions between plants and phytoplasmas.","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":"150 1","pages":""},"PeriodicalIF":7.4,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142597487","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The potato sugar transporter SWEET1g affects apoplasmic sugar ratio and phloem-mobile tuber- and flower-inducing signals 马铃薯糖转运体 SWEET1g 影响细胞质糖比率以及块茎和花的韧皮部移动诱导信号
IF 7.4 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-11-07 DOI: 10.1093/plphys/kiae602
Angelique Lauschke, Leonie Maibaum, Mira Engel, Luise Eisengräber, Sina Beyer, Aleksandra Hackel, Christina Kühn
The main phloem loader in potato, sucrose transporter StSUT1, is co-expressed with two members of the SWEET gene family: StSWEET11b, a clade III member of SWEET carriers assumed to be involved in sucrose efflux, and StSWEET1g, a clade I member involved in glucose efflux into the apoplast that physically interacts with StSUT1. We investigated the functionality of SWEET carriers via uptake experiments with fluorescent glucose or sucrose analogs. Inhibition or overexpression of StSWEET1g/SlSWEET1e affected tuberization and flowering in transgenic potato plants. Isolation of the apoplasmic fluid by vacuum infiltration centrifugation revealed changes in the apoplasmic hexose composition and mono-to-disaccharide ratio, affecting sink strength. Down-regulation of StSWEET1g expression affected the expression of SP6A, a tuberigen, and miR172 under LD conditions, leading to early flowering and tuberization. A systematic screen for StSWEET1g-interacting protein partners revealed several proteins affecting cell wall integrity and strengthening. StSWEET1g and the main interaction partners were strongly down-regulated during tuber development. We discuss whether StSWEET1g activity might be linked to cell wall remodeling during tuber development and the switch from apoplasmic to symplasmic phloem unloading.
马铃薯的主要韧皮部装载器蔗糖转运体 StSUT1 与 SWEET 基因家族的两个成员共同表达:StSWEET11b是SWEET载体的III族成员,假定参与蔗糖外流;StSWEET1g是I族成员,参与葡萄糖外流到凋亡体,与StSUT1有物理相互作用。我们通过荧光葡萄糖或蔗糖类似物的吸收实验研究了 SWEET 载体的功能。抑制或过表达 StSWEET1g/SlSWEET1e 会影响转基因马铃薯植株的块茎化和开花。通过真空渗透离心分离细胞质液发现,细胞质中的己糖组成和单糖与双糖的比例发生了变化,从而影响了沉降强度。下调 StSWEET1g 的表达会影响块茎原 SP6A 和 miR172 在 LD 条件下的表达,从而导致提早开花和块茎化。通过系统筛选与 StSWEET1g 相互作用的蛋白质伙伴,发现了几种影响细胞壁完整性和强度的蛋白质。在块茎发育过程中,StSWEET1g 和主要的相互作用伙伴被强烈下调。我们讨论了 StSWEET1g 的活性是否可能与块茎发育过程中的细胞壁重塑以及从质体到交质韧皮部卸载的转换有关。
{"title":"The potato sugar transporter SWEET1g affects apoplasmic sugar ratio and phloem-mobile tuber- and flower-inducing signals","authors":"Angelique Lauschke, Leonie Maibaum, Mira Engel, Luise Eisengräber, Sina Beyer, Aleksandra Hackel, Christina Kühn","doi":"10.1093/plphys/kiae602","DOIUrl":"https://doi.org/10.1093/plphys/kiae602","url":null,"abstract":"The main phloem loader in potato, sucrose transporter StSUT1, is co-expressed with two members of the SWEET gene family: StSWEET11b, a clade III member of SWEET carriers assumed to be involved in sucrose efflux, and StSWEET1g, a clade I member involved in glucose efflux into the apoplast that physically interacts with StSUT1. We investigated the functionality of SWEET carriers via uptake experiments with fluorescent glucose or sucrose analogs. Inhibition or overexpression of StSWEET1g/SlSWEET1e affected tuberization and flowering in transgenic potato plants. Isolation of the apoplasmic fluid by vacuum infiltration centrifugation revealed changes in the apoplasmic hexose composition and mono-to-disaccharide ratio, affecting sink strength. Down-regulation of StSWEET1g expression affected the expression of SP6A, a tuberigen, and miR172 under LD conditions, leading to early flowering and tuberization. A systematic screen for StSWEET1g-interacting