Abstract Wastewater from the production of meat and bone meal, due to the high load of organic matter and suspended solids, is a significant problem in the process of its treatment. In this work, we examined the method of treating this wastewater using coagulation with hydrogen peroxide and the Fenton process. Treatment variants included the use of variable Fe2+/H2O2 ratios of 1:5–1:30, variable doses of 3–18.0 g/L H2O2, and 5–10 mL/L of coagulant PIX 113. The calculated reduction degrees showed that, regardless of the treatment variant used, the greatest reduction was obtained for turbidity (100%), phosphorus (99%), followed by color (97%), chemical oxygen demand (70%), and Kjeldahl nitrogen (48%). The proposed treatment options can be used as a preliminary stage in treating wastewater from the production of meat and bone meal.
{"title":"Treatment of wastewater from the production of meat and bone meal by the Fenton process and coagulation","authors":"A. Makara, Z. Kowalski, P. Radomski, P. Olczak","doi":"10.2478/pjct-2022-0028","DOIUrl":"https://doi.org/10.2478/pjct-2022-0028","url":null,"abstract":"Abstract Wastewater from the production of meat and bone meal, due to the high load of organic matter and suspended solids, is a significant problem in the process of its treatment. In this work, we examined the method of treating this wastewater using coagulation with hydrogen peroxide and the Fenton process. Treatment variants included the use of variable Fe2+/H2O2 ratios of 1:5–1:30, variable doses of 3–18.0 g/L H2O2, and 5–10 mL/L of coagulant PIX 113. The calculated reduction degrees showed that, regardless of the treatment variant used, the greatest reduction was obtained for turbidity (100%), phosphorus (99%), followed by color (97%), chemical oxygen demand (70%), and Kjeldahl nitrogen (48%). The proposed treatment options can be used as a preliminary stage in treating wastewater from the production of meat and bone meal.","PeriodicalId":20324,"journal":{"name":"Polish Journal of Chemical Technology","volume":"24 1","pages":"51 - 60"},"PeriodicalIF":1.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42946261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Su-fang Li, Qi Liu, Q. Deng, H. Ye, Xuejie Zhou, Aijun Qiao
Abstract The effect of process conditions on the co-processing technology of crude oil and coal was investigated. Crude oil/coal matching performance, swelling degree, crude oil/coal slurry viscosity-temperature characteristics and process parameters were obtained via the laboratory scale and pilot scale studies. The optimum reaction temperature of the co-processing was 445~450 oC, the pressure was 19 MPa, the catalyst addition was 3 wt.%, the reaction time was 2 h, and the ratio of hydrogen to crude oil was 1500 (V/V). Furthermore, the co-processing technology including catalyst and corresponding equipment based on the slurry bed hydrogenation were developed. By using this co-processing technology, the feed ratio of crude oil and coal can be 1:1, the coal conversion rate can be over 99%, the light oil (oil and aromatics) yield was over 70%, and the end products were gasoline, diesel, jet fuel, aromatics and LPG. The product quality meets the Euro V standard, whilst aromatics accounted for 48% of the light oil. So it was proved to be feasible to co-refine crude oil and coal at a ratio of 1:1. What’s more, the slurry bed hydrogenation plant and its equipment were tested for long-term operation, and it has been proved that this co-processing technology could be deployed as large-scale industrial application.
