Pub Date : 2024-08-06DOI: 10.1016/j.plantsci.2024.112213
Yahui Liu , Yue Qu , Shuyao Wang , Chuanjian Cao , Yingying Chen , Xin Hao , Haibo Gao , Yingbai Shen
Soil salinization, especially in arid environments, is a leading cause of land degradation and desertification. Excessive salt in the soil is detrimental to plants. Plants have developed various sophisticated regulatory mechanisms that allow them to withstand adverse environments. Through cross-adaptation, plants improve their resistance to an adverse condition after experiencing a different kind of adversity. Our analysis of Ammopiptanthus nanus, a desert shrub, showed that mechanical wounding activates the biosynthesis of jasmonic acid (JA) and abscisic acid (ABA), enhancing plasma membrane H+-ATPase activity to establish an electrochemical gradient that promotes Na+ extrusion via Na+/H+ antiporters. Mechanical wounding reduces K+ loss under salt stress, improving the K/Na and maintaining root ion balance. Meanwhile, mechanical damage enhances the activity of antioxidant enzymes and the content of osmotic substances, working together with cellular ions to alleviate water loss and growth inhibition under salt stress. This study provides new insights and approaches for enhancing salt tolerance and stress adaptation in plants by elucidating the signaling mechanisms of cross-adaptation.
{"title":"Mechanical wounding improves salt tolerance by maintaining root ion homeostasis in a desert shrub","authors":"Yahui Liu , Yue Qu , Shuyao Wang , Chuanjian Cao , Yingying Chen , Xin Hao , Haibo Gao , Yingbai Shen","doi":"10.1016/j.plantsci.2024.112213","DOIUrl":"10.1016/j.plantsci.2024.112213","url":null,"abstract":"<div><p>Soil salinization, especially in arid environments, is a leading cause of land degradation and desertification. Excessive salt in the soil is detrimental to plants. Plants have developed various sophisticated regulatory mechanisms that allow them to withstand adverse environments. Through cross-adaptation, plants improve their resistance to an adverse condition after experiencing a different kind of adversity. Our analysis of <em>Ammopiptanthus nanus</em>, a desert shrub, showed that mechanical wounding activates the biosynthesis of jasmonic acid (JA) and abscisic acid (ABA), enhancing plasma membrane H<sup>+</sup>-ATPase activity to establish an electrochemical gradient that promotes Na<sup>+</sup> extrusion via Na<sup>+</sup>/H<sup>+</sup> antiporters. Mechanical wounding reduces K<sup>+</sup> loss under salt stress, improving the K/Na and maintaining root ion balance. Meanwhile, mechanical damage enhances the activity of antioxidant enzymes and the content of osmotic substances, working together with cellular ions to alleviate water loss and growth inhibition under salt stress. This study provides new insights and approaches for enhancing salt tolerance and stress adaptation in plants by elucidating the signaling mechanisms of cross-adaptation.</p></div>","PeriodicalId":20273,"journal":{"name":"Plant Science","volume":"348 ","pages":"Article 112213"},"PeriodicalIF":4.2,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141907497","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-03DOI: 10.1016/j.plantsci.2024.112209
Xuefei Chen , Bruno Trevenzoli Favero, Fulai Liu, Henrik Lütken
Transformation of plants using wild strains of agrobacteria is termed natural transformation and is not covered by GMO legislation in e.g. European Union and Japan. In the current study, offspring lines (A11 and B3) of Rhizobium rhizogenes naturally transformed oilseed rape (Brassica napus) were randomly selected to characterize the morphological traits, and analyze the implications of such morphological changes on plant drought resilience. It was found that the introduction of Ri-genes altered the biomass partitioning to above- and under-ground parts of oilseed rape plants. Compared to the wild type (WT), the A11 and B3 lines exhibited 1.2–4.0 folds lower leaf and stem dry weight, leaf area and plant height, but had 1.3–5.8 folds greater root dry weight, root length and root surface area, resulting in a significantly enhanced root: shoot dry mass ratio and root surface area: leaf area ratio. In addition, the introduction of Ri-genes conferred reduced stomatal pore aperture and increased stomatal density in the B3 line, and increased leaf thickness in A11 line, which could benefit plant drought resilience. Finally, the modulations in morphological traits as a consequence of transformation with Ri-genes are discussed concerning resilience in water-limited conditions. These findings reveal the potential of natural transformation with R. rhizogenes for drought-targeted breeding in crops.