protein partners revealed several proteins affecting cell wall integrity and strengthening. StSWEET1g and the main interaction partners were strongly down-regulated during tuber development. We discuss whether StSWEET1g activity might be linked to cell wall remodeling during tuber development and the switch from apoplasmic to symplasmic phloem unloading.","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":"42 1","pages":""},"PeriodicalIF":7.4,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142597488","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transcription factor PagWRKY33 regulates gibberellin signaling and immune receptor pathways in Populus. 转录因子 PagWRKY33 调节杨树赤霉素信号和免疫受体通路。
IF 6.5 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-11-06 DOI: 10.1093/plphys/kiae593
Xiao-Qian Yu, Hao-Qiang Niu, Yue-Mei Zhang, Xiao-Xu Shan, Chao Liu, Hou-Ling Wang, Weilun Yin, Xinli Xia

Enhanced autoimmunity often leads to impaired plant growth and development, and the coordination of immunity and growth in Populus remains elusive. In this study, we have identified the transcription factors PagWRKY33a/b as key regulators of immune response and growth maintenance in Populus. The disruption of PagWRKY33a/b causes growth issues and autoimmunity while conferring resistance to anthracnose caused by Colletotrichum gloeosporioides. PagWRKY33a/b binds to the promoters of N requirement gene 1.1 (NRG1.1) and Gibberellic Acid-Stimulated in Arabidopsis (GASA14)during infection, activating their transcription. This process maintains disease resistance and engages in GA signaling to reduce growth costs from immune activation. The oxPagWRKY33a/nrg1.1 mutant results in reduced resistance to C. gloeosporioides. Further, PagWRKY33a/b is phosphorylated and activated by Mitogen-Activated Protein Kinase Kinase 1 (MKK1), which inhibits Respiratory Burst Oxidase Homolog D (RBOHD) and Respiratory Burst Oxidase Homolog I (RBOHI) transcription, causing ROS bursts in wrky33a/b double mutants. This leads to an upregulation of PagNRG1.1 in the absence of pathogens. However, the wrky33a/b/nrg1.1 and wrky33a/b/rbohd triple mutants show compromised defense responses, underscoring the complexity of WRKY33 regulation. Additionally, the stability of PagWRKY33 is modulated by Ring Finger Protein 5 (PagRNF5)-mediated ubiquitination, balancing plant immunity and growth. Together, our results provide key insights into the complex function of WRKY33 in Populus autoimmunity and its impact on growth and development.

自身免疫力的增强往往会导致植物生长和发育受损,而杨树中免疫力和生长之间的协调关系仍然难以捉摸。在这项研究中,我们发现转录因子 PagWRKY33a/b 是杨树免疫反应和生长维持的关键调节因子。破坏 PagWRKY33a/b 会导致生长问题和自身免疫,同时赋予杨树对由 Colletotrichum gloeosporioides 引起的炭疽病的抗性。在感染过程中,PagWRKY33a/b 与拟南芥的氮需要基因 1.1(NRG1.1)和赤霉素刺激基因(GASA14)的启动子结合,激活它们的转录。这一过程可保持抗病性,并参与 GA 信号转导,以降低免疫激活带来的生长成本。oxPagWRKY33a/nrg1.1突变体对球孢子菌的抗性降低。此外,PagWRKY33a/b 被丝裂原活化蛋白激酶激酶 1(MKK1)磷酸化和激活,从而抑制呼吸猝灭氧化酶同源物 D(RBOHD)和呼吸猝灭氧化酶同源物 I(RBOHI)的转录,导致 wrky33a/b 双突变体中的 ROS 暴发。这导致 PagNRG1.1 在没有病原体的情况下上调。然而,wrky33a/b/nrg1.1 和 wrky33a/b/rbohd 三重突变体的防御反应受到影响,这突出了 WRKY33 调节的复杂性。此外,环指蛋白 5(PagRNF5)介导的泛素化调节了 PagWRKY33 的稳定性,平衡了植物的免疫和生长。总之,我们的研究结果为了解 WRKY33 在杨树自身免疫中的复杂功能及其对生长和发育的影响提供了重要见解。
