首页 > 最新文献

Plant Physiology最新文献

英文 中文
SHORT INTERNODE1 regulates the activity of MADS transcription factors during rice floral organ development
IF 7.4 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2025-02-18 DOI: 10.1093/plphys/kiaf034
Erchao Duan, Xuan Teng, Huan Xu, Wenyu Ma, Desheng Zhang, Rushuang Zhang, Chuanwei Gu, Yipeng Zhang, Rongbo Chen, Xiaoli Chen, Miao Feng, Qibing Lin, Hui Dong, Yuanyan Zhang, Xue Yang, Lei Zhou, Shijia Liu, Xi Liu, Yunlu Tian, Ling Jiang, Haiyang Wang, Yihua Wang, Jianmin Wan
Floral organ identity is fundamental to species diversity and reproductive success in plants and is mainly determined by the combinatorial action of MADS homeotic factors. However, despite their conserved roles in specifying floral organ identity, the regulation of MADS transcription factors remains elusive. Here, we show that the rice (Oryza sativa L.) short internode1 (shi1) mutant displays pleiotropic defects in floral organ development, resulting in severe penalties to yield and grain quality. OsSHI1 mRNA accumulates in each floral organ whorl, and OsSHI1 interacts with multiple MADS transcription factors, especially the class E members. This physical interaction occurs through the intrinsic MADS domains, thus regulating the transcriptional activity of the MADS transcription factors. This study provides insight into the molecular and genetic regulatory mechanisms underlying the roles of OsSHI1 and MADS transcription factors in rice floral organ development and, consequently, grain yield and quality.
{"title":"SHORT INTERNODE1 regulates the activity of MADS transcription factors during rice floral organ development","authors":"Erchao Duan, Xuan Teng, Huan Xu, Wenyu Ma, Desheng Zhang, Rushuang Zhang, Chuanwei Gu, Yipeng Zhang, Rongbo Chen, Xiaoli Chen, Miao Feng, Qibing Lin, Hui Dong, Yuanyan Zhang, Xue Yang, Lei Zhou, Shijia Liu, Xi Liu, Yunlu Tian, Ling Jiang, Haiyang Wang, Yihua Wang, Jianmin Wan","doi":"10.1093/plphys/kiaf034","DOIUrl":"https://doi.org/10.1093/plphys/kiaf034","url":null,"abstract":"Floral organ identity is fundamental to species diversity and reproductive success in plants and is mainly determined by the combinatorial action of MADS homeotic factors. However, despite their conserved roles in specifying floral organ identity, the regulation of MADS transcription factors remains elusive. Here, we show that the rice (Oryza sativa L.) short internode1 (shi1) mutant displays pleiotropic defects in floral organ development, resulting in severe penalties to yield and grain quality. OsSHI1 mRNA accumulates in each floral organ whorl, and OsSHI1 interacts with multiple MADS transcription factors, especially the class E members. This physical interaction occurs through the intrinsic MADS domains, thus regulating the transcriptional activity of the MADS transcription factors. This study provides insight into the molecular and genetic regulatory mechanisms underlying the roles of OsSHI1 and MADS transcription factors in rice floral organ development and, consequently, grain yield and quality.","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":"5 1","pages":""},"PeriodicalIF":7.4,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143443316","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Plant PI-PLC signaling in stress and development
IF 7.4 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2025-02-10 DOI: 10.1093/plphys/kiae534
Ana M Laxalt, Max van Hooren, Teun Munnik
Phosphoinositide-specific phospholipase C (PI-PLC) signaling is involved in various plant stress and developmental responses. Though several aspects of this lipid signaling pathway are conserved within animals and plants, clear differences have also emerged. While animal PLC signaling is characterized by the hydrolysis of PIP2 and production of IP3 and DAG as second messengers to activate Ca2+ and PKC signaling, plant PI-PLCs seem to predominantly use PIP as substrate and convert IP2 and DAG into inositolpolyphosphates and phosphatidic acid (PA) as plant second messengers. Sequencing of multiple plant genomes confirmed that plant PLC signaling evolved differently from animals, lacking homologs of the IP3 gated-Ca2+ channel, PKC and TRP channels, and with PLC enzymes resembling the PLCζ subfamily, which lacks the conserved PH domain that binds PIP2. With emerging tools in plant molecular biology, data analyses, and advanced imaging, plant PLC signaling is ready to gain momentum.