{"title":"Enhanced root system architecture in oilseed rape transformed with Rhizobium rhizogenes","authors":"Xuefei Chen , Bruno Trevenzoli Favero, Fulai Liu, Henrik Lütken","doi":"10.1016/j.plantsci.2024.112209","DOIUrl":"10.1016/j.plantsci.2024.112209","url":null,"abstract":"<div><p>Transformation of plants using wild strains of agrobacteria is termed natural transformation and is not covered by GMO legislation in e.g. European Union and Japan. In the current study, offspring lines (A11 and B3) of <em>Rhizobium rhizogenes</em> naturally transformed oilseed rape (<em>Brassica napus</em>) were randomly selected to characterize the morphological traits, and analyze the implications of such morphological changes on plant drought resilience. It was found that the introduction of <em>Ri</em>-genes altered the biomass partitioning to above- and under-ground parts of oilseed rape plants. Compared to the wild type (WT), the A11 and B3 lines exhibited 1.2–4.0 folds lower leaf and stem dry weight, leaf area and plant height, but had 1.3–5.8 folds greater root dry weight, root length and root surface area, resulting in a significantly enhanced root: shoot dry mass ratio and root surface area: leaf area ratio. In addition, the introduction of <em>Ri</em>-genes conferred reduced stomatal pore aperture and increased stomatal density in the B3 line, and increased leaf thickness in A11 line, which could benefit plant drought resilience. Finally, the modulations in morphological traits as a consequence of transformation with <em>Ri</em>-genes are discussed concerning resilience in water-limited conditions. These findings reveal the potential of natural transformation with <em>R. rhizogenes</em> for drought-targeted breeding in crops.</p></div>","PeriodicalId":20273,"journal":{"name":"Plant Science","volume":"348 ","pages":"Article 112209"},"PeriodicalIF":4.2,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141889938","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-02DOI: 10.1016/j.plantsci.2024.112210
Silit Lazare , Polina Golshmid , Adi Krassin , Ella Simhon , Taly Lapidot Cohen , Arnon Dag
Among the commercial cannabis varieties, some are high yielders but characterized by a relatively poor root system. Roots absorb water and minerals from the soil, enabling vegetative development that directly affects yield, as vigorous plants have more resources to support reproduction. Moreover, healthy foliage is a primary key to high assimilation rates, leading to better production of photosynthetic products, including cannabinoids and terpenes, which are the main active components of cannabis. We grafted a high-THC variety, named 'Freud Super-Ego' (FSE) onto three chemotypes of rootstocks: high-THC (T), high-CBD (C), and Balanced (B). All the rootstocks had significantly greater root biomass compared to FSE. All the grafting treatments significantly improved FSE's vegetative indices and yield. The best overall vegetative performance – height, stem circumference, number of mature leaves - was that of plants grafted onto the Balanced and high-CBD rootstocks, resulting in high yields as well. However, the greatest number of inflorescences was counted when FSE was grafted onto a high-THC rootstock. According to leaf mineral content analysis, the highest nitrogen and phosphorus levels were found in leaves of FSE grafted on the balanced rootstock. The cannabinoid content profile analysis revealed that all grafting treatments raised the THC level in FSE's inflorescences by 8–12 % in comparison to the non-grafted control, and the THC rootstock led to the highest THC level. The results indicate the importance of grafting in cannabis as a tool to increase the productivity and quality of the product.
{"title":"Grafting of Cannabis – The effect of the rootstock on vegetative and reproductive indices of the scion","authors":"Silit Lazare , Polina Golshmid , Adi Krassin , Ella Simhon , Taly Lapidot Cohen , Arnon Dag","doi":"10.1016/j.plantsci.2024.112210","DOIUrl":"10.1016/j.plantsci.2024.112210","url":null,"abstract":"<div><p>Among the commercial cannabis varieties, some are high yielders but characterized by a relatively poor root system. Roots absorb water and minerals from the soil, enabling vegetative development that directly affects yield, as vigorous plants have more resources to support reproduction. Moreover, healthy foliage is a primary key to high assimilation rates, leading to better production of photosynthetic products, including cannabinoids and terpenes, which are the main active components of cannabis. We grafted a high-THC variety, named 'Freud Super-Ego' (FSE) onto three chemotypes of rootstocks: high-THC (T), high-CBD (C), and Balanced (B). All the rootstocks had significantly greater root biomass compared to FSE. All the grafting treatments significantly improved FSE's vegetative indices and yield. The best overall vegetative performance – height, stem circumference, number of mature leaves - was that of plants grafted onto the Balanced and high-CBD rootstocks, resulting in high yields as well. However, the greatest number of inflorescences was counted when FSE was grafted onto a high-THC rootstock. According to leaf mineral content analysis, the highest nitrogen and phosphorus levels were found in leaves of FSE grafted on the balanced rootstock. The cannabinoid content profile analysis revealed that all grafting treatments raised the THC level in FSE's inflorescences by 8–12 % in comparison to the non-grafted control, and the THC rootstock led to the highest THC level. The results indicate the importance of grafting in cannabis as a tool to increase the productivity and quality of the product.