{"title":"Transcription factor PagWRKY33 regulates gibberellin signaling and immune receptor pathways in Populus.","authors":"Xiao-Qian Yu, Hao-Qiang Niu, Yue-Mei Zhang, Xiao-Xu Shan, Chao Liu, Hou-Ling Wang, Weilun Yin, Xinli Xia","doi":"10.1093/plphys/kiae593","DOIUrl":"10.1093/plphys/kiae593","url":null,"abstract":"<p><p>Enhanced autoimmunity often leads to impaired plant growth and development, and the coordination of immunity and growth in Populus remains elusive. In this study, we have identified the transcription factors PagWRKY33a/b as key regulators of immune response and growth maintenance in Populus. The disruption of PagWRKY33a/b causes growth issues and autoimmunity while conferring resistance to anthracnose caused by Colletotrichum gloeosporioides. PagWRKY33a/b binds to the promoters of N requirement gene 1.1 (NRG1.1) and Gibberellic Acid-Stimulated in Arabidopsis (GASA14)during infection, activating their transcription. This process maintains disease resistance and engages in GA signaling to reduce growth costs from immune activation. The oxPagWRKY33a/nrg1.1 mutant results in reduced resistance to C. gloeosporioides. Further, PagWRKY33a/b is phosphorylated and activated by Mitogen-Activated Protein Kinase Kinase 1 (MKK1), which inhibits Respiratory Burst Oxidase Homolog D (RBOHD) and Respiratory Burst Oxidase Homolog I (RBOHI) transcription, causing ROS bursts in wrky33a/b double mutants. This leads to an upregulation of PagNRG1.1 in the absence of pathogens. However, the wrky33a/b/nrg1.1 and wrky33a/b/rbohd triple mutants show compromised defense responses, underscoring the complexity of WRKY33 regulation. Additionally, the stability of PagWRKY33 is modulated by Ring Finger Protein 5 (PagRNF5)-mediated ubiquitination, balancing plant immunity and growth. Together, our results provide key insights into the complex function of WRKY33 in Populus autoimmunity and its impact on growth and development.</p>","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":" ","pages":""},"PeriodicalIF":6.5,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142584133","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MYB168 and WRKY20 transcription factors synergistically regulate lignin monomer synthesis during potato tuber wound healing. MYB168 和 WRKY20 转录因子协同调控马铃薯块茎伤口愈合过程中木质素单体的合成。
IF 6.5 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-11-05 DOI: 10.1093/plphys/kiae573
Ruirui Yang, Qihui Wang, Ying Wang, Xuejiao Zhang, Xiaoyuan Zheng, Yongcai Li, Dov Prusky, Yang Bi, Ye Han

Lignin is a critical component of the closing layer of the potato (Solanum tuberosum L.) tuber during healing; however, the molecular mechanism of its formation remains poorly understood. To elucidate the molecular mechanism of tuber healing, we screened the genes encoding transcription factors that regulate lignin synthesis(StMYB24/49/105/144/168, StWRKY19/20/22/23/34) and the key genes involved in lignin monomer synthesis (PHENYLALANINE AMMONIA LYASE 5 (StPAL5) and CINNAMYL ALCOHOL DEHYDROGENASE 14 (StCAD14)) for induced expression after wounding using transcriptome data. DLR, Y1H, EMSA, and ChIP-qPCR assays revealed that StMYB168 could bind directly to the StPAL5 and StCAD14 promoters to activate their expression and that StWRKY20 enhanced this regulation with a synergistic effect. Y2H, BiFC, and Co-IP assays showed that StMYB168 interacted with StWRKY20 to form a MYB-WRKY complex. Furthermore, transient overexpression of StMYB168 and StWRKY20 in Nicotiana benthamiana leaves upregulated the expression of NbPAL and NbCAD10 and promoted lignin accumulation in the leaves. In addition, overexpression of StWRKY20 and StMYB168 together resulted in higher expression levels of NbPAL and NbCAD10 and higher levels of lignin monomer and total lignin. In contrast, silencing of StMYB168 and StWRKY20 in potato significantly reduced the lignin content of wounded tubers. In conclusion, StMYB168 and StWRKY20 are important regulators of lignin biosynthesis in potato tubers during healing and can positively regulate lignin biosynthesis by forming a complex. The elucidation of this regulatory module provides information on the regulatory mechanism of lignin monomer synthesis in wounded tubers at the transcriptional level.

