Existing research has underscored the vital interplay between host organisms and their associated microbiomes, which affects health and function. In both plants and animals, host factors critically shape microbial communities and influence growth, health, and immunity. Post-harvest plants, such as those used in kimchi, a traditional Korean dish, offer a unique avenue for exploring host-microbe dynamics during fermentation. Despite the emphasis on lactic acid bacteria (LAB) in fermentation studies, the roles of host factors remain unclear. This study aimed to investigate the influence of these factors on plant transcriptomes during kimchi fermentation. We individually inoculated nine LAB strains into germ-free kimchi to generate LAB-mono-associated gnotobiotic kimchi and performed RNA-sequencing analysis for the host vegetables during fermentation. The transcriptomes of post-harvest vegetables in kimchi change over time, and microbes affect the transcriptome profiles of vegetables. Differentially expressed gene analyses revealed that microbes affected the temporal expression profiles of several genes in the plant transcriptomes in unique directions depending on the introduced LAB strains. Cluster analysis with other publicly available transcriptomes of post-harvest vegetables and fruits further revealed that the plant transcriptome is more profoundly influenced by the environment harboring the host than by host phylogeny. Our results bridge the gap in understanding the bidirectional relationship between host vegetables and microbes during food fermentation, illuminating the complex interplay between vegetable transcriptomes, fermentative microbes, and the fermentation process in food production. The different transcriptomic responses elicited by specific LAB strains suggest the possibility of microbial manipulation to achieve the desired fermentation outcomes.
Camptotheca acuminata Decne., a significant natural source of the anticancer drug camptothecin (CPT), synthesizes CPT through the monoterpene indole alkaloid (MIA) pathway. In this study, we used single-cell RNA sequencing (scRNA-seq) to generate datasets encompassing over 60,000 cells from C. acuminata shoot apexes and leaves. After cell clustering and annotation, we identified five major cell types in shoot apexes and four in leaves. Analysis of MIA pathway gene expression revealed that most of them exhibited heightened expression in proliferating cells (PCs) and vascular cells (VCs). In contrast to MIA biosynthesis in Catharanthus roseus, CPT biosynthesis in C. acuminata did not exhibit multicellular compartmentalization. Some putative genes encoding enzymes and transcription factors (TFs) related to the biosynthesis of CPT and its derivatives were identified through co-expression analysis. These include 19 cytochrome P450 genes, 8 O-methyltransferase (OMT) genes, and 62 TFs. Additionally, these pathway genes exhibited dynamic expression patterns during VC and EC development. Furthermore, by integrating gene and transposable element (TE) expression data, we constructed novel single-cell transcriptome atlases for C. acuminata. This approach significantly facilitated the identification of rare cell types, including peripheral zone cells (PZs). Some TE families displayed cell type specific, tissue specific, or developmental stage-specific expression patterns, suggesting crucial roles for these TEs in cell differentiation and development. Overall, this study not only provides novel insights into CPT biosynthesis and spatial-temporal TE expression characteristics in C. acuminata, but also serves as a valuable resource for further comprehensive investigations into the development and physiology of this species.
Physiological seed drop is a recognized phenomenon in economic forest, caused by the abscission of developing seeds due to intergroup competition for resources. However, little is known about the resource allocation dynamics in species exhibiting a biennial fruiting cycle, where interactions occur not only among seeds of the same year but also between reproductive structures from consecutive years. In this study, we explored the dynamics of resource allocation in Torreya grandis, a nut crop with a prototypical two-year seed development pattern. We implemented thinning treatments of 0%, 30%, and 60% on female cones and/or immature seeds during the spring, targeting various stages of development both pre- and post-pollination. Our findings reveal a pronounced resource competition in Torreya, evidenced by a natural seed-setting rate of merely 9.4%. Contrary to expectations, seed thinning did not lead to an obvious increase in nut-setting rates, whereas a substantial increase to 20.5% was observed when female cones were thinned by 60% at 20 days before pollination. The cone thinning treatment appears to have influenced seed development through positive cytokinin and negative abscisic acid effects. This indicates that intergroup competition between female cones and nuts is a more significant factor in seed drop than inner nut competition, and there seems to be an interaction between the two groups. We demonstrate that, in Torreya with biennial seed development, it is the competition between female cones and immature seeds that is important. This insight expands our comprehension of the physiological mechanisms governing seed drop in biennial fruiting species and managing the reproductive organ load to optimize nutrient allocation.