{"title":"Investigation of the co-processing technology of crude oil and coal and its deployment","authors":"Su-fang Li, Qi Liu, Q. Deng, H. Ye, Xuejie Zhou, Aijun Qiao","doi":"10.2478/pjct-2022-0027","DOIUrl":"https://doi.org/10.2478/pjct-2022-0027","url":null,"abstract":"Abstract The effect of process conditions on the co-processing technology of crude oil and coal was investigated. Crude oil/coal matching performance, swelling degree, crude oil/coal slurry viscosity-temperature characteristics and process parameters were obtained via the laboratory scale and pilot scale studies. The optimum reaction temperature of the co-processing was 445~450 oC, the pressure was 19 MPa, the catalyst addition was 3 wt.%, the reaction time was 2 h, and the ratio of hydrogen to crude oil was 1500 (V/V). Furthermore, the co-processing technology including catalyst and corresponding equipment based on the slurry bed hydrogenation were developed. By using this co-processing technology, the feed ratio of crude oil and coal can be 1:1, the coal conversion rate can be over 99%, the light oil (oil and aromatics) yield was over 70%, and the end products were gasoline, diesel, jet fuel, aromatics and LPG. The product quality meets the Euro V standard, whilst aromatics accounted for 48% of the light oil. So it was proved to be feasible to co-refine crude oil and coal at a ratio of 1:1. What’s more, the slurry bed hydrogenation plant and its equipment were tested for long-term operation, and it has been proved that this co-processing technology could be deployed as large-scale industrial application.","PeriodicalId":20324,"journal":{"name":"Polish Journal of Chemical Technology","volume":"24 1","pages":"39 - 50"},"PeriodicalIF":1.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42638458","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
D. Musik, Krzysztof Wójcik, Małgorzata Sekuła-Wybańska, R. Rakoczy
Abstract The main aim of this experimental study is to test the novel type of coupon installation. This set-up was used to carry out the corrosion process under aggressive conditions. Moreover, the effect of corrosion inhibitors on the scale-forming tendency was evaluated. The corrosive conditions were defined by using the Langelier Saturation Index (this index is an approximate indicator of the degree of saturation of CaCO3 in water) and the Ryznar stability index (this index is allowed to determine if the liquid sample is aggressive or not). Additionally, the inductively coupled plasma optical emission spectroscopy analysis was used to obtain the iron and calcium ions concentrations in the liquid samples from the tested coupon installation. The corrosion process for the established conditions was also described using the corrosion rate of the tested coupons. The obtained investigation contributes significantly by developing the novel coupon installation and demonstrating the procedure for testing the corrosion process with the application of coupons. This setup and method might be successfully applied for accelerated laboratory tests.
{"title":"Corrosion process assessment using a novel type of coupon installation","authors":"D. Musik, Krzysztof Wójcik, Małgorzata Sekuła-Wybańska, R. Rakoczy","doi":"10.2478/pjct-2022-0033","DOIUrl":"https://doi.org/10.2478/pjct-2022-0033","url":null,"abstract":"Abstract The main aim of this experimental study is to test the novel type of coupon installation. This set-up was used to carry out the corrosion process under aggressive conditions. Moreover, the effect of corrosion inhibitors on the scale-forming tendency was evaluated. The corrosive conditions were defined by using the Langelier Saturation Index (this index is an approximate indicator of the degree of saturation of CaCO3 in water) and the Ryznar stability index (this index is allowed to determine if the liquid sample is aggressive or not). Additionally, the inductively coupled plasma optical emission spectroscopy analysis was used to obtain the iron and calcium ions concentrations in the liquid samples from the tested coupon installation. The corrosion process for the established conditions was also described using the corrosion rate of the tested coupons. The obtained investigation contributes significantly by developing the novel coupon installation and demonstrating the procedure for testing the corrosion process with the application of coupons. This setup and method might be successfully applied for accelerated laboratory tests.","PeriodicalId":20324,"journal":{"name":"Polish Journal of Chemical Technology","volume":"24 1","pages":"84 - 88"},"PeriodicalIF":1.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47224124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Krupińska, M. Ochowiak, S. Włodarczak, M. Matuszak, Julia Kaźmierczak
Abstract Purifying air from dust is a very important, current topic. There are many methods to minimize the amount of dust, one of them being chamber filters. This paper presents the research results of a newly designed rectangular chamber filter. The efficiency of the dedusting process is influenced by contamination properties, but also by the construction of the apparatus, inlet, and outlet location, the ratio of certain dimensions, and the gas flow rate. The airflow containing solid particles is a multi-phase, difficult-to-describe issue, therefore an attempt to determine the trajectory of particle movement in the apparatus was carried out using the PIV method. A decrease in the dedusting efficiency was observed with the increase of the gas flow rate, as well as for smaller diameters of the solid particles. The obtained values of the efficiency of the apparatus are comparable with the values obtained for the constructions discussed in other papers.