木质素是马铃薯(Solanum tuberosum L.)块茎愈合过程中闭合层的重要组成部分;然而,人们对木质素形成的分子机制仍然知之甚少。为了阐明块茎愈伤的分子机制,我们筛选了编码调控木质素合成的转录因子的基因(StMYB24/49/105/144/168、StWRKY19/20/22/23/34)和参与木质素单体合成的关键基因(PHENYLALANINE AMMONIA LYASE 5 (StPAL5)和CINNAMYL ALCOHOL DEHYDROGENASE 14 (StCAD14))的表达。DLR、Y1H、EMSA 和 ChIP-qPCR 分析表明,StMYB168 可直接与 StPAL5 和 StCAD14 启动子结合以激活它们的表达,而 StWRKY20 则以协同效应加强了这种调控。Y2H、BiFC和Co-IP检测表明,StMYB168与StWRKY20相互作用,形成MYB-WRKY复合物。此外,在烟草叶片中瞬时过表达 StMYB168 和 StWRKY20 能上调 NbPAL 和 NbCAD10 的表达,促进叶片中木质素的积累。此外,过表达 StWRKY20 和 StMYB168 会导致更高的 NbPAL 和 NbCAD10 表达水平以及更高的木质素单体和总木质素水平。相反,在马铃薯中沉默 StMYB168 和 StWRKY20 会显著降低受伤块茎的木质素含量。总之,StMYB168 和 StWRKY20 是马铃薯块茎愈伤过程中木质素生物合成的重要调控因子,可通过形成复合物对木质素生物合成进行正向调控。该调控模块的阐明为从转录水平研究受伤块茎木质素单体合成的调控机制提供了信息。
{"title":"MYB168 and WRKY20 transcription factors synergistically regulate lignin monomer synthesis during potato tuber wound healing.","authors":"Ruirui Yang, Qihui Wang, Ying Wang, Xuejiao Zhang, Xiaoyuan Zheng, Yongcai Li, Dov Prusky, Yang Bi, Ye Han","doi":"10.1093/plphys/kiae573","DOIUrl":"https://doi.org/10.1093/plphys/kiae573","url":null,"abstract":"<p><p>Lignin is a critical component of the closing layer of the potato (Solanum tuberosum L.) tuber during healing; however, the molecular mechanism of its formation remains poorly understood. To elucidate the molecular mechanism of tuber healing, we screened the genes encoding transcription factors that regulate lignin synthesis(StMYB24/49/105/144/168, StWRKY19/20/22/23/34) and the key genes involved in lignin monomer synthesis (PHENYLALANINE AMMONIA LYASE 5 (StPAL5) and CINNAMYL ALCOHOL DEHYDROGENASE 14 (StCAD14)) for induced expression after wounding using transcriptome data. DLR, Y1H, EMSA, and ChIP-qPCR assays revealed that StMYB168 could bind directly to the StPAL5 and StCAD14 promoters to activate their expression and that StWRKY20 enhanced this regulation with a synergistic effect. Y2H, BiFC, and Co-IP assays showed that StMYB168 interacted with StWRKY20 to form a MYB-WRKY complex. Furthermore, transient overexpression of StMYB168 and StWRKY20 in Nicotiana benthamiana leaves upregulated the expression of NbPAL and NbCAD10 and promoted lignin accumulation in the leaves. In addition, overexpression of StWRKY20 and StMYB168 together resulted in higher expression levels of NbPAL and NbCAD10 and higher levels of lignin monomer and total lignin. In contrast, silencing of StMYB168 and StWRKY20 in potato significantly reduced the lignin content of wounded tubers. In conclusion, StMYB168 and StWRKY20 are important regulators of lignin biosynthesis in potato tubers during healing and can positively regulate lignin biosynthesis by forming a complex. The elucidation of this regulatory module provides information on the regulatory mechanism of lignin monomer synthesis in wounded tubers at the transcriptional level.</p>","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":" ","pages":""},"PeriodicalIF":6.5,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142584076","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metabolic Flux Analysis to Increase Oil in Seeds. 通过代谢通量分析提高种子含油量
IF 6.5 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-11-05 DOI: 10.1093/plphys/kiae595
Thiya Mukherjee, Shrikaar Kambhampati, Stewart A Morley, Timothy P Durrett, Doug K Allen

Ensuring an adequate food supply and enough energy to sustainably support future global populations will require enhanced productivity from plants. Oilseeds can help address these needs; but the fatty acid composition of seed oils is not always optimal, and higher yields are required to meet growing demands. Quantitative approaches including metabolic flux analysis can provide insights on unexpected metabolism (i.e., when metabolism is different than in a textbook) and can be used to guide engineering efforts; however, as metabolism is context-specific, it changes with tissue type, local environment, and development. This review describes recent insights from metabolic flux analysis in oilseeds and indicates engineering opportunities based on emerging topics and developing technologies that will aid quantitative understanding of metabolism and enable efforts to produce more oil. We also suggest that investigating the key regulators of fatty acid biosynthesis, such as transcription factors, and exploring metabolic signals like phytohormones in greater depth through flux analysis, could open new pathways for advancing genetic engineering and breeding strategies to enhance oil crop production.