</p></div>","PeriodicalId":20273,"journal":{"name":"Plant Science","volume":"348 ","pages":"Article 112210"},"PeriodicalIF":4.2,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141889939","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aldehyde Dehydrogenases (ALDH), a group of enzymes, are associated with the detoxification of aldehydes, produced in plants during abiotic stress conditions. Salinity remains a pivotal abiotic challenge that poses a significant threat to cultivation and yield of sugarcane. In this study, an Aldehyde dehydrogenase gene (EaALDH7) from Erianthus arundinaceus was overexpressed in the commercial sugarcane hybrid cultivar Co 86032. The transgenic lines were evaluated at different NaCl concentrations ranging from 0 mM to 200 mM for various morpho-physiological and biochemical parameters. The control plants, subjected to salinity stress condition, exhibited morphological changes in protoxylem, metaxylem, pericycle and pith whereas the transgenic events were on par with plants under regular irrigation. The overexpressing (OE) lines showed less cell membrane injury and improved photosynthetic rate, transpiration rate, and stomatal conductance than the untransformed control plants under stress conditions. Elevated proline content, higher activity of enzymatic antioxidants such as sodium dismutase (SOD), catalase (CAT), glutathione reductase (GR) and ascorbate peroxidase (APX) and low level of malondialdehyde MDA and hydrogen peroxide (H2O2) in the transgenic lines. The analysis of EaALDH7 expression revealed a significant upregulation in the transgenic lines compared to that of the untransformed control during salt stress conditions. The current study highlights the potentials of EaALDH7 gene in producing salinity-tolerant sugarcane cultivars.
{"title":"Overexpression of EaALDH7, an aldehyde dehydrogenase gene from Erianthus arundinaceus enhances salinity tolerance in transgenic sugarcane (Saccharum spp. Hybrid)","authors":"Chinnaswamy Appunu , Sakthivel Surya Krishna , S R Harish Chandar , Ramanathan Valarmathi , Giriyapur Shivalingamurthy Suresha , Venkatarayappa Sreenivasa , Arthanari Malarvizhi , Markandan Manickavasagam , Muthukrishnan Arun , Raja Arun Kumar , Raju Gomathi , Govindakurup Hemaprabha","doi":"10.1016/j.plantsci.2024.112206","DOIUrl":"10.1016/j.plantsci.2024.112206","url":null,"abstract":"<div><p>Aldehyde Dehydrogenases (ALDH), a group of enzymes, are associated with the detoxification of aldehydes, produced in plants during abiotic stress conditions. Salinity remains a pivotal abiotic challenge that poses a significant threat to cultivation and yield of sugarcane. In this study, an <em>Aldehyde dehydrogenase</em> gene (<em>EaALDH7</em>) from <em>Erianthus arundinaceus</em> was overexpressed in the commercial sugarcane hybrid cultivar Co 86032. The transgenic lines were evaluated at different NaCl concentrations ranging from 0 mM to 200 mM for various morpho-physiological and biochemical parameters. The control plants, subjected to salinity stress condition, exhibited morphological changes in protoxylem, metaxylem, pericycle and pith whereas the transgenic events were on par with plants under regular irrigation. The overexpressing (OE) lines showed less cell membrane injury and improved photosynthetic rate, transpiration rate, and stomatal conductance than the untransformed control plants under stress conditions. Elevated proline content, higher activity of enzymatic antioxidants such as sodium dismutase (SOD), catalase (CAT), glutathione reductase (GR) and ascorbate peroxidase (APX) and low level of malondialdehyde MDA and hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) in the transgenic lines. The analysis of <em>EaALDH7</em> expression revealed a significant upregulation in the transgenic lines compared to that of the untransformed control during salt stress conditions. The current study highlights the potentials of <em>EaALDH7</em> gene in producing salinity-tolerant sugarcane cultivars.</p></div>","PeriodicalId":20273,"journal":{"name":"Plant Science","volume":"348 ","pages":"Article 112206"},"PeriodicalIF":4.2,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141889940","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-31DOI: 10.1016/j.plantsci.2024.112208
Lixia Zhu , Xiuxiu Li , Zonghui Yang , Chenyang Hao , Hui Li , Xiaochun Qin
Chloroplast development underpins plant growth, by facilitating not only photosynthesis but also other essential biochemical processes. Nonetheless, the regulatory mechanisms and functional components of chloroplast development remain largely uncharacterized due to their complexity. In our study, we identified a plastid-targeted gene, ATYCO/RP8/CDB1, as a critical factor in early chloroplast development in Arabidopsis thaliana. YCO knock-out mutant (yco) exhibited a seedling-lethal, albino phenotype, resulting from dysfunctional chloroplasts lacking thylakoid membranes. Conversely, YCO knock-down mutants produced a chlorophyll-deficient cotyledon and normal leaves when supplemented with sucrose. Transcription analysis also revealed that YCO deficiency could be partially compensated by sucrose supplementation, and that YCO played different roles in the cotyledons and the true leaves. In YCO knock-down mutants, the transcript levels of plastid-encoded RNA polymerase (PEP)-dependent genes and nuclear-encoded photosynthetic genes, as well as the accumulation of photosynthetic proteins, were significantly reduced in the cotyledons. Moreover, the chlorophyll-deficient phenotype in YCO knock-down line can be effectively suppressed by inhibition of PSI cyclic electron transport activity, implying an interaction between YCO and PSI cyclic electron transport. Taken together, our findings de underscore the vital role of YCO in early chloroplast development and photosynthesis.
