Pub Date : 2024-10-24DOI: 10.1016/j.psj.2024.104439
Xinzhang Chen , Yixuan Wang , Muyue Zhang , Yongzhen Du , Yujiao He , Shu Li
Selenomethionine (SeMet) is a beneficial organic source of selenium that is extensively used as a food additive owing to its antioxidant and anti-inflammatory properties. Due to the sensitivity of the kidneys to noxious stimuli, they are more susceptible to various injuries. To investigate the protective mechanisms of SeMet supplementation against kidney injury, we established an in vivo experimental model using laying hens treated with SeMet (0.5 mg/kg diet) and/or lipopolysaccharide (LPS) (0.2 mg/kg. BW) and an in vitro model of chicken embryo primary kidney (CEK) cells treated with SeMet (0.075 mM) and with/ without LPS (60 μg/mL). SeMet treatment alleviated the LPS-induced kidney insufficiency and mitochondrial damage. Furthermore, it reduced the expression of TLR4, RIPK3, MLKL, DRP1, NLRP3, and IL-1β in the kidneys of laying hens. RIPK3 is known to induced necroptosis and inflammation by activating of the downstream factors DRP1 and MLKL. To investigate the mechanism whereby SeMet alleviates LPS-induced necroptosis in the kidney, we pretreated CEK cells with TLR4, RIPK3, and DRP1 inhibitors. The results demonstrated that RIPK3 inhibition resulted in a significantly increased in the mitochondrial membrane potential and downregulation of DRP1. Upon the inhibition of DRP1 expression, MLKL, NLRP3, and IL-1β expression also decreased. In summary, SeMet regulates the TLR4/RIPK3/DRP1 signaling pathway to restore the LPS-induced imbalances in mitochondrial dynamics, thereby alleviating necroptosis and inflammation in the kidneys of laying hen. Selenium also increases the expression of selenoproteins. This study provides valuable information for the development of new therapeutic strategies using SeMet to alleviate kidney injury.
{"title":"Selenomethionine alleviates kidney necroptosis and inflammation by restoring lipopolysaccharide-mediated mitochondrial dynamics imbalance via the TLR4/RIPK3/DRP1 signaling pathway in laying hens","authors":"Xinzhang Chen , Yixuan Wang , Muyue Zhang , Yongzhen Du , Yujiao He , Shu Li","doi":"10.1016/j.psj.2024.104439","DOIUrl":"10.1016/j.psj.2024.104439","url":null,"abstract":"<div><div>Selenomethionine (SeMet) is a beneficial organic source of selenium that is extensively used as a food additive owing to its antioxidant and anti-inflammatory properties. Due to the sensitivity of the kidneys to noxious stimuli, they are more susceptible to various injuries. To investigate the protective mechanisms of SeMet supplementation against kidney injury, we established an <em>in vivo</em> experimental model using laying hens treated with SeMet (0.5 mg/kg diet) and/or lipopolysaccharide (LPS) (0.2 mg/kg. BW) and an <em>in vitro</em> model of chicken embryo primary kidney (CEK) cells treated with SeMet (0.075 mM) and with/ without LPS (60 μg/mL). SeMet treatment alleviated the LPS-induced kidney insufficiency and mitochondrial damage. Furthermore, it reduced the expression of TLR4, RIPK3, MLKL, DRP1, NLRP3, and IL-1β in the kidneys of laying hens. RIPK3 is known to induced necroptosis and inflammation by activating of the downstream factors DRP1 and MLKL. To investigate the mechanism whereby SeMet alleviates LPS-induced necroptosis in the kidney, we pretreated CEK cells with TLR4, RIPK3, and DRP1 inhibitors. The results demonstrated that RIPK3 inhibition resulted in a significantly increased in the mitochondrial membrane potential and downregulation of DRP1. Upon the inhibition of DRP1 expression, MLKL, NLRP3, and IL-1β expression also decreased. In summary, SeMet regulates the TLR4/RIPK3/DRP1 signaling pathway to restore the LPS-induced imbalances in mitochondrial dynamics, thereby alleviating necroptosis and inflammation in the kidneys of laying hen. Selenium also increases the expression of selenoproteins. This study provides valuable information for the development of new therapeutic strategies using SeMet to alleviate kidney injury.</div></div>","PeriodicalId":20459,"journal":{"name":"Poultry Science","volume":"103 12","pages":"Article 104439"},"PeriodicalIF":3.8,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142591313","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-21DOI: 10.1016/j.psj.2024.104440