{"title":"Analysis of the dedusting process in a rectangular chamber filter","authors":"A. Krupińska, M. Ochowiak, S. Włodarczak, M. Matuszak, Julia Kaźmierczak","doi":"10.2478/pjct-2022-0031","DOIUrl":"https://doi.org/10.2478/pjct-2022-0031","url":null,"abstract":"Abstract Purifying air from dust is a very important, current topic. There are many methods to minimize the amount of dust, one of them being chamber filters. This paper presents the research results of a newly designed rectangular chamber filter. The efficiency of the dedusting process is influenced by contamination properties, but also by the construction of the apparatus, inlet, and outlet location, the ratio of certain dimensions, and the gas flow rate. The airflow containing solid particles is a multi-phase, difficult-to-describe issue, therefore an attempt to determine the trajectory of particle movement in the apparatus was carried out using the PIV method. A decrease in the dedusting efficiency was observed with the increase of the gas flow rate, as well as for smaller diameters of the solid particles. The obtained values of the efficiency of the apparatus are comparable with the values obtained for the constructions discussed in other papers.","PeriodicalId":20324,"journal":{"name":"Polish Journal of Chemical Technology","volume":"24 1","pages":"72 - 77"},"PeriodicalIF":1.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47006321","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract Effect of enzymatic pretreatment before hydrodistillation process on yield and composition of Rosmarinus officinalis essential oil was studied. Results obtained by using two selected commercial enzymes applied in food and beverage industry were compared. Control process with non-enzymatic pretreatment in analogous conditions was also performed for proper interpretation of results. Application of gas chromatography with mass selective detector (GC-MS) enabled analysis and comparison of essential oils composition. Moreover, total phenolic content (TPC) was determined spectrophotometrically in post-processing hydrolates, which are also valuable products e.g. for cosmetic applications. Modifications of isolation process by pretreatment with selected enzymes resulted in significant increase in essential oil yields in comparison to conventional hydrodistillation and control process with non-enzymatic pretreatment in analogous conditions. No substantial changes in the composition of obtained essential oils were observed. In post-processing hydrolates higher values of total phenolic content (TPC) were found both after enzymatic and non-enzymatic pretreatment.
{"title":"Influence of enzymatic pretreatment on yield and chemical composition of Rosmarinus officinalis essential oil","authors":"M. Dzięcioł","doi":"10.2478/pjct-2022-0029","DOIUrl":"https://doi.org/10.2478/pjct-2022-0029","url":null,"abstract":"Abstract Effect of enzymatic pretreatment before hydrodistillation process on yield and composition of Rosmarinus officinalis essential oil was studied. Results obtained by using two selected commercial enzymes applied in food and beverage industry were compared. Control process with non-enzymatic pretreatment in analogous conditions was also performed for proper interpretation of results. Application of gas chromatography with mass selective detector (GC-MS) enabled analysis and comparison of essential oils composition. Moreover, total phenolic content (TPC) was determined spectrophotometrically in post-processing hydrolates, which are also valuable products e.g. for cosmetic applications. Modifications of isolation process by pretreatment with selected enzymes resulted in significant increase in essential oil yields in comparison to conventional hydrodistillation and control process with non-enzymatic pretreatment in analogous conditions. No substantial changes in the composition of obtained essential oils were observed. In post-processing hydrolates higher values of total phenolic content (TPC) were found both after enzymatic and non-enzymatic pretreatment.","PeriodicalId":20324,"journal":{"name":"Polish Journal of Chemical Technology","volume":"24 1","pages":"61 - 66"},"PeriodicalIF":1.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44972965","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
K. Jiao, Shuangchen Ma, Xiangyang Chen, Jiaming Liu, Lin Qiao
Abstract In this paper, the research progress of ammonium bisulfate (ABS) volatilization in coal-fired power plants the SCR denitrification process was reviewed. Combination with self-made experiments, SEM, flue gas analyzer and TG-DTG curves of ABS and ion chromatography. The volatilization and condensation characteristics of ABS were investigated carefully. Results show that as the temperature increased by 50 oC, the ABS/AS volatilization rate increased by an order of magnitude. The decomposition process of ABS should have a two-step reaction. The reaction in the initial volatiliza-tion stage is ABS dehydration turned into (NH4)2S2O7. The reaction in the rapid volat-ilization stage is (NH4)2S2O7 decomposed into NH3, N2, SO2 and H2O. There is an inter-section in the reaction temperature range (especially 300 oC) between the two-step re-action. This research provides an experimental basis for temperature control of ABS to avoid air pre-heater fouling.
{"title":"Experimental research on the volatilization and condensation of ammonium bisulfate as SCR byproduct","authors":"K. Jiao, Shuangchen Ma, Xiangyang Chen, Jiaming Liu, Lin Qiao","doi":"10.2478/pjct-2022-0026","DOIUrl":"https://doi.org/10.2478/pjct-2022-0026","url":null,"abstract":"Abstract In this paper, the research progress of ammonium bisulfate (ABS) volatilization in coal-fired power plants the SCR denitrification process was reviewed. Combination with self-made experiments, SEM, flue gas analyzer and TG-DTG curves of ABS and ion chromatography. The volatilization and condensation characteristics of ABS were investigated carefully. Results show that as the temperature increased by 50 oC, the ABS/AS volatilization rate increased by an order of magnitude. The decomposition process of ABS should have a two-step reaction. The reaction in the initial volatiliza-tion stage is ABS dehydration turned into (NH4)2S2O7. The reaction in the rapid volat-ilization stage is (NH4)2S2O7 decomposed into NH3, N2, SO2 and H2O. There is an inter-section in the reaction temperature range (especially 300 oC) between the two-step re-action. This research provides an experimental basis for temperature control of ABS to avoid air pre-heater fouling.","PeriodicalId":20324,"journal":{"name":"Polish Journal of Chemical Technology","volume":"24 1","pages":"30 - 38"},"PeriodicalIF":1.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48991428","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract Nowadays, the topics of closed-loop and eco-design are raised very often, especially in the chemical industry. To combine development with these trends, Purinova Sp. z o.o. has focused on pursuing the closed-loop use of post-production condensate from polyester polyols production. To this end, purification and distillation processes have been adapted, both at the laboratory and production scale, to receive treated condensate with decreased Chemical Oxygen Demand (COD) index. The method involves connected purification of production condensate by returning condensate to the top of the distillation column during polycondensation and two stages distillation system afterwards. The method allows for decreasing COD index and contents of diethylene glycol and 1,4-dioxane. The resulting technology has consequently allowed the use of tailored distillation in the purification of post-production condensates in the production of polyester polyols. Furthermore, the quality of the condensate obtained allowed it to be used in the closed loop of the production plant.