{"title":"Plant PI-PLC signaling in stress and development","authors":"Ana M Laxalt, Max van Hooren, Teun Munnik","doi":"10.1093/plphys/kiae534","DOIUrl":"https://doi.org/10.1093/plphys/kiae534","url":null,"abstract":"Phosphoinositide-specific phospholipase C (PI-PLC) signaling is involved in various plant stress and developmental responses. Though several aspects of this lipid signaling pathway are conserved within animals and plants, clear differences have also emerged. While animal PLC signaling is characterized by the hydrolysis of PIP2 and production of IP3 and DAG as second messengers to activate Ca2+ and PKC signaling, plant PI-PLCs seem to predominantly use PIP as substrate and convert IP2 and DAG into inositolpolyphosphates and phosphatidic acid (PA) as plant second messengers. Sequencing of multiple plant genomes confirmed that plant PLC signaling evolved differently from animals, lacking homologs of the IP3 gated-Ca2+ channel, PKC and TRP channels, and with PLC enzymes resembling the PLCζ subfamily, which lacks the conserved PH domain that binds PIP2. With emerging tools in plant molecular biology, data analyses, and advanced imaging, plant PLC signaling is ready to gain momentum.","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":"9 1","pages":""},"PeriodicalIF":7.4,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143385364","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Atomic force microscopy imaging of plant cell walls
IF 7.4 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2025-02-10 DOI: 10.1093/plphys/kiae655
Junbao Pu, Jie Ma, Hang Zhai, Shanshan Wu, Youmei Wang, Christine V Putnis, Lijun Wang, Wenjun Zhang
Plant cell walls are highly dynamic, complex structures composed of multiple biopolymers that form a scaffold surrounding the plant cell. A nanoscale understanding of their architecture, mechanical properties, and formation/degradation dynamics is crucial for revealing structure–function relationships, mechanisms of shape formation, and cell development. Although imaging techniques have been extensively used in recent decades to reveal the structural organization and chemical compositions of cell walls, observing the detailed native architecture and identifying the physicochemical properties of plant cell walls remains challenging. Atomic force microscopy (AFM) is a powerful tool for simultaneously characterizing the morphology, nanomechanical properties, single-molecule interactions, and surface potentials of living biological systems. However, studies employing AFM to investigate plant cell walls have been relatively scarce. In this review, we discuss the latest advancements in AFM for in situ imaging of the multidimensional structure of the cell wall, measuring the mechanical properties of plant tissues or single cells, specific single-molecule recognition of cell wall-related enzymes-polysaccharides, and detecting the Kelvin potential of plant cell walls. We emphasize the fundamental challenges of AFM in characterizing plant cell walls and review potential applications for state-of-the-art AFM-based infrared/Raman spectroscopy toward answering open questions in plant biology.