Weiwei Wang , Yan Zhang , Wenbo Zuo , Yuanzheng Qiao , Jun Shi , Jianni Huang , Teng Huang , Tianchao Wei , Meilan Mo , Xiumiao He , Ping Wei
With the virus continuing to evolve, very virulent IBDV (vvIBDV) and novel variant IBDV (nvIBDV) have become the predominant epidemic strains in China, exacerbated by the widespread use of attenuated vaccine strains (attIBDV), making a complex infection situation of IBDV in the field. Therefore, developing a rapid and accurate high-resolution melting curve quantitative reverse transcription PCR (HRM-qRT-PCR) for the identification and pathotyping of IBDV is crucial for clinical monitoring and disease control. Extensive data analysis and genome-screening of the three dominant IBDV pathotypes identified a specific region (nucleotides 2450–2603 in segment A) with distinct GC content as the detection target. Experimental testing of HRM-qRT-PCR revealed distinct melting curves and high sensitivity, with the detection limits of 61.2 copies/μL, 61.1 copies/μL and 67.5 copies/μL for vvIBDV, nvIBDV and attIBDV, respectively. The method exhibited excellent specificity, with no inter-genotypes cross-reactivity among the three pathotypes and no reactivity to other common avian pathogens. Applied to samples with double and triple co-infections of different IBDV pathotypes, the method displayed specific melting peaks corresponding to the viruses present in the samples, with an accuracy rate of 100 %. This method precisely identifies and differentiates all the single or co-infected samples, generating distinct peaks corresponding to the Tm values of each virus pathotype in traditional melting curve plots. Furthermore, the method overcomes the limitations of traditional pathotyping methods, requiring only one reaction to achieve rapid viral pathotyping and facilitating quantitative analysis of viruses within the samples. This study introduces an innovative HRM-qRT-PCR method, offering new technology to rapid and accurate identification, pathotyping and quantification of vvIBDV, nvIBDV, and attIBDV. With strong discriminatory power, user-friendliness and a short processing time, this method is highly attractive for the rapid IBDV pathotyping in real-time large-scale epidemiological surveillance during outbreaks.
{"title":"Rapid identification, pathotyping and quantification of infectious bursal disease virus by high-resolution melting curve quantitative reverse transcription PCR analysis: An innovative technology well-suited for real-time large-scale epidemiological surveillance","authors":"Weiwei Wang , Yan Zhang , Wenbo Zuo , Yuanzheng Qiao , Jun Shi , Jianni Huang , Teng Huang , Tianchao Wei , Meilan Mo , Xiumiao He , Ping Wei","doi":"10.1016/j.psj.2024.104440","DOIUrl":"10.1016/j.psj.2024.104440","url":null,"abstract":"<div><div>With the virus continuing to evolve, very virulent IBDV (vvIBDV) and novel variant IBDV (nvIBDV) have become the predominant epidemic strains in China, exacerbated by the widespread use of attenuated vaccine strains (attIBDV), making a complex infection situation of IBDV in the field. Therefore, developing a rapid and accurate high-resolution melting curve quantitative reverse transcription PCR (HRM-qRT-PCR) for the identification and pathotyping of IBDV is crucial for clinical monitoring and disease control. Extensive data analysis and genome-screening of the three dominant IBDV pathotypes identified a specific region (nucleotides 2450–2603 in segment A) with distinct GC content as the detection target. Experimental testing of HRM-qRT-PCR revealed distinct melting curves and high sensitivity, with the detection limits of 61.2 copies/μL, 61.1 copies/μL and 67.5 copies/μL for vvIBDV, nvIBDV and attIBDV, respectively. The method exhibited excellent specificity, with no inter-genotypes cross-reactivity among the three pathotypes and no reactivity to other common avian pathogens. Applied to samples with double and triple co-infections of different IBDV pathotypes, the method displayed specific melting peaks corresponding to the viruses present in the samples, with an accuracy rate of 100 %. This method precisely identifies and differentiates all the single or co-infected samples, generating distinct peaks corresponding to the Tm values of each virus pathotype in traditional melting curve plots. Furthermore, the method overcomes the limitations of traditional pathotyping methods, requiring only one reaction to achieve rapid viral pathotyping and facilitating quantitative analysis of viruses within the samples. This study introduces an innovative HRM-qRT-PCR method, offering new technology to rapid and accurate identification, pathotyping and quantification of vvIBDV, nvIBDV, and attIBDV. With strong discriminatory power, user-friendliness and a short processing time, this method is highly attractive for the rapid IBDV pathotyping in real-time large-scale epidemiological surveillance during outbreaks.