{"title":"The yellow-cotyledon gene (ATYCO) is a crucial factor for thylakoid formation and photosynthesis regulation in Arabidopsis","authors":"Lixia Zhu , Xiuxiu Li , Zonghui Yang , Chenyang Hao , Hui Li , Xiaochun Qin","doi":"10.1016/j.plantsci.2024.112208","DOIUrl":"10.1016/j.plantsci.2024.112208","url":null,"abstract":"<div><p>Chloroplast development underpins plant growth, by facilitating not only photosynthesis but also other essential biochemical processes. Nonetheless, the regulatory mechanisms and functional components of chloroplast development remain largely uncharacterized due to their complexity. In our study, we identified a plastid-targeted gene, <em>ATYCO</em>/<em>RP8</em>/<em>CDB1</em>, as a critical factor in early chloroplast development in <em>Arabidopsis thaliana</em>. YCO knock-out mutant (<em>yco</em>) exhibited a seedling-lethal, albino phenotype, resulting from dysfunctional chloroplasts lacking thylakoid membranes. Conversely, YCO knock-down mutants produced a chlorophyll-deficient cotyledon and normal leaves when supplemented with sucrose. Transcription analysis also revealed that YCO deficiency could be partially compensated by sucrose supplementation, and that YCO played different roles in the cotyledons and the true leaves. In YCO knock-down mutants, the transcript levels of plastid-encoded RNA polymerase (PEP)-dependent genes and nuclear-encoded photosynthetic genes, as well as the accumulation of photosynthetic proteins, were significantly reduced in the cotyledons. Moreover, the chlorophyll-deficient phenotype in YCO knock-down line can be effectively suppressed by inhibition of PSI cyclic electron transport activity, implying an interaction between YCO and PSI cyclic electron transport. Taken together, our findings de underscore the vital role of YCO in early chloroplast development and photosynthesis.</p></div>","PeriodicalId":20273,"journal":{"name":"Plant Science","volume":"348 ","pages":"Article 112208"},"PeriodicalIF":4.2,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141875730","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-29DOI: 10.1016/j.plantsci.2024.112207
Yaqiong Qiu , Ruipeng Wang , Enqi Zhang , Yafang Shang , Guodong Feng , Wenjing Wang , Yilong Ma , Wenbo Bai , Wan Zhang , Zhiqiang Xu , Wei Shi , Xiangli Niu
Carotenoids play a pivotal role in plant. Tagetes erecta, commonly called marigold, has increasing nutritional and economic value due to its high level of carotenoids in flower. However, the functional genes in the carotenoid biosynthesis of T. erecta have not been studied. In this work, three T. erecta varieties with flowers of yellow, yellow-orange and orange color, respectively, were examined for carotenoids composition and corresponding expression profiling of biosynthetic genes at four developmental stages. The results indicated that the varieties with higher lutein content, orange-flower ‘Juwang’ and yellow-orange ‘Taishan’, exhibited significant upregulation of genes in the upstream biosynthesis pathway, especially PDS (phytoene desaturase), PSY (phytoene synthase) and ZDS (zeta-carotene desaturase), whereas downstream carotenoid cleavage genes CCD (carotenoid cleavage dioxygenase) were markedly downregulated throughout flower development in the highest lutein containing variety ‘Juwang’. Furthermore, marigold TePDS, TePSYS3 and TeZDS were isolated and transformed into tomato. Overexpression of TePDS or TeZDS resulted in the promotion of fruit ripening and accumulation of carotenoids in the transgenic lines. On the other hand, marigold TePSYS3 showed multiple effects, not only on fruit carotenogenesis but also on pigmentation patterns in vegetative tissues and plant growth. Taken together, the variations in expression profiles of the biosynthetic genes contribute to dynamic change in carotenoid levels and diversity of flower coloration in T. erecta. These functional genes of T. erecta were verified in tomato and provide targets for genetic improvement of fruit carotenoids accumulation.