{"title":"Atomic force microscopy imaging of plant cell walls","authors":"Junbao Pu, Jie Ma, Hang Zhai, Shanshan Wu, Youmei Wang, Christine V Putnis, Lijun Wang, Wenjun Zhang","doi":"10.1093/plphys/kiae655","DOIUrl":"https://doi.org/10.1093/plphys/kiae655","url":null,"abstract":"Plant cell walls are highly dynamic, complex structures composed of multiple biopolymers that form a scaffold surrounding the plant cell. A nanoscale understanding of their architecture, mechanical properties, and formation/degradation dynamics is crucial for revealing structure–function relationships, mechanisms of shape formation, and cell development. Although imaging techniques have been extensively used in recent decades to reveal the structural organization and chemical compositions of cell walls, observing the detailed native architecture and identifying the physicochemical properties of plant cell walls remains challenging. Atomic force microscopy (AFM) is a powerful tool for simultaneously characterizing the morphology, nanomechanical properties, single-molecule interactions, and surface potentials of living biological systems. However, studies employing AFM to investigate plant cell walls have been relatively scarce. In this review, we discuss the latest advancements in AFM for in situ imaging of the multidimensional structure of the cell wall, measuring the mechanical properties of plant tissues or single cells, specific single-molecule recognition of cell wall-related enzymes-polysaccharides, and detecting the Kelvin potential of plant cell walls. We emphasize the fundamental challenges of AFM in characterizing plant cell walls and review potential applications for state-of-the-art AFM-based infrared/Raman spectroscopy toward answering open questions in plant biology.","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":"32 1","pages":""},"PeriodicalIF":7.4,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143385358","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Leaf minimum conductance dynamics during and after heat stress: Implications for plant survival under hotter droughts
IF 7.4 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2025-02-10 DOI: 10.1093/plphys/kiaf026
Viviane de Araújo Brito Fernandes, Fernanda Santos Farnese, Brenner Ryan Arantes, Maria Lúcia Fontineles da Silva, Fabiano Guimarães Silva, José M Torres-Ruiz, Martijn Slot, Hervé Cochard, Paulo Eduardo Menezes-Silva
Exposure to temperatures above a critical threshold (temperature of phase transition, Tp) can damage the leaf cuticle, leading to increased leaf minimum conductance (gleaf-res). Despite the implications of increased gleaf-res for species survival under hotter-drought conditions, little is known about the dynamics of gleaf-res variation after heatwave episodes. Here, we examined the gleaf-res variation before, during, and after exposure to high temperatures (HTs) in a group of representative Cerrado tree species. Through multiple experiments, we compared gleaf-res in leaves previously exposed to different temperatures for varying durations with leaves not submitted to HT. Leaves previously exposed to temperatures above Tp and subsequently cooled had higher gleaf-res measured at 25 °C than leaves not exposed to HT, suggesting a “thermal leaky legacy” effect that negatively impacted plant survival under contrasting simulated drought scenarios. This legacy effect was induced by short periods of heat stress and increased proportionally with rising temperatures. Notably, increased gleaf-res was observed even after 24 h of leaf storage, evidencing that thermal-induced damages to the leaf cuticle cannot be fully repaired within a daily cycle. Overall, our study highlights the threats that increased gleaf-res during and after heatwaves may pose to plant performance and survival under drought conditions and emphasizes the importance of considering the dynamic nature of such water leaks to improve the predictions of drought-induced mortality events in a warmer and drier world.
{"title":"Leaf minimum conductance dynamics during and after heat stress: Implications for plant survival under hotter droughts","authors":"Viviane de Araújo Brito Fernandes, Fernanda Santos Farnese, Brenner Ryan Arantes, Maria Lúcia Fontineles da Silva, Fabiano Guimarães Silva, José M Torres-Ruiz, Martijn Slot, Hervé Cochard, Paulo Eduardo Menezes-Silva","doi":"10.1093/plphys/kiaf026","DOIUrl":"https://doi.org/10.1093/plphys/kiaf026","url":null,"abstract":"Exposure to temperatures above a critical threshold (temperature of phase transition, Tp) can damage the leaf cuticle, leading to increased leaf minimum conductance (gleaf-res). Despite the implications of increased gleaf-res for species survival under hotter-drought conditions, little is known about the dynamics of gleaf-res variation after heatwave episodes. Here, we examined the gleaf-res variation before, during, and after exposure to high temperatures (HTs) in a group of representative Cerrado tree species. Through multiple experiments, we compared gleaf-res in leaves previously