要确保充足的粮食供应和足够的能源,以可持续的方式支持未来的全球人口,就必须提高植物的生产力。油籽有助于满足这些需求;但籽油的脂肪酸组成并不总是最佳的,需要更高的产量才能满足日益增长的需求。包括代谢通量分析在内的定量方法可为意外代谢(即新陈代谢与教科书中的不同)提供见解,并可用于指导工程工作;然而,由于新陈代谢具有特定的背景,它会随着组织类型、当地环境和发育而变化。本综述介绍了从油菜籽代谢通量分析中获得的最新见解,并指出了基于新兴课题和发展中技术的工程机会,这将有助于对代谢的定量理解,并有助于生产更多的油。我们还建议,研究脂肪酸生物合成的关键调控因子(如转录因子),以及通过通量分析更深入地探索代谢信号(如植物激素),可以为推进基因工程和育种策略开辟新的途径,从而提高油料作物的产量。
{"title":"Metabolic Flux Analysis to Increase Oil in Seeds.","authors":"Thiya Mukherjee, Shrikaar Kambhampati, Stewart A Morley, Timothy P Durrett, Doug K Allen","doi":"10.1093/plphys/kiae595","DOIUrl":"https://doi.org/10.1093/plphys/kiae595","url":null,"abstract":"<p><p>Ensuring an adequate food supply and enough energy to sustainably support future global populations will require enhanced productivity from plants. Oilseeds can help address these needs; but the fatty acid composition of seed oils is not always optimal, and higher yields are required to meet growing demands. Quantitative approaches including metabolic flux analysis can provide insights on unexpected metabolism (i.e., when metabolism is different than in a textbook) and can be used to guide engineering efforts; however, as metabolism is context-specific, it changes with tissue type, local environment, and development. This review describes recent insights from metabolic flux analysis in oilseeds and indicates engineering opportunities based on emerging topics and developing technologies that will aid quantitative understanding of metabolism and enable efforts to produce more oil. We also suggest that investigating the key regulators of fatty acid biosynthesis, such as transcription factors, and exploring metabolic signals like phytohormones in greater depth through flux analysis, could open new pathways for advancing genetic engineering and breeding strategies to enhance oil crop production.</p>","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":" ","pages":""},"PeriodicalIF":6.5,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142584071","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Osmotic stress in roots drives lipoxygenase-dependent plastid remodeling through singlet oxygen production. 根中的渗透胁迫通过产生单线态氧驱动脂氧合酶依赖性质体重塑
IF 6.5 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-11-05 DOI: 10.1093/plphys/kiae589
Dekel Cohen-Hoch, Tomer Chen, Lior Sharabi, Nili Dezorella, Maxim Itkin, Gil Feiguelman, Sergey Malitsky, Robert Fluhr

Osmotic stress, caused by the lack of water or by high salinity, is a common problem in plant roots. Osmotic stress can be reproducibly simulated with the application of solutions of the high-molecular-weight and impermeable polyethylene glycol. The accumulation of different reactive oxygen species, such as singlet oxygen, superoxide, and hydrogen peroxide, accompany this stress. Among them, singlet oxygen, produced as a byproduct of lipoxygenase activity, has been associated with limiting root growth. To better understand the source and effect of singlet oxygen, we followed its production at the cellular level in Arabidopsis (Arabidopsis thaliana). Osmotic stress initiated profound changes in plastid and vacuole structure. Confocal and electron microscopy showed that the plastids were a source of singlet oxygen accompanied by the appearance of multiple, small extraplastidic bodies that were also an intense source of singlet oxygen. A marker protein, CRUMPLED LEAF, indicated that these small bodies originated from the plastid outer membrane. Remarkably, LINOLEATE 9S-LIPOXYGENASE 5, (LOX5), was shown to change its distribution from uniformly cytoplasmic to a more clumped distribution together with plastids and the small bodies. In addition, oxylipin products of type 9 lipoxygenase increased, while products of type 13 lipoxygenases decreased. Inhibition of lipoxygenase by the SHAM inhibitor or in down-regulated lipoxygenase lines prevented cells from initiating the cellular responses, leading to cell death. In contrast, singlet oxygen scavenging halted terminal cell death. These findings underscore the reversible nature of osmotic stress-induced changes, emphasizing the pivotal roles of lipoxygenases and singlet oxygen in root stress physiology.