</div></div>","PeriodicalId":20459,"journal":{"name":"Poultry Science","volume":"103 12","pages":"Article 104440"},"PeriodicalIF":3.8,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142546953","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-19DOI: 10.1016/j.psj.2024.104412
Chala Adugna, Kai Wang, Jian Du, Chunmei Li
The effect of DON mycotoxins on broiler production performance and the small intestine is a critical factor in the health and well-being of broilers. Several studies have been conducted on this topic and have reported varying results and conclusions. Therefore, it is necessary to conduct systematic reviews and meta-analyses to thoroughly examine and draw unique conclusions. In this meta-analysis, we conducted a systematic review of multiple studies on the effects of DON mycotoxins in broilers. The analysis comprised 26 articles from reputable journals, and 14 parameters were identified based on the predetermined criteria. The forest plot results showed that DON treatment significantly reduced the ADFI and ADWG (SMD-1.50, 95 %CI [-1.68, -1.18]; I2= 51 %; p < 0.00001) and affected FCR (SMD 0.95, 95 %CI [ 0.62, 1.28]; I2= 77; p < 0.00001). In addition, it affects the small intestine structure duodenum (SMD -3.46, 95 %CI [-3.88, -3.05]; I2= 48 %; p < 0.00001), Jejunum (SMD -5.35, 95 %CI [-5.86, -4.83]; I2= 62 %; p < 0.00001), Ileum (SMD -2.6, 95 % CI [-3.12, -2.08]; I2= 82 %; p < 0.00001). Furthermore, DON exposure affects immunoglobulin (SMD -1.92, 95 % CI [ -2.39, -1.46]; I2 = 54 %; p < 0.00001) and antioxidant activities (SMD -2.1, 95 % CI [ -2.45, -1.75]; I2= 47 %; p < 0.00001). The overall effect of DON treatment was statistically significant compared with that of the control group. Furthermore, funnel plot analysis for publication bias did not reveal any significant asymmetry in most included studies. The results of this meta-analysis indicate that DON mycotoxins have a significant impact on both production performance and small intestine health and require strategic intervention.
{"title":"Deoxynivalenol mycotoxin dietary exposure on broiler performance and small intestine health: A comprehensive meta-analysis.","authors":"Chala Adugna, Kai Wang, Jian Du, Chunmei Li","doi":"10.1016/j.psj.2024.104412","DOIUrl":"10.1016/j.psj.2024.104412","url":null,"abstract":"<p><p>The effect of DON mycotoxins on broiler production performance and the small intestine is a critical factor in the health and well-being of broilers. Several studies have been conducted on this topic and have reported varying results and conclusions. Therefore, it is necessary to conduct systematic reviews and meta-analyses to thoroughly examine and draw unique conclusions. In this meta-analysis, we conducted a systematic review of multiple studies on the effects of DON mycotoxins in broilers. The analysis comprised 26 articles from reputable journals, and 14 parameters were identified based on the predetermined criteria. The forest plot results showed that DON treatment significantly reduced the ADFI and ADWG (SMD-1.50, 95 %CI [-1.68, -1.18]; I<sup>2</sup>= 51 %; p < 0.00001) and affected FCR (SMD 0.95, 95 %CI [ 0.62, 1.28]; I<sup>2</sup>= 77; p < 0.00001). In addition, it affects the small intestine structure duodenum (SMD -3.46, 95 %CI [-3.88, -3.05]; I<sup>2</sup>= 48 %; p < 0.00001), Jejunum (SMD -5.35, 95 %CI [-5.86, -4.83]; I<sup>2</sup>= 62 %; p < 0.00001), Ileum (SMD -2.6, 95 % CI [-3.12, -2.08]; I<sup>2</sup>= 82 %; p < 0.00001). Furthermore, DON exposure affects immunoglobulin (SMD -1.92, 95 % CI [ -2.39, -1.46]; I<sup>2</sup> = 54 %; p < 0.00001) and antioxidant activities (SMD -2.1, 95 % CI [ -2.45, -1.75]; I2= 47 %; p < 0.00001). The overall effect of DON treatment was statistically significant compared with that of the control group. Furthermore, funnel plot analysis for publication bias did not reveal any significant asymmetry in most included studies. The results of this meta-analysis indicate that DON mycotoxins have a significant impact on both production performance and small intestine health and require strategic intervention.