exposed to different temperatures for varying durations with leaves not submitted to HT. Leaves previously exposed to temperatures above Tp and subsequently cooled had higher gleaf-res measured at 25 °C than leaves not exposed to HT, suggesting a “thermal leaky legacy” effect that negatively impacted plant survival under contrasting simulated drought scenarios. This legacy effect was induced by short periods of heat stress and increased proportionally with rising temperatures. Notably, increased gleaf-res was observed even after 24 h of leaf storage, evidencing that thermal-induced damages to the leaf cuticle cannot be fully repaired within a daily cycle. Overall, our study highlights the threats that increased gleaf-res during and after heatwaves may pose to plant performance and survival under drought conditions and emphasizes the importance of considering the dynamic nature of such water leaks to improve the predictions of drought-induced mortality events in a warmer and drier world.","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":"13 1","pages":""},"PeriodicalIF":7.4,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143385363","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ceramide-1-phosphate enhances defense responses against Sclerotinia sclerotiorum in Brassica napus
IF 7.4 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2025-02-10 DOI: 10.1093/plphys/kiae649
Zhewen Ouyang, Zengdong Tan, Usman Ali, Ying Zhang, Bo Li, Xuan Yao, Bao Yang, Liang Guo
Sclerotinia stem rot caused by Sclerotinia sclerotiorum is one of the most severe diseases affecting the growth and production of Brassica napus. Sphingolipid metabolism plays a crucial role in plant response to pathogens. In this study, we show that ceramide kinase (CERK) is significantly induced during S. sclerotiorum infection to produce higher levels of ceramide-1-phosphate (C1P) in B. napus. The balance between ceramide (Cer) and C1P affects plant resistance to S. sclerotiorum, with CERK mutant lines exhibiting greater susceptibility to S. sclerotiorum and CERK overexpression lines showing enhanced resistance to this pathogen. Moreover, we identified candidate C1P-binding proteins by proteomic analysis and determined that C1P binds to and promotes the activity of a Gly–Asp–Ser–Leu lipase protein involved in B. napus resistance to S. sclerotiorum infection. In conclusion, our results indicate that C1P plays a key role in S. sclerotiorum resistance through metabolic regulation and signal transduction in B. napus.
{"title":"Ceramide-1-phosphate enhances defense responses against Sclerotinia sclerotiorum in Brassica napus","authors":"Zhewen Ouyang, Zengdong Tan, Usman Ali, Ying Zhang, Bo Li, Xuan Yao, Bao Yang, Liang Guo","doi":"10.1093/plphys/kiae649","DOIUrl":"https://doi.org/10.1093/plphys/kiae649","url":null,"abstract":"Sclerotinia stem rot caused by Sclerotinia sclerotiorum is one of the most severe diseases affecting the growth and production of Brassica napus. Sphingolipid metabolism plays a crucial role in plant response to pathogens. In this study, we show that ceramide kinase (CERK) is significantly induced during S. sclerotiorum infection to produce higher levels of ceramide-1-phosphate (C1P) in B. napus. The balance between ceramide (Cer) and C1P affects plant resistance to S. sclerotiorum, with CERK mutant lines exhibiting greater susceptibility to S. sclerotiorum and CERK overexpression lines showing enhanced resistance to this pathogen. Moreover, we identified candidate C1P-binding proteins by proteomic analysis and determined that C1P binds to and promotes the activity of a Gly–Asp–Ser–Leu lipase protein involved in B. napus resistance to S. sclerotiorum infection. In conclusion, our results indicate that C1P plays a key role in S. sclerotiorum resistance through metabolic regulation and signal transduction in B. napus.","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":"17 1","pages":""},"PeriodicalIF":7.4,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143385360","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Getting attached to membranes-How plant signaling networks employ PtdIns(4,5)P2. 附着在膜上--植物信号网络如何利用 PtdIns(4,5)P2。
IF 6.5 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2025-02-07 DOI: 10.1093/plphys/kiae393
Mareike Heilmann, Ingo Heilmann

In eukaryotes, a small subset of membrane lipids, the phosphoinositides (PIs), exert regulatory effects on membrane-associated processes with profound impact on the organism, and PIs are relevant also for the physiology and development of plants. The PI, phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) has emerged as an important regulatory player in plants, and in recent years this lipid has received substantial attention. This Update Review focuses on our current understanding of how PtdIns(4,5)P2 exerts its regulatory functions, how biosynthesis and degradation of this important regulatory lipid are controlled, and how PtdIns(4,5)P2 is linked to upstream and downstream elements within plant signalling networks.