缺水或高盐度造成的渗透胁迫是植物根部的常见问题。使用高分子量、不渗透的聚乙二醇溶液可以再现模拟渗透胁迫。伴随着这种胁迫,单线态氧、超氧化物和过氧化氢等不同的活性氧也在积累。其中,单线态氧是脂氧合酶活性的副产品,与限制根系生长有关。为了更好地了解单线态氧的来源和影响,我们跟踪了拟南芥(Arabidopsis thaliana)细胞水平上单线态氧的产生。渗透胁迫引发了质体和液泡结构的深刻变化。共聚焦显微镜和电子显微镜显示,质体是单线态氧的来源,同时还出现了多个小型质体外体,它们也是单线态氧的强烈来源。一种标记蛋白 CRUMPLED LEAF 表明,这些小体来自质体外膜。值得注意的是,LINOLEATE 9S-LIPOXYGENASE 5(LOX5)的分布也发生了变化,从均匀分布在细胞质中变为与质体和小体一起呈团块状分布。此外,9 型脂氧合酶的氧化脂产物增加,而 13 型脂氧合酶的产物减少。用 SHAM 抑制剂或下调的脂氧合酶株抑制脂氧合酶,可阻止细胞启动细胞反应,导致细胞死亡。与此相反,清除单线态氧能阻止细胞的终末死亡。这些发现突出了渗透胁迫诱导变化的可逆性,强调了脂氧合酶和单线态氧在根胁迫生理过程中的关键作用。
{"title":"Osmotic stress in roots drives lipoxygenase-dependent plastid remodeling through singlet oxygen production.","authors":"Dekel Cohen-Hoch, Tomer Chen, Lior Sharabi, Nili Dezorella, Maxim Itkin, Gil Feiguelman, Sergey Malitsky, Robert Fluhr","doi":"10.1093/plphys/kiae589","DOIUrl":"https://doi.org/10.1093/plphys/kiae589","url":null,"abstract":"<p><p>Osmotic stress, caused by the lack of water or by high salinity, is a common problem in plant roots. Osmotic stress can be reproducibly simulated with the application of solutions of the high-molecular-weight and impermeable polyethylene glycol. The accumulation of different reactive oxygen species, such as singlet oxygen, superoxide, and hydrogen peroxide, accompany this stress. Among them, singlet oxygen, produced as a byproduct of lipoxygenase activity, has been associated with limiting root growth. To better understand the source and effect of singlet oxygen, we followed its production at the cellular level in Arabidopsis (Arabidopsis thaliana). Osmotic stress initiated profound changes in plastid and vacuole structure. Confocal and electron microscopy showed that the plastids were a source of singlet oxygen accompanied by the appearance of multiple, small extraplastidic bodies that were also an intense source of singlet oxygen. A marker protein, CRUMPLED LEAF, indicated that these small bodies originated from the plastid outer membrane. Remarkably, LINOLEATE 9S-LIPOXYGENASE 5, (LOX5), was shown to change its distribution from uniformly cytoplasmic to a more clumped distribution together with plastids and the small bodies. In addition, oxylipin products of type 9 lipoxygenase increased, while products of type 13 lipoxygenases decreased. Inhibition of lipoxygenase by the SHAM inhibitor or in down-regulated lipoxygenase lines prevented cells from initiating the cellular responses, leading to cell death. In contrast, singlet oxygen scavenging halted terminal cell death. These findings underscore the reversible nature of osmotic stress-induced changes, emphasizing the pivotal roles of lipoxygenases and singlet oxygen in root stress physiology.</p>","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":" ","pages":""},"PeriodicalIF":6.5,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142584131","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mutation of GLR2 confers enhanced glufosinate resistance and salt tolerance in rice. GLR2 基因突变增强了水稻的草铵膦抗性和耐盐性。
IF 6.5 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-11-05 DOI: 10.1093/plphys/kiae588
Weimin Cheng, Yan Ren, Jiayi Wang, Chunpeng Chen, Cheng Fang, Lingling Peng, Dongyang Zhang, Liangzhi Tao, Yue Zhan, Kun Wu, Yuejin Wu, Binmei Liu, Xiangdong Fu, Yafeng Ye
{"title":"Mutation of GLR2 confers enhanced glufosinate resistance and salt tolerance in rice.","authors":"Weimin Cheng, Yan Ren, Jiayi Wang, Chunpeng Chen, Cheng Fang, Lingling Peng, Dongyang Zhang, Liangzhi Tao, Yue Zhan, Kun Wu, Yuejin Wu, Binmei Liu, Xiangdong Fu, Yafeng Ye","doi":"10.1093/plphys/kiae588","DOIUrl":"https://doi.org/10.1093/plphys/kiae588","url":null,"abstract":"","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":" ","pages":""},"PeriodicalIF":6.5,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142584074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Epigenetic control of T-DNA during transgenesis and pathogenesis. 转基因和致病过程中 T-DNA 的表观遗传控制。
IF 6.5 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-11-05 DOI: 10.1093/plphys/kiae583
Joaquin Felipe Roca Paixao, Angélique Déléris

Mobile elements known as T-DNAs are transferred from pathogenic Agrobacterium to plants and reprogram the host cell to form hairy roots or tumors. Disarmed non-oncogenic T-DNAs are extensively used to deliver transgenes in plant genetic engineering. Such T-DNAs were the first known targets of RNA silencing mechanisms, which detect foreign RNA in plant cells and produce small RNAs that induce transcript degradation. These T-DNAs can also be transcriptionally silenced by the deposition of epigenetic marks such as DNA methylation and the dimethylation of lysine 9 (H3K9me2) in plants. Here, we review the targeting and the roles of RNA silencing and DNA methylation on T-DNAs in transgenic plants as well as during pathogenesis. In addition, we discuss the crosstalk between T-DNAs and genome-wide changes in DNA methylation during pathogenesis. We also cover recently discovered regulatory phenomena, such as T-DNA suppression and RNA silencing-independent and epigenetic-independent mechanisms that can silence T-DNAs. Finally, we discuss the implications of findings on T-DNA silencing for the improvement of plant genetic engineering.