</p>","PeriodicalId":20459,"journal":{"name":"Poultry Science","volume":"103 12","pages":"104412"},"PeriodicalIF":3.8,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11544052/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142506654","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-19DOI: 10.1016/j.psj.2024.104433
Di Zhao , Zehe Song , Li Shen , Tian Xia , Qingyuan Ouyang , Haihan Zhang , Xi He , Kelang Kang
Accompanied by the accelerated growth rate of chickens, the quality of chicken meat has deteriorated in recent years. Wooden breast (WB) is a severe myopathy affecting meat quality, and its pathophysiology depends on gene expression and intercellular interactions of various cell types, which are not yet fully understood. We have performed a comprehensive transcriptomic and metabolomic atlas of chicken WB muscle. Our data showed a significant increase in the number of immune cells, WB muscle displayed a unique cluster of macrophages (cluster 11), distinct from the M1 and M2 macrophages. Regarding the myocytes, the most significant differences were the decrease in cell number and the intensification of fatty deposits. Satellite cells were involved in muscle repair and regeneration producing more collagen. Interestingly, the interaction network in the WB group was weaker compared to that in normal breast muscle. Additionally, we found six key differential metabolites across 22 pathways. When WB occurs, myocytes and endothelial cells undergo apoptosis, macrophages are activated and exert immune functions, satellite cells participate in muscle rebuilding and repair, and the content of metabolites undergoes significant changes. This cell transcriptome profile provides an essential reference for future studies on the development and remodeling of WB.
{"title":"Single-cell transcriptomics and tissue metabolomics uncover mechanisms underlying wooden breast disease in broilers","authors":"Di Zhao , Zehe Song , Li Shen , Tian Xia , Qingyuan Ouyang , Haihan Zhang , Xi He , Kelang Kang","doi":"10.1016/j.psj.2024.104433","DOIUrl":"10.1016/j.psj.2024.104433","url":null,"abstract":"<div><div>Accompanied by the accelerated growth rate of chickens, the quality of chicken meat has deteriorated in recent years. Wooden breast (<strong>WB</strong>) is a severe myopathy affecting meat quality, and its pathophysiology depends on gene expression and intercellular interactions of various cell types, which are not yet fully understood. We have performed a comprehensive transcriptomic and metabolomic atlas of chicken WB muscle. Our data showed a significant increase in the number of immune cells, WB muscle displayed a unique cluster of macrophages (cluster 11), distinct from the M1 and M2 macrophages. Regarding the myocytes, the most significant differences were the decrease in cell number and the intensification of fatty deposits. Satellite cells were involved in muscle repair and regeneration producing more collagen. Interestingly, the interaction network in the WB group was weaker compared to that in normal breast muscle. Additionally, we found six key differential metabolites across 22 pathways. When WB occurs, myocytes and endothelial cells undergo apoptosis, macrophages are activated and exert immune functions, satellite cells participate in muscle rebuilding and repair, and the content of metabolites undergoes significant changes. This cell transcriptome profile provides an essential reference for future studies on the development and remodeling of WB.</div></div>","PeriodicalId":20459,"journal":{"name":"Poultry Science","volume":"103 12","pages":"Article 104433"},"PeriodicalIF":3.8,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142567923","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-19DOI: 10.1016/j.psj.2024.104413
Xuliang Luo, Xuelian Li, Zi Mei, Haobo Zhou, Yan Chen, Haoxing Wang, Ping Qiu, Yanzhang Gong