在真核生物中,一小部分膜脂质--磷脂酰肌醇(PIs)--对膜相关过程具有调节作用,对生物体影响深远,磷脂酰肌醇还与植物的生理和发育有关。磷脂酰肌醇 4,5-二磷酸(PtdIns(4,5)P2)已成为植物体内一种重要的调控物质,近年来这种脂质受到了广泛关注。本最新综述重点介绍我们目前对 PtdIns(4,5)P2 如何发挥其调控功能、如何控制这种重要调控脂质的生物合成和降解以及 PtdIns(4,5)P2 如何与植物信号网络中的上游和下游元件相联系的了解。
{"title":"Getting attached to membranes-How plant signaling networks employ PtdIns(4,5)P2.","authors":"Mareike Heilmann, Ingo Heilmann","doi":"10.1093/plphys/kiae393","DOIUrl":"10.1093/plphys/kiae393","url":null,"abstract":"<p><p>In eukaryotes, a small subset of membrane lipids, the phosphoinositides (PIs), exert regulatory effects on membrane-associated processes with profound impact on the organism, and PIs are relevant also for the physiology and development of plants. The PI, phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) has emerged as an important regulatory player in plants, and in recent years this lipid has received substantial attention. This Update Review focuses on our current understanding of how PtdIns(4,5)P2 exerts its regulatory functions, how biosynthesis and degradation of this important regulatory lipid are controlled, and how PtdIns(4,5)P2 is linked to upstream and downstream elements within plant signalling networks.</p>","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":" ","pages":""},"PeriodicalIF":6.5,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141760324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phase separation of MYB73 regulates seed oil biosynthesis in Arabidopsis. MYB73 的相分离调节拟南芥种子油的生物合成。
IF 6.5 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2025-02-07 DOI: 10.1093/plphys/kiae674
Yuzhou Yang, Que Kong, Zhiming Ma, Peng Ken Lim, Sanjay K Singh, Sitakanta Pattanaik, Marek Mutwil, Yansong Miao, Ling Yuan, Wei Ma

MYB family transcription factors (TFs) play crucial roles in plant development, metabolism, and responses to various stresses. However, whether MYB TFs are involved in regulating fatty acid biosynthesis in seeds remains largely elusive. Here, we demonstrated that transgenic Arabidopsis (Arabidopsis thaliana) plants overexpressing MYB73 exhibit altered FATTY ACID ELONGATION1 (FAE1) expression, seed oil content, and seed fatty acid composition. Electrophoretic mobility shift assays showed that FAE1 is a direct target of MYB73, and functional assays revealed that MYB73 represses FAE1 promoter activity. Transcriptomic analysis of the MYB73-overexpressing plants detected significant changes in the expression of genes involved in fatty acid biosynthesis and triacylglycerol assembly. Furthermore, MYB73 expression was responsive to abscisic acid (ABA), and ABA-responsive element binding factor 2 directly bound to the ABA-responsive element in the MYB73 promoter to activate its expression. Additionally, we determined that MYB73 exhibits the hallmarks of an intrinsically disordered protein and forms phase-separated condensates with liquid-like characteristics, which are important in regulating target gene expression. Together, our findings suggest that MYB73 condensate formation likely fine-tunes seed oil biosynthesis.