被称为 T-DNA 的移动元件从病原农杆菌转移到植物中,并对宿主细胞进行重编程,形成毛细根或肿瘤。在植物基因工程中,解除武装的非致癌 T-DNA 被广泛用于传递转基因。这种 T-DNA 是 RNA 沉默机制的第一个已知目标,它能检测植物细胞中的外来 RNA,并产生诱导转录本降解的小 RNA。在植物体内,这些 T-DNA 也可以通过 DNA 甲基化和赖氨酸 9 的二甲基化(H3K9me2)等表观遗传标记的沉积而转录沉默。在此,我们回顾了转基因植物中以及致病过程中 RNA 沉默和 DNA 甲基化对 T-DNA 的靶向和作用。此外,我们还讨论了致病过程中 T-DNA 与 DNA 甲基化全基因组变化之间的相互影响。我们还讨论了最近发现的调控现象,如 T-DNA 抑制和 RNA 沉默无关机制以及表观遗传无关机制,这些机制可使 T-DNA 沉默。最后,我们讨论了 T-DNA 沉默的发现对改进植物基因工程的意义。
{"title":"Epigenetic control of T-DNA during transgenesis and pathogenesis.","authors":"Joaquin Felipe Roca Paixao, Angélique Déléris","doi":"10.1093/plphys/kiae583","DOIUrl":"https://doi.org/10.1093/plphys/kiae583","url":null,"abstract":"<p><p>Mobile elements known as T-DNAs are transferred from pathogenic Agrobacterium to plants and reprogram the host cell to form hairy roots or tumors. Disarmed non-oncogenic T-DNAs are extensively used to deliver transgenes in plant genetic engineering. Such T-DNAs were the first known targets of RNA silencing mechanisms, which detect foreign RNA in plant cells and produce small RNAs that induce transcript degradation. These T-DNAs can also be transcriptionally silenced by the deposition of epigenetic marks such as DNA methylation and the dimethylation of lysine 9 (H3K9me2) in plants. Here, we review the targeting and the roles of RNA silencing and DNA methylation on T-DNAs in transgenic plants as well as during pathogenesis. In addition, we discuss the crosstalk between T-DNAs and genome-wide changes in DNA methylation during pathogenesis. We also cover recently discovered regulatory phenomena, such as T-DNA suppression and RNA silencing-independent and epigenetic-independent mechanisms that can silence T-DNAs. Finally, we discuss the implications of findings on T-DNA silencing for the improvement of plant genetic engineering.</p>","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":" ","pages":""},"PeriodicalIF":6.5,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142584067","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
AlGrow: a graphical interface for easy, fast and accurate area and growth analysis of heterogeneously colored targets. AlGrow:图形界面,可对异色目标进行简便、快速、准确的面积和生长分析。
IF 6.5 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-11-05 DOI: 10.1093/plphys/kiae577
Marcus McHale, Ronan Sulpice
{"title":"AlGrow: a graphical interface for easy, fast and accurate area and growth analysis of heterogeneously colored targets.","authors":"Marcus McHale, Ronan Sulpice","doi":"10.1093/plphys/kiae577","DOIUrl":"https://doi.org/10.1093/plphys/kiae577","url":null,"abstract":"","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":" ","pages":""},"PeriodicalIF":6.5,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142584060","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Epigenetic factors direct synergistic and antagonistic regulation of transposable elements in Arabidopsis. 表观遗传因子对拟南芥中转座元素的协同和拮抗调控起指导作用。
IF 6.5 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-11-04 DOI: 10.1093/plphys/kiae392
Jo-Wei Allison Hsieh, Ming-Ren Yen, Fu-Yu Hung, Keqiang Wu, Pao-Yang Chen

Arabidopsis (Arabidopsis thaliana) HISTONE DEACETYLASE 6 (HDA6) and HISTONE DEMETHYLASES LSD-LIKE 1 (LDL1) and LDL2 synergistically regulate the expression of long non-coding RNAs associated with H3Ac and H3K4me2. The underlying mechanisms of such highly coordinated interactions among genetic and epigenetic factors contributing to this collaborative regulation remain largely unclear. We analyzed all transposable elements (TEs) across the Arabidopsis genome and the individual and combined roles of HDA6 and LDL1/LDL2 by dissecting multilayered epigenomes and their association with transcription. Instead of an individual synergistic effect, we observed dual synergistic and antagonistic effects, which are positively associated with H3Ac and H3K4me2 while maintaining a negative but moderate association with DNA methylation. Specifically, 2 modes of synergistic regulation were discovered in TEs: 74% are primarily regulated by HDA6, with less dependence on LDL1/LDL2, and the remaining 26% are co-regulated by both. Between the 2 modes, we showed that HDA6 has a strong effect on TE silencing, whereas LDL1/LDL2 plays a weaker yet crucial role in co-regulation with HDA6. Our results led to a model of epigenomic regulation-the differential de-repression between the 2 modes of synergistic regulation of TEs was determined by H3Ac and H3K4me2 levels, where TEs are in accessible chromatins free of DNA methylation, and this open chromatin environment precedes transcriptional changes and epigenome patterning. Our results discovered unbalanced effects of genetic factors in synergistic regulation through delicately coordinated multilayered epigenomes and chromatin accessibility.