{"title":"Carotenoid biosynthesis profiling unveils the variance of flower coloration in Tagetes erecta and enhances fruit pigmentation in tomato","authors":"Yaqiong Qiu , Ruipeng Wang , Enqi Zhang , Yafang Shang , Guodong Feng , Wenjing Wang , Yilong Ma , Wenbo Bai , Wan Zhang , Zhiqiang Xu , Wei Shi , Xiangli Niu","doi":"10.1016/j.plantsci.2024.112207","DOIUrl":"10.1016/j.plantsci.2024.112207","url":null,"abstract":"<div><p>Carotenoids play a pivotal role in plant. <em>Tagetes erecta</em>, commonly called marigold, has increasing nutritional and economic value due to its high level of carotenoids in flower. However, the functional genes in the carotenoid biosynthesis of <em>T. erecta</em> have not been studied. In this work, three <em>T. erecta</em> varieties with flowers of yellow, yellow-orange and orange color, respectively, were examined for carotenoids composition and corresponding expression profiling of biosynthetic genes at four developmental stages. The results indicated that the varieties with higher lutein content, orange-flower ‘Juwang’ and yellow-orange ‘Taishan’, exhibited significant upregulation of genes in the upstream biosynthesis pathway, especially <em>PDS</em> (<em>phytoene desaturase</em>), <em>PSY</em> (<em>phytoene synthase</em>) and <em>ZDS</em> (<em>zeta-carotene desaturase</em>), whereas downstream carotenoid cleavage genes <em>CCD</em> (<em>carotenoid cleavage dioxygenase</em>) were markedly downregulated throughout flower development in the highest lutein containing variety ‘Juwang’. Furthermore, marigold <em>TePDS</em>, <em>TePSYS3</em> and <em>TeZDS</em> were isolated and transformed into tomato. Overexpression of <em>TePDS</em> or <em>TeZDS</em> resulted in the promotion of fruit ripening and accumulation of carotenoids in the transgenic lines. On the other hand, marigold <em>TePSYS3</em> showed multiple effects, not only on fruit carotenogenesis but also on pigmentation patterns in vegetative tissues and plant growth. Taken together, the variations in expression profiles of the biosynthetic genes contribute to dynamic change in carotenoid levels and diversity of flower coloration in <em>T. erecta.</em> These functional genes of <em>T. erecta</em> were verified in tomato and provide targets for genetic improvement of fruit carotenoids accumulation.</p></div>","PeriodicalId":20273,"journal":{"name":"Plant Science","volume":"347 ","pages":"Article 112207"},"PeriodicalIF":4.2,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0168945224002346/pdfft?md5=9696138c9879e799f104c358c2c7a02c&pid=1-s2.0-S0168945224002346-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141860681","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-26DOI: 10.1016/j.plantsci.2024.112203
Milena Maria Tomaz de Oliveira , Aye Nyein Ko , Sophie Obersteiner , Omer Falik , Shimon Rachmilevitch
Root–root communication effects on several physiological and metabolic aspects among Solanaceae relatives were studied. We examined cherry (C) and field (F) tomato (Solanum lycopersicum) and bell pepper (B) (Capsicum annuum), comprising three degrees of relatedness (DOR): high (H-DOR; CC, FF and BB), medium (M-DOR; CF) and low (L-DOR; CB and FB). Plants were grown in pairs of similar or different plants on a paper-based and non-destructive root growth system, namely, rhizoslides. Root growth, including the proliferation of fine roots, and respiration increased as the DOR decreased and were highest in paired L-DOR plants, as was shown for root respiration that increased by 63, 110 and 88 % for C, F, and B when grown with B, B and F, respectively. On the other hand, root exudates of L-DOR plants had significantly lower levels of total organic carbon and protein than those of H-DOR plants, indicating different root–root communication between individuals with different DOR. Our findings indicate, for the first time, that carbon allocation to root growth, exudation and respiration depends on the degree of genetic relatedness, and that the degree of relatedness between individual plants plays a key role in the root-root communication within Solanaceae.