{"title":"Method of purification of post-production condensates from polyester polyol production","authors":"Marek Lewandowski, Paulina Biniecka","doi":"10.2478/pjct-2022-0032","DOIUrl":"https://doi.org/10.2478/pjct-2022-0032","url":null,"abstract":"Abstract Nowadays, the topics of closed-loop and eco-design are raised very often, especially in the chemical industry. To combine development with these trends, Purinova Sp. z o.o. has focused on pursuing the closed-loop use of post-production condensate from polyester polyols production. To this end, purification and distillation processes have been adapted, both at the laboratory and production scale, to receive treated condensate with decreased Chemical Oxygen Demand (COD) index. The method involves connected purification of production condensate by returning condensate to the top of the distillation column during polycondensation and two stages distillation system afterwards. The method allows for decreasing COD index and contents of diethylene glycol and 1,4-dioxane. The resulting technology has consequently allowed the use of tailored distillation in the purification of post-production condensates in the production of polyester polyols. Furthermore, the quality of the condensate obtained allowed it to be used in the closed loop of the production plant.","PeriodicalId":20324,"journal":{"name":"Polish Journal of Chemical Technology","volume":"24 1","pages":"78 - 83"},"PeriodicalIF":1.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47352676","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Huabei Li, Xiaolin Wang, Hongying Chu, Xinding Yao
Abstract A polyester plasticizer (RSOP) for polyvinyl chloride based on rubber seed oil (RSO) was synthesized. Firstly, RSO monoglyceride were synthesized by the transesterification of RSO with glycerol at 220–240 °C. Secondly, RSOP was synthesized from RSO monoglyceride and adipic acid by esterification. The polyester plasticizer was characterized by GPC, FT-IR, 1H NMR and DSC. Plasticized polyvinyl chloride (PVC) materials with RSOP and dioctyl phthalate (DOP) in varying ratios were prepared via thermal melting process, RSOP was used as a second plasticizer. The properties of the plasticized PVC materials were characterized by a universal testing machine, TGA, DMA and solvent extraction resistance. The obtained PVC materials showed improved thermal stability and lower glass transition temperature than PVC. Solvent extraction resistance and plasticization of plasticized PVC were also improved. This study provides a new strategy for preparing bio-based polyester plasticizer from RSO.
{"title":"Synthesis of a polyester plasticizer from rubber seed oil for polyvinyl chloride","authors":"Huabei Li, Xiaolin Wang, Hongying Chu, Xinding Yao","doi":"10.2478/pjct-2022-0023","DOIUrl":"https://doi.org/10.2478/pjct-2022-0023","url":null,"abstract":"Abstract A polyester plasticizer (RSOP) for polyvinyl chloride based on rubber seed oil (RSO) was synthesized. Firstly, RSO monoglyceride were synthesized by the transesterification of RSO with glycerol at 220–240 °C. Secondly, RSOP was synthesized from RSO monoglyceride and adipic acid by esterification. The polyester plasticizer was characterized by GPC, FT-IR, 1H NMR and DSC. Plasticized polyvinyl chloride (PVC) materials with RSOP and dioctyl phthalate (DOP) in varying ratios were prepared via thermal melting process, RSOP was used as a second plasticizer. The properties of the plasticized PVC materials were characterized by a universal testing machine, TGA, DMA and solvent extraction resistance. The obtained PVC materials showed improved thermal stability and lower glass transition temperature than PVC. Solvent extraction resistance and plasticization of plasticized PVC were also improved. This study provides a new strategy for preparing bio-based polyester plasticizer from RSO.","PeriodicalId":20324,"journal":{"name":"Polish Journal of Chemical Technology","volume":"24 1","pages":"1 - 6"},"PeriodicalIF":1.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43839366","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract The paper presents the results of experimental studies on pressure drops during the flow of cocamidopropyl betaine (CAPB) and DEA cocamide solutions with the addition of ethylene glycol. The degree of drag reduction during the flow of the CAPB/DEA aqueous solution and with the 10% addition of ethylene glycol was similar. A significant reduction in pressure drops was also observed at the 20% concentration of ethylene glycol. However, the increase in the concentration of ethylene glycol resulted in the reduction of flow resistance at higher temperatures. The resistance of the micellar microstructure of CAPB/DEA solutions to mechanical degradation depends strongly on the pH level. Significant changes in flow properties were observed when the initial pH was alkaline. The solution with initial pH close to neutral was stable over time, though reduced resistance to degradation with time was also observed.