Thaumatin-like proteins (TLPs) are conserved proteins involved in the defense and stress responses of plants. Previous studies showed that several TLPs were accumulated in leaf apoplast in Ammopiptanthus mongolicus in winter, indicating that TLPs might be related to the adaptation to winter climate in A. mongolicus. To investigate the roles of TLPs in winter adaptation, we first analyzed the expression pattern of TLP genes in A. mongolicus and then focused on the biological function and regulation pathway of AmTLP25 gene. Several TLP genes, including AmTLP25, were upregulated during winter and in response to both cold and osmotic stress. Overexpression of the AmTLP25 gene led to an increased tolerance of transgenic Arabidopsis to freezing and osmotic stress. Furthermore, the elevated AmWRKY14 transcription factor during winter activated AmTLP25 gene expression by specifically binding to its promoter. It is speculated that the AmWRKY14 - AmTLP25 module contributes to the adaptation to temperate winter climate in A. mongolicus. Our research advances the current understanding of the biological function and regulatory pathway of TLP genes and provides valuable information for understanding the molecular mechanism of temperate evergreen broad-leaved plants adapting to winter climate.
Improving the cultivation mode and technology for traditional Chinese medicine has become important for its sustainable development. Monoculture enhances plant diseases, which decreases yield and quality. Intercropping is an effective measure to counterbalance that negative effect. In this study, we focused on Panax quinquefolium L. (ginseng) and four treatments were set up: the control without intercropping, P. quinquefolius + ryegrass (Lolium perenne L.), P. quinquefolius + red clover (Trifolium pratense L.), and P. quinquefolius + ryegrass + red clover. An LC-MS/MS system was used to detect the changes in the P. quinquefolius secondary metabolites, and high-throughput sequencing technology was used to determine the changes in the P. quinquefolius' rhizosphere soil microorganisms. Ginsenoside content, soil enzyme activities, and arbuscular mycorrhizal infection rate of P. quinquefolius were also measured using HPLC, ELISA kits, and microscopy, respectively. Co-intertia and Pearson's analysis were performed to explore the relationship between the metabolites and the P. quinquefolius microorganisms. Intercropping significantly increased the content of ginsenoside metabolites and recruited a large number of beneficial bacteria to the P. quinquefolius rhizosphere. The P. quinquefolius secondary metabolites were associated with the rhizosphere microbial community. For example, the dominant microorganisms, such as Acidobacteriota and Chloroflexi, played a key role in promoting the synthesis of ginsenoside Rd and (20R) ginsenoside Rg3 by P. quinquefolius. Intercropping led to changes in the P. quinquefolius secondary metabolites by driving and reshaping the rhizosphere microorganisms. These findings revealed the potential application of intercropping for improving the quality of P. quinquefolius.
Soil salinization is a major environmental threat to the entire terrestrial ecosystem. Lichens arose from the symbiosis of fungi and algae or cyanobacteria. They have a high tolerance to various extreme environments, including adaptation to saline-alkali habitats. Thus, lichens are pioneer species on saline-alkali soil. However, the separate resilience of the two symbiotic partners under saline-alkali conditions remains insufficiently understood. In this study, two representative symbiotic algae, Diplosphaera chodatii and Trebouxia jamesii, were studied for their physiological response to the saline-alkali stress by adjusting different concentrations of NaHCO3, together with their respective symbiotic fungi Endocarpon pusillum (terricolous lichen) and Umbilicaria muhlenbergii (saxicolous lichen). The results indicate that cell growth rate and biomass in all four cultures decreased in alkali-alkaline substrate, while cellular activities and ultrastructure were affected to a distinct extent. Compared with the symbiotic fungi, the algae were found to be more active in coordinating oxidative stress and lipid peroxidation damage under the saline-alkali stress. The antioxidant system of the alga was especially shown as a key adaptive trait and it provides an important strategy for species survival and persistence in arid saline-alkali desert. The specific survival ability of the lichen symbiosis relies on the stress resilience advantages of the symbiotic partners in combination. Our study provided new insights into understanding the adaptation of lichen symbiosis to desert saline-alkali soil, and the potential of lichen symbiotic algae in the future desert ecological restoration.