我们研究了根-根交流对茄科近缘植物几个生理和代谢方面的影响。我们研究了樱桃番茄(C)和大田番茄(F)以及甜椒(B),包括三种亲缘关系(DOR):高亲缘关系(H-DOR;CC、FF 和 BB)、中亲缘关系(M-DOR;CF)和低亲缘关系(L-DOR;CB 和 FB)。相似或不同植株成对生长在基于纸张的非破坏性根系生长系统(即根瘤)上。根系生长(包括细根的增殖)和呼吸作用随着 DOR 的降低而增加,成对的 L-DOR 植物的根系呼吸作用最高,如 C、F 和 B 与 B、B 和 F 一起生长时,根系呼吸作用分别增加了 63%、110% 和 88%。另一方面,L-DOR 植株根部渗出物中的总有机碳和蛋白质含量明显低于 H-DOR 植株,这表明不同 DOR 的植株之间根与根的交流不同。我们的研究结果首次表明,碳在根系生长、渗出和呼吸中的分配取决于遗传亲缘关系的程度,植株间的亲缘关系程度在茄科植物根际交流中起着关键作用。
{"title":"Family ties: Root-root communication within Solanaceae","authors":"Milena Maria Tomaz de Oliveira , Aye Nyein Ko , Sophie Obersteiner , Omer Falik , Shimon Rachmilevitch","doi":"10.1016/j.plantsci.2024.112203","DOIUrl":"10.1016/j.plantsci.2024.112203","url":null,"abstract":"<div><p>Root–root communication effects on several physiological and metabolic aspects among Solanaceae relatives were studied. We examined cherry (C) and field (F) tomato (<em>Solanum lycopersicum</em>) and bell pepper (B) (<em>Capsicum annuum</em>), comprising three degrees of relatedness (DOR): high (H-DOR; CC, FF and BB), medium (M-DOR; CF) and low (L-DOR; CB and FB). Plants were grown in pairs of similar or different plants on a paper-based and non-destructive root growth system, namely, rhizoslides. Root growth, including the proliferation of fine roots, and respiration increased as the DOR decreased and were highest in paired L-DOR plants, as was shown for root respiration that increased by 63, 110 and 88 % for C, F, and B when grown with B, B and F, respectively. On the other hand, root exudates of L-DOR plants had significantly lower levels of total organic carbon and protein than those of H-DOR plants, indicating different root–root communication between individuals with different DOR. Our findings indicate, for the first time, that carbon allocation to root growth, exudation and respiration depends on the degree of genetic relatedness, and that the degree of relatedness between individual plants plays a key role in the root-root communication within Solanaceae.</p></div>","PeriodicalId":20273,"journal":{"name":"Plant Science","volume":"347 ","pages":"Article 112203"},"PeriodicalIF":4.2,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141788895","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Amino acids are necessary nutrients for the growth of Oryza sativa (rice), which can be mediated by amino acid transporter; however, our understanding of these transporters is still limited. This study found that the expression levels of amino acid permease gene OsAAP12 differed between indica and japonica rice. Altered expression of OsAAP12 negatively regulated tillering and yield in transgenic rice lines. Subcellular localization revealed that OsAAP12 was primarily localized to the plasma membrane. Moreover, it was indicated that OsAAP12 transported polar neutral amino acids asparagine (Asn), threonine (Thr), and serine (Ser) through experiments involving yeast heterologous complementation, fluorescence amino acid uptake, and amino acid content determination. Additionally, exogenous application of amino acids Asn, Thr, and Ser suppressed axillary buds outgrowth in OsAAP12 overexpression lines compared with wild-type ZH11. Conversely, the opposite trend was observed in CRISPR mutant lines. RNA-seq analysis showed that the expression patterns of genes involved in the nitrogen and cytokinin pathways were generally altered in OsAAP12 modified lines. Hormone assays indicated that OsAAP12 mutant lines accumulated cytokinins in the basal part of rice, whereas overexpression lines had the opposite effect. In summary, CRISPR mutant of OsAAP12 boosted rice tillering and grain yield by coordinating the content of amino acids and cytokinins, which has potential application value in high-yield rice breeding.