Excessive aromatase can reduce reproductive performance in aged roosters. Aromatase inhibitors (AI) can inhibit the aromatase activity and improve the semen quality of aged roosters. However, relevant molecular mechanism is still unclear. The purpose of this study was to explore the regulatory mechanism of AI letrozole improving semen quality in aged roosters by transcriptomic and proteomic sequencing. In this study, 56-week-old roosters were reared in separate cages on a standard basice diet and oral letrozole 42 days (D) at a daily dose 0.25 mg/kg. Semen quality and serum hormone were measured before (0 D) and after (42 D) letrozole administration. Reactive oxygen species (ROS) and mitochondrial membrane potential (MMP) were detected, respectively. The results indicated that semen volume, sperm motility, sperm density, MMP, testosterone (T) and gonadotropin releasing hormone (GnRH) in letrozole treatment group (LET) were significantly increased than those in control group (CN) (P<0.05); estradiol (E2) and ROS in LET were significantly lower than those in CN (P<0.05). Through transcriptomic and proteomic analysis, we identified 189 differently expressed genes (DEGs) and 64 differentially expressed proteins (DEPs) in the comparison of LET and CN. DEGs and DEPs Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) items are mainly enriched in steroid biosynthetic process, cell differentiation and proliferation, lipid metabolic process, oxidation-reduction process and electron transfer activity. Furthermore, 8 genes including STAR, CYP17A1, NSDHL, SULT1E1, EHF, NRNPA1, PLIN2 and SDHA were identified as key genes for letrozole to regulate semen quality in aged roosters. These results indicate that letrozole can up-regulate the expression of genes related to steroid hormone synthesis, cell differentiation and proliferation, electron transfer activity, and enhance mitochondrial activity, increase testicular weight, and ultimately improve the semen quality of aged roosters.
{"title":"Aromatase inhibitors can improve the semen quality of aged roosters by up regulating genes related to steroid hormone synthesis","authors":"Xuliang Luo, Xuelian Li, Zi Mei, Haobo Zhou, Yan Chen, Haoxing Wang, Ping Qiu, Yanzhang Gong","doi":"10.1016/j.psj.2024.104413","DOIUrl":"10.1016/j.psj.2024.104413","url":null,"abstract":"<div><div>Excessive aromatase can reduce reproductive performance in aged roosters. Aromatase inhibitors (<strong>AI</strong>) can inhibit the aromatase activity and improve the semen quality of aged roosters. However, relevant molecular mechanism is still unclear. The purpose of this study was to explore the regulatory mechanism of AI letrozole improving semen quality in aged roosters by transcriptomic and proteomic sequencing. In this study, 56-week-old roosters were reared in separate cages on a standard basice diet and oral letrozole 42 days (<strong>D</strong>) at a daily dose 0.25 mg/kg. Semen quality and serum hormone were measured before (0 D) and after (42 D) letrozole administration. Reactive oxygen species (<strong>ROS</strong>) and mitochondrial membrane potential (<strong>MMP</strong>) were detected, respectively. The results indicated that semen volume, sperm motility, sperm density, MMP, testosterone (<strong>T</strong>) and gonadotropin releasing hormone (<strong>GnRH</strong>) in letrozole treatment group (<strong>LET</strong>) were significantly increased than those in control group (<strong>CN</strong>) (<em>P</em><0.05); estradiol (<strong>E<sub>2</sub></strong>) and ROS in LET were significantly lower than those in CN (<em>P</em><0.05). Through transcriptomic and proteomic analysis, we identified 189 differently expressed genes (<strong>DEGs</strong>) and 64 differentially expressed proteins (<strong>DEPs</strong>) in the comparison of LET and CN. DEGs and DEPs Gene Ontology (<strong>GO</strong>) and Kyoto Encyclopedia of Genes and Genomes (<strong>KEGG</strong>) items are mainly enriched in steroid biosynthetic process, cell differentiation and proliferation, lipid metabolic process, oxidation-reduction process and electron transfer activity. Furthermore, 8 genes including STAR, CYP17A1, NSDHL, SULT1E1, EHF, NRNPA1, PLIN2 and SDHA were identified as key genes for letrozole to regulate semen quality in aged roosters. These results indicate that letrozole can up-regulate the expression of genes related to steroid hormone synthesis, cell differentiation and proliferation, electron transfer activity, and enhance mitochondrial activity, increase testicular weight, and ultimately improve the semen quality of aged roosters.</div></div>","PeriodicalId":20459,"journal":{"name":"Poultry Science","volume":"103 12","pages":"Article 104413"},"PeriodicalIF":3.8,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142506652","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-19DOI: 10.1016/j.psj.2024.104434