As a commonly used medicinal plant, the flavonoid metabolites of Blumea balsamifera and their association with genes are still elusive. In this study, the total flavonoid content (TFC), flavonoid metabolites and biosynthetic gene expression patterns of B. balsamifera after application of exogenous methyl jasmonate (MeJA) were scrutinized. The different concentrations of exogenous MeJA increased the TFC of B. balsamifera leaves after 48 h of exposure, and there was a positive correlation between TFC and the elicitor concentration. A total of 48 flavonoid metabolites, falling into 10 structural classes, were identified, among which flavones and flavanones were predominant. After screening candidate genes by transcriptome mining, the comprehensive analysis of gene expression level and TFC suggested that FLS and MYB may be key genes that regulate the TFC in B. balsamifera leaves under exogenous MeJA treatment. This study lays a foundation for elucidating flavonoids of B. balsamifera, and navigates the breeding of flavonoid-rich B. balsamifera varieties.
Green stem photosynthesis has been shown to be relatively inefficient but can occasionally contribute significantly to the carbon budget of desert plants. Although the possession of green photosynthetic stems is a common trait, little is known about their photosynthetic characteristics in non-desert species. Dianthus caryophyllus is a semi-woody species with prominent green stems, which show similar photosynthetic anatomy with leaves. In the present study, we used a combination of gas exchange and chlorophyll fluorescence measurements, some of which were taken under varying O2 and CO2 partial pressures, to investigate whether the apparent anatomical similarities between the species' leaves and stems translate into similar photosynthetic physiology and capacity for CO2 assimilation. Both organs displayed high photosynthetic electron transport rates (ETR) and similar values of steady-state non-photochemical quenching (NPQ), albeit leaves could attain them faster. The analysis of OJIP transients showed that the quantum efficiencies and energy fluxes along the photosynthetic electron transport chain are largely similar between leaves and stems. Stems displayed higher total conductance to CO2 diffusion, similar biochemical properties, significantly higher photosynthetic rates and lower water use efficiency than leaves. Leaf ETR was more sensitive to sub-ambient O2 and super-ambient CO2 partial pressures, while leaves also displayed a higher relative rate of Rubisco oxygenation. We conclude that the highly responsive NPQ and the enhanced photorespiration and WUE in leaves represent photoprotective and water-conserving adaptations to the high incident light intensities they experience naturally, at the expense of higher CO2 assimilation rates, which the vertically orientated stems can readily attain.
Root-knot nematodes (Meloidogyne spp.) are plant parasites causing annual economic losses amounting to several billion US dollars worldwide. One of the most aggressive species is M. enterolobii, a growing threat to agriculture due to its broad host range and ability to overcome many known resistance genes. Mungbean, a nutritionally and economically valuable crop, is particularly vulnerable to nematodes and pathogens. However, research focusing on mungbean resistance to M. enterolobii is scarce, and the corresponding defense mechanisms are poorly understood. Here, we screened mungbean accessions and identified an accession strongly resistant to M. enterolobii. Transcriptome analysis revealed 2730 differentially expressed genes (DEGs) in this resistant accession (CPI106939) compared to 1777 in the susceptible accession (Crystal) 7 days after nematode inoculation. The gene ontology (GO) upregulated in CPI106939 with functions related to plant-pathogen interactions, plant hormone signaling, oxidative stress, and plant immunity. Plant defense-related genes (WRKY, PAL, MAPK, POD and PR) were also significantly induced in CPI106939. Metabolome analysis showed that four secondary metabolites related to phenylpropanoid metabolism and lignification were significantly enriched in CPI106939. The induced immune response and secondary metabolites may underpin the enhanced resistance to M. enterolobii, providing insight into the resistance mechanisms in accession CPI106939 as well as candidate genes controlling the interaction between mungbean and its nematode parasite. Our study therefore provides foundations for the breeding of new varieties with intrinsic M. enterolobii resistance.