拟南芥(Arabidopsis thaliana)HISTONE DEACETYLASE 6(HDA6)和 HISTONE DEMETHYLASES LSD-LIKE 1(LDL1)和 LDL2 协同调控与 H3Ac 和 H3K4me2 相关的长非编码 RNA 的表达。遗传和表观遗传因子之间高度协调的相互作用促成了这种协同调控,但其潜在机制在很大程度上仍不清楚。我们通过剖析多层表观基因组及其与转录的关联,分析了拟南芥基因组中的所有转座元件(TE)以及 HDA6 和 LDL1/LDL2 的单独作用和联合作用。我们没有观察到单独的协同效应,而是观察到了协同和拮抗的双重效应,它们与 H3Ac 和 H3K4me2 呈正相关,同时与 DNA 甲基化保持负相关,但关系适中。具体来说,我们在 TEs 中发现了两种协同调控模式:74% 的 TEs 主要受 HDA6 调控,对 LDL1/LDL2 的依赖性较小;其余 26% 的 TEs 则受两者共同调控。在这两种模式之间,我们发现HDA6对TE的沉默有很强的作用,而LDL1/LDL2在与HDA6共同调控中的作用较弱,但却至关重要。我们的研究结果提出了一个表观基因组调控模型--两种协同调控模式对TE的不同去抑制作用由H3Ac和H3K4me2水平决定,TE处于无DNA甲基化的可访问染色质中,这种开放的染色质环境先于转录变化和表观基因组模式化。我们的研究结果发现了遗传因子在通过微妙协调的多层表观遗传组和染色质可及性进行协同调控方面的不平衡效应。
{"title":"Epigenetic factors direct synergistic and antagonistic regulation of transposable elements in Arabidopsis.","authors":"Jo-Wei Allison Hsieh, Ming-Ren Yen, Fu-Yu Hung, Keqiang Wu, Pao-Yang Chen","doi":"10.1093/plphys/kiae392","DOIUrl":"10.1093/plphys/kiae392","url":null,"abstract":"<p><p>Arabidopsis (Arabidopsis thaliana) HISTONE DEACETYLASE 6 (HDA6) and HISTONE DEMETHYLASES LSD-LIKE 1 (LDL1) and LDL2 synergistically regulate the expression of long non-coding RNAs associated with H3Ac and H3K4me2. The underlying mechanisms of such highly coordinated interactions among genetic and epigenetic factors contributing to this collaborative regulation remain largely unclear. We analyzed all transposable elements (TEs) across the Arabidopsis genome and the individual and combined roles of HDA6 and LDL1/LDL2 by dissecting multilayered epigenomes and their association with transcription. Instead of an individual synergistic effect, we observed dual synergistic and antagonistic effects, which are positively associated with H3Ac and H3K4me2 while maintaining a negative but moderate association with DNA methylation. Specifically, 2 modes of synergistic regulation were discovered in TEs: 74% are primarily regulated by HDA6, with less dependence on LDL1/LDL2, and the remaining 26% are co-regulated by both. Between the 2 modes, we showed that HDA6 has a strong effect on TE silencing, whereas LDL1/LDL2 plays a weaker yet crucial role in co-regulation with HDA6. Our results led to a model of epigenomic regulation-the differential de-repression between the 2 modes of synergistic regulation of TEs was determined by H3Ac and H3K4me2 levels, where TEs are in accessible chromatins free of DNA methylation, and this open chromatin environment precedes transcriptional changes and epigenome patterning. Our results discovered unbalanced effects of genetic factors in synergistic regulation through delicately coordinated multilayered epigenomes and chromatin accessibility.</p>","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":" ","pages":"1939-1952"},"PeriodicalIF":6.5,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11531835/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141748789","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Plant Physiology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1