MYB家族转录因子(TFs)在植物发育、代谢和对各种胁迫的响应中起着至关重要的作用。然而,MYB TFs是否参与调节种子中脂肪酸的生物合成在很大程度上仍然是未知的。在这里,我们证明了过表达MYB73的转基因拟南芥(Arabidopsis thaliana)植物表现出脂肪酸延伸1 (FAE1)表达、种子油含量和种子脂肪酸组成的改变。电泳迁移转移实验(emsa)显示FAE1是MYB73的直接靶点,功能实验显示MYB73抑制FAE1启动子活性。对myb73过表达植株的转录组学分析发现,参与脂肪酸生物合成和甘油三酯组装的基因表达发生了显著变化。此外,MYB73的表达对脱落酸(ABA)具有响应性,ABA响应元件结合因子2 (ABF2)直接与MYB73启动子中的ABA响应元件(ABRE)结合,激活其表达。此外,我们确定MYB73具有内在无序蛋白的特征,并形成具有液体样特征的相分离凝聚物,这在调节靶基因表达中很重要。总之,我们的发现表明MYB73凝析油的形成可能微调了种子油的生物合成。
{"title":"Phase separation of MYB73 regulates seed oil biosynthesis in Arabidopsis.","authors":"Yuzhou Yang, Que Kong, Zhiming Ma, Peng Ken Lim, Sanjay K Singh, Sitakanta Pattanaik, Marek Mutwil, Yansong Miao, Ling Yuan, Wei Ma","doi":"10.1093/plphys/kiae674","DOIUrl":"10.1093/plphys/kiae674","url":null,"abstract":"<p><p>MYB family transcription factors (TFs) play crucial roles in plant development, metabolism, and responses to various stresses. However, whether MYB TFs are involved in regulating fatty acid biosynthesis in seeds remains largely elusive. Here, we demonstrated that transgenic Arabidopsis (Arabidopsis thaliana) plants overexpressing MYB73 exhibit altered FATTY ACID ELONGATION1 (FAE1) expression, seed oil content, and seed fatty acid composition. Electrophoretic mobility shift assays showed that FAE1 is a direct target of MYB73, and functional assays revealed that MYB73 represses FAE1 promoter activity. Transcriptomic analysis of the MYB73-overexpressing plants detected significant changes in the expression of genes involved in fatty acid biosynthesis and triacylglycerol assembly. Furthermore, MYB73 expression was responsive to abscisic acid (ABA), and ABA-responsive element binding factor 2 directly bound to the ABA-responsive element in the MYB73 promoter to activate its expression. Additionally, we determined that MYB73 exhibits the hallmarks of an intrinsically disordered protein and forms phase-separated condensates with liquid-like characteristics, which are important in regulating target gene expression. Together, our findings suggest that MYB73 condensate formation likely fine-tunes seed oil biosynthesis.</p>","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":" ","pages":""},"PeriodicalIF":6.5,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11803632/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142865094","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Arabidopsis accessions and their difference in heat tolerance during meiosis.
IF 6.5 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2025-02-07 DOI: 10.1093/plphys/kiaf055
Joke De Jaeger-Braet
{"title":"Arabidopsis accessions and their difference in heat tolerance during meiosis.","authors":"Joke De Jaeger-Braet","doi":"10.1093/plphys/kiaf055","DOIUrl":"10.1093/plphys/kiaf055","url":null,"abstract":"","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":" ","pages":""},"PeriodicalIF":6.5,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11843923/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143409803","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Is GCR1 the GPR157 of plants?
IF 6.5 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2025-02-07 DOI: 10.1093/plphys/kiaf057
Aditi Gotkhindikar, David Chakravorty, Durba Sengupta, Manali Joshi, Sarah M Assmann
{"title":"Is GCR1 the GPR157 of plants?","authors":"Aditi Gotkhindikar, David Chakravorty, Durba Sengupta, Manali Joshi, Sarah M Assmann","doi":"10.1093/plphys/kiaf057","DOIUrl":"10.1093/plphys/kiaf057","url":null,"abstract":"","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":"197 2","pages":""},"PeriodicalIF":6.5,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11843928/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143468100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Protoplast transient transformation facilitates subcellular localization and functional analysis of walnut proteins. 原生质体瞬时转化有助于核桃蛋白质的亚细胞定位和功能分析。
IF 6.5 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2025-02-07 DOI: 10.1093/plphys/kiae627
Yanli Gao, Tianyu Tang, Wenhan Cao, Muhammad Ali, Qirong Zhou, Dongmei Zhu, Xiaohui Ma, Yi Cai, Qixiang Zhang, Zhengjia Wang, Dong Pei, Jianqin Huang, Jinbo Shen

Walnut (Juglans regia L.), an important contributor to oil production among woody plants, encounters research constraints due to difficulties in the subcellular localization and functional analysis of its proteins. These limitations arise from the protracted fruiting cycle and the absence of a reliable transient gene transformation system and organelle markers. In this study, we established a transient expression system using walnut protoplasts and generated fluorescent-tagged organelle markers, whose localization was validated against Arabidopsis (Arabidopsis thaliana) organelle markers. The versatility of this system was demonstrated through pharmaceutical treatments, confirming its ability to determine the subcellular localization of endogenous proteins. We determined the subcellular localization of walnut oleosin proteins and explored protein-protein interactions through bimolecular fluorescence complementation analysis. We also explored the effects of abscisic acid signaling on oil body morphology and the regulation of walnut WRINKLED1 (JrWRI1) in lipid biosynthesis. Overall, this stable and versatile protoplast-based transient expression system, integrated with walnut organelle markers, enhances the subcellular localization and functional studies of uncharacterized walnut proteins. This advancement accelerates research into walnut gene function and streamlines molecular breeding processes with high-throughput efficiency.