{"title":"Amino acid permease OsAAP12 negatively regulates rice tillers and grain yield by transporting specific amino acids to affect nitrogen and cytokinin pathways","authors":"Feng Jin , Weiting Huang , Pengfei Xie , Bowen Wu, Quanzhi Zhao, Zhongming Fang","doi":"10.1016/j.plantsci.2024.112202","DOIUrl":"10.1016/j.plantsci.2024.112202","url":null,"abstract":"<div><p>Amino acids are necessary nutrients for the growth of <em>Oryza sativa</em> (rice), which can be mediated by amino acid transporter; however, our understanding of these transporters is still limited. This study found that the expression levels of amino acid permease gene <em>OsAAP12</em> differed between <em>indica</em> and <em>japonica</em> rice. Altered expression of <em>OsAAP12</em> negatively regulated tillering and yield in transgenic rice lines. Subcellular localization revealed that OsAAP12 was primarily localized to the plasma membrane. Moreover, it was indicated that OsAAP12 transported polar neutral amino acids asparagine (Asn), threonine (Thr), and serine (Ser) through experiments involving yeast heterologous complementation, fluorescence amino acid uptake, and amino acid content determination. Additionally, exogenous application of amino acids Asn, Thr, and Ser suppressed axillary buds outgrowth in <em>OsAAP12</em> overexpression lines compared with wild-type ZH11. Conversely, the opposite trend was observed in CRISPR mutant lines. RNA-seq analysis showed that the expression patterns of genes involved in the nitrogen and cytokinin pathways were generally altered in <em>OsAAP12</em> modified lines. Hormone assays indicated that <em>OsAAP12</em> mutant lines accumulated cytokinins in the basal part of rice, whereas overexpression lines had the opposite effect. In summary, CRISPR mutant of <em>OsAAP12</em> boosted rice tillering and grain yield by coordinating the content of amino acids and cytokinins, which has potential application value in high-yield rice breeding.</p></div>","PeriodicalId":20273,"journal":{"name":"Plant Science","volume":"347 ","pages":"Article 112202"},"PeriodicalIF":4.2,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141788894","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Secondary metabolites play an essential role in plant defense. However, the role of glucosinolates and phenols in brassica crop yield in the context of environmentally friendly agricultural practices has not been established. Our study investigated the effects of a Brassica extract, rich in these metabolites, on the physiology and metabolism of broccoli (Brassica oleracea L. var. italica) seedlings and the subsequent development of the plants in adult stages. The results showed an increase in growth in the extract-treated seedlings, which was associated with an alteration of primary and secondary metabolism. In particular, there was an increase in the levels of amino acids, phenolic compounds and hormones, while the levels of glucosinolates decreased. Lipid peroxidation diminished in treated plants, indicating improved membrane integrity. Treated plants subsequently grown in hydroponically showed increased water use efficiency, transpiration, and internal carbon, which contributed to the improved growth of these plants. Overall, our findings underscore the potential of the glucosinolates and phenols ratio as essential to improve crop growth and stress tolerance, as well as revealed the interest of studying the mechanisms involved in the possible uptake and integration of GSLs by broccoli seedlings after external application.
次生代谢物在植物防御中发挥着重要作用。然而,在环境友好型农业实践的背景下,葡萄糖苷酸盐和酚类物质在芸苔属作物产量中的作用尚未确定。我们的研究调查了富含这些代谢物的芸苔素提取物对西兰花(Brassica oleracea L. var. italica)幼苗的生理和新陈代谢以及植株随后的成株发育的影响。结果表明,提取物处理过的幼苗生长速度加快,这与初级和次级代谢的改变有关。特别是,氨基酸、酚类化合物和激素的水平有所提高,而葡萄糖苷酸的水平有所下降。处理过的植物体内脂质过氧化反应减少,表明膜的完整性得到改善。经处理的植物随后在水培条件下生长时,水分利用效率、蒸腾作用和内部碳含量均有所提高,这有助于改善这些植物的生长状况。总之,我们的研究结果强调了葡萄糖苷酸盐和酚类物质在改善作物生长和抗逆性方面的潜力,并揭示了研究西兰花幼苗在外部施用 GSLs 后可能吸收和整合 GSLs 的相关机制的意义。
{"title":"Involvement of glucosinolates and phenolics in the promotion of broccoli seedling growth through the modulation of primary and secondary metabolism","authors":"Lorena Albaladejo-Marico, Micaela Carvajal, Lucia Yepes-Molina","doi":"10.1016/j.plantsci.2024.112205","DOIUrl":"10.1016/j.plantsci.2024.112205","url":null,"abstract":"<div><p>Secondary metabolites play an essential role in plant defense. However, the role of glucosinolates and phenols in brassica crop yield in the context of environmentally friendly agricultural practices has not been established. Our study investigated the effects of a Brassica extract, rich in these metabolites, on the physiology and metabolism of broccoli (<em>Brassica oleracea</em> L. <em>var. italica</em>) seedlings and the subsequent development of the plants in adult stages. The results showed an increase in growth in the extract-treated seedlings, which was associated with an alteration of primary and secondary metabolism. In particular, there was an increase in the levels of amino acids, phenolic compounds and hormones, while the levels of glucosinolates decreased. Lipid peroxidation diminished in treated plants, indicating improved membrane integrity. Treated plants subsequently grown in hydroponically showed increased water use efficiency, transpiration, and internal carbon, which contributed to the improved growth of these plants. Overall, our findings underscore the potential of the glucosinolates and phenols ratio as essential to improve crop growth and stress tolerance, as well as revealed the interest of studying the mechanisms involved in the possible uptake and integration of GSLs by broccoli seedlings after external application.