Ting Liu , Zhentao Cheng , Derong Song , Erpeng Zhu , Hui Li , Rutao Lin , Zhiling Wan , Shunxing Liu , Zeguang Gong , Chunlan Shan
Mycoplasma gallinarum (MG) can cause infectious respiratory diseases in poultry that are chronic. Arbutin (AR) possesses anti-inflammatory, bacteriostatic, antitussive, and expectorant pharmacological effects, but whether it exerts regulatory effects on MG-induced pneumonia and fibrosis remains unclear. The study results unveiled that pulmonary connective tissue hyperplasia, pulmonary capillary congestion, and inflammatory cell infiltration, as well as serum levels of cytokines (i.e., TNF-α, IL-1β, IL-6, and IL-10), were elevated after MG infection. Collagen fibers were significantly deposited in the lung tissue from MG-infected chicks. Furthermore, the expression levels of key factors in the JAK2/STAT3 and TGF-β/Smad pathways markedly increased. AR intervention significantly alleviated MG-induced pneumonic injury, and reduced collagen deposition and the expression of fibrosis markers in the lung tissue. AR reduced the degree of pulmonary fibrosis by regulating key factors of the JAK2/STAT3 signaling pathway in the MG-infected HD11 cells. Thus, AR effectively reduced the expression of inflammatory factors by regulating the JAK2/STAT3 signaling pathway, thereby improving lung inflammation and fibrosis.
{"title":"Arbutin alleviates Mycoplasma gallinarum-induced damage caused by pulmonary fibrosis via the JAK2/STAT3 pathway","authors":"Ting Liu , Zhentao Cheng , Derong Song , Erpeng Zhu , Hui Li , Rutao Lin , Zhiling Wan , Shunxing Liu , Zeguang Gong , Chunlan Shan","doi":"10.1016/j.psj.2024.104434","DOIUrl":"10.1016/j.psj.2024.104434","url":null,"abstract":"<div><div><em>Mycoplasma gallinarum</em> (<em>MG</em>) can cause infectious respiratory diseases in poultry that are chronic. Arbutin (AR) possesses anti-inflammatory, bacteriostatic, antitussive, and expectorant pharmacological effects, but whether it exerts regulatory effects on <em>MG</em>-induced pneumonia and fibrosis remains unclear. The study results unveiled that pulmonary connective tissue hyperplasia, pulmonary capillary congestion, and inflammatory cell infiltration, as well as serum levels of cytokines (i.e., TNF-α, IL-1β, IL-6, and IL-10), were elevated after <em>MG</em> infection. Collagen fibers were significantly deposited in the lung tissue from <em>MG</em>-infected chicks. Furthermore, the expression levels of key factors in the JAK2/STAT3 and TGF-β/Smad pathways markedly increased. AR intervention significantly alleviated <em>MG</em>-induced pneumonic injury, and reduced collagen deposition and the expression of fibrosis markers in the lung tissue. AR reduced the degree of pulmonary fibrosis by regulating key factors of the JAK2/STAT3 signaling pathway in the <em>MG</em>-infected HD11 cells. Thus, AR effectively reduced the expression of inflammatory factors by regulating the JAK2/STAT3 signaling pathway, thereby improving lung inflammation and fibrosis.</div></div>","PeriodicalId":20459,"journal":{"name":"Poultry Science","volume":"103 12","pages":"Article 104434"},"PeriodicalIF":3.8,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142522712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-19DOI: 10.1016/j.psj.2024.104428
Lijie Li , Baishi Lei , Wuchao Zhang , Weizhu Wang , Chuanchuan Shang , Yibin Hu , Kuan Zhao , Wanzhe Yuan
Novel duck reovirus disease is an infectious disease mainly caused by novel duck reovirus (NDRV), which is characterized by spleen necrosis and persistent diarrhea in ducks. However, the pathogenic mechanism of NDRV infection in Cherry Valley ducks remains unclear. To investigate the distribution of NDRV in the intestines of Cherry Valley ducks, intestinal morphogenesis, intestinal permeability, inflammatory cytokines, and the