核桃(Juglans regia)是木本植物中重要的产油树种,但由于其蛋白质的亚细胞定位和功能分析困难重重,研究工作受到了限制。这些限制源于其漫长的结果周期以及缺乏可靠的瞬时基因转化系统和细胞器标记。在本研究中,我们利用核桃原生质体建立了一个瞬时表达系统,并生成了荧光标记的细胞器标记,其定位与拟南芥(Arabidopsis thaliana)细胞器标记进行了验证。通过药物处理证明了该系统的多功能性,证实了其确定内源蛋白亚细胞定位的能力。我们确定了核桃油素蛋白的亚细胞定位,并通过双分子荧光互补(BiFC)分析探索了蛋白质与蛋白质之间的相互作用。我们还探索了脱落酸 (ABA) 信号对油体形态的影响以及核桃 WRINKLED1 (JrWRI1) 在脂质生物合成中的调控作用。总之,这种基于原生质体的稳定而多用途的瞬时表达系统与核桃细胞器标记整合在一起,增强了未定性核桃蛋白的亚细胞定位和功能研究。这一进步加速了核桃基因功能的研究,并以高通量效率简化了分子育种过程。
{"title":"Protoplast transient transformation facilitates subcellular localization and functional analysis of walnut proteins.","authors":"Yanli Gao, Tianyu Tang, Wenhan Cao, Muhammad Ali, Qirong Zhou, Dongmei Zhu, Xiaohui Ma, Yi Cai, Qixiang Zhang, Zhengjia Wang, Dong Pei, Jianqin Huang, Jinbo Shen","doi":"10.1093/plphys/kiae627","DOIUrl":"10.1093/plphys/kiae627","url":null,"abstract":"<p><p>Walnut (Juglans regia L.), an important contributor to oil production among woody plants, encounters research constraints due to difficulties in the subcellular localization and functional analysis of its proteins. These limitations arise from the protracted fruiting cycle and the absence of a reliable transient gene transformation system and organelle markers. In this study, we established a transient expression system using walnut protoplasts and generated fluorescent-tagged organelle markers, whose localization was validated against Arabidopsis (Arabidopsis thaliana) organelle markers. The versatility of this system was demonstrated through pharmaceutical treatments, confirming its ability to determine the subcellular localization of endogenous proteins. We determined the subcellular localization of walnut oleosin proteins and explored protein-protein interactions through bimolecular fluorescence complementation analysis. We also explored the effects of abscisic acid signaling on oil body morphology and the regulation of walnut WRINKLED1 (JrWRI1) in lipid biosynthesis. Overall, this stable and versatile protoplast-based transient expression system, integrated with walnut organelle markers, enhances the subcellular localization and functional studies of uncharacterized walnut proteins. This advancement accelerates research into walnut gene function and streamlines molecular breeding processes with high-throughput efficiency.</p>","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":" ","pages":""},"PeriodicalIF":6.5,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142688560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Plant Physiology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1