{"title":"Pressure drops during the flow of solutions of cocamidopropyl betaine and cocamide DEA mixtures with the addition of ethylene glycol","authors":"Różańska Sylwia, Różański Jacek, Wagner Patrycja, Warmbier Ewelina","doi":"10.2478/pjct-2022-0030","DOIUrl":"https://doi.org/10.2478/pjct-2022-0030","url":null,"abstract":"Abstract The paper presents the results of experimental studies on pressure drops during the flow of cocamidopropyl betaine (CAPB) and DEA cocamide solutions with the addition of ethylene glycol. The degree of drag reduction during the flow of the CAPB/DEA aqueous solution and with the 10% addition of ethylene glycol was similar. A significant reduction in pressure drops was also observed at the 20% concentration of ethylene glycol. However, the increase in the concentration of ethylene glycol resulted in the reduction of flow resistance at higher temperatures. The resistance of the micellar microstructure of CAPB/DEA solutions to mechanical degradation depends strongly on the pH level. Significant changes in flow properties were observed when the initial pH was alkaline. The solution with initial pH close to neutral was stable over time, though reduced resistance to degradation with time was also observed.","PeriodicalId":20324,"journal":{"name":"Polish Journal of Chemical Technology","volume":"24 1","pages":"67 - 71"},"PeriodicalIF":1.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42172919","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract In our work, the process efficiency of the ECMM should be improved by using different combinations of nano-particles and added electrolytes. The superior aim of this work is to improve and predict the ECMM machining characteristics of die hardened steel, namely material removal rate (MRR), Tool wear rate (TWR) and Surface Roughness (Ra). The machining conditions are optimized using Response Surface Methodology (RSM) based on Box Behnken Design. The better Nano electrolyte is optimized using Deer Hunting Optimization (DHO) based on the machined outcomes, and the performances are predicted using a hybrid Deep Neural Network (DNN) based DHO. The hybrid DNN-DHO based predicted outcome of MRR is 0.361 mg/min, TWR is 0.272 mg/min and Ra is 2.511 μm. The validation results show that our proposed DNN-DHO model performed well and obtained above 0.99 regression for both training and validation of DNN-DHO, where the root mean square error ranges between 0.018 and 0.024.
{"title":"Investigation and Prediction of ECMM characteristics of Hardened Die Steel with Nanoparticle Added Electrolytes Using Hybrid Deep Neural Network","authors":"Vijayakumar Kanniyappan, Sekar Tamilperuvalathan","doi":"10.2478/pjct-2022-0024","DOIUrl":"https://doi.org/10.2478/pjct-2022-0024","url":null,"abstract":"Abstract In our work, the process efficiency of the ECMM should be improved by using different combinations of nano-particles and added electrolytes. The superior aim of this work is to improve and predict the ECMM machining characteristics of die hardened steel, namely material removal rate (MRR), Tool wear rate (TWR) and Surface Roughness (Ra). The machining conditions are optimized using Response Surface Methodology (RSM) based on Box Behnken Design. The better Nano electrolyte is optimized using Deer Hunting Optimization (DHO) based on the machined outcomes, and the performances are predicted using a hybrid Deep Neural Network (DNN) based DHO. The hybrid DNN-DHO based predicted outcome of MRR is 0.361 mg/min, TWR is 0.272 mg/min and Ra is 2.511 μm. The validation results show that our proposed DNN-DHO model performed well and obtained above 0.99 regression for both training and validation of DNN-DHO, where the root mean square error ranges between 0.018 and 0.024.","PeriodicalId":20324,"journal":{"name":"Polish Journal of Chemical Technology","volume":"24 1","pages":"7 - 22"},"PeriodicalIF":1.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46370812","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}