</p></div>","PeriodicalId":20273,"journal":{"name":"Plant Science","volume":"347 ","pages":"Article 112205"},"PeriodicalIF":4.2,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0168945224002322/pdfft?md5=7f3e7e00748806636b553ac65d19144c&pid=1-s2.0-S0168945224002322-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141788896","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-24DOI: 10.1016/j.plantsci.2024.112204
Jiange Wang , Yinglong Song , Guiqing Wang , Liyun Shi , Yuxiao Shen , Weichao Liu , Yufeng Xu , Xueyuan Lou , Wenqing Jia , Minhuan Zhang , Wenqian Shang , Songlin He , Zheng Wang
Adventitious root (AR) formation is a limiting factor in the vegetative propagation of tree peony (Paeonia suffruticosa Andr.). PoARRO-1, which encodes an auxin oxidase involved in AR formation, plays a role in the root development of P. ostii, but its associated molecular regulatory mechanisms are not yet understood. In this study, we examined the role of PoARRO-1 in AR formation in P. ostii. The overexpression of PoARRO-1 in P. ostii test-tube plantlets led to a notable enhancement in both the rooting rate and the average number of ARs in vitro, as well as increased activities of peroxidase (POD), superoxide dismutase (SOD), and indoleacetic acid oxidase (IAAO). PoARRO-1 was involved in the conversion of IAA-Asp and IAA-Glu to OxIAA and promoted IAA oxidation. RNA sequencing analysis revealed that PoARRO-1 overexpression led to upregulation of enzyme activity, auxin metabolism related genes. Further analyses showed that PoARRO-1 interacted with the 1–175 aa position of PoIAA27b to regulate the formation of ARs. We therefore propose that PoARRO-1 interacts with PoIAA27b to promote AR formation, and it may be useful targets for enhancing the in vitro propagation of P. ostii.
不定根(AR)的形成是树牡丹(Paeonia suffruticosa Andr.)无性繁殖的限制因素。PoARRO-1编码一种参与AR形成的辅助素氧化酶,在牡丹根的发育过程中发挥作用,但其相关的分子调控机制尚不清楚。在本研究中,我们考察了 PoARRO-1 在奥斯特黑藻 AR 形成过程中的作用。PoARRO-1在奥斯特小柱试管中的过表达显著提高了生根率和体外AR的平均数量,并增加了过氧化物酶(POD)、超氧化物歧化酶(SOD)和吲哚乙酸氧化酶(IAAO)的活性。PoARRO-1 参与了 IAA-Asp 和 IAA-Glu 向 OxIAA 的转化,并促进了 IAA 氧化。RNA 测序分析表明,PoARRO-1 的过表达导致酶活性和与植物生长素代谢相关基因的上调。进一步分析表明,PoARRO-1 与 PoIAA27b 的 1-175 aa 位点相互作用,调控 ARs 的形成。因此,我们认为PoARRO-1与PoIAA27b相互作用促进了AR的形成,它可能是提高奥斯特黑藻离体繁殖能力的有用靶标。
{"title":"PoARRO-1 regulates adventitious rooting through interaction with PoIAA27b in Paeonia ostii","authors":"Jiange Wang , Yinglong Song , Guiqing Wang , Liyun Shi , Yuxiao Shen , Weichao Liu , Yufeng Xu , Xueyuan Lou , Wenqing Jia , Minhuan Zhang , Wenqian Shang , Songlin He , Zheng Wang","doi":"10.1016/j.plantsci.2024.112204","DOIUrl":"10.1016/j.plantsci.2024.112204","url":null,"abstract":"<div><p>Adventitious root (AR) formation is a limiting factor in the vegetative propagation of tree peony (<em>Paeonia suffruticosa</em> Andr.). <em>PoARRO-1</em>, which encodes an auxin oxidase involved in AR formation, plays a role in the root development of <em>P. ostii</em>, but its associated molecular regulatory mechanisms are not yet understood. In this study, we examined the role of <em>PoARRO-1</em> in AR formation in <em>P. ostii</em>. The overexpression of <em>PoARRO-1</em> in <em>P. ostii</em> test-tube plantlets led to a notable enhancement in both the rooting rate and the average number of ARs <em>in vitro,</em> as well as increased activities of peroxidase (POD), superoxide dismutase (SOD), and indoleacetic acid oxidase (IAAO). <em>PoARRO-1</em> was involved in the conversion of IAA-Asp and IAA-Glu to OxIAA and promoted IAA oxidation. RNA sequencing analysis revealed that <em>PoARRO-1</em> overexpression led to upregulation of enzyme activity, auxin metabolism related genes. Further analyses showed that PoARRO-1 interacted with the 1–175 aa position of PoIAA27b to regulate the formation of ARs. We therefore propose that PoARRO-1 interacts with PoIAA27b to promote AR formation, and it may be useful targets for enhancing the <em>in vitro</em> propagation of <em>P. ostii</em>.</p></div>","PeriodicalId":20273,"journal":{"name":"Plant Science","volume":"347 ","pages":"Article 112204"},"PeriodicalIF":4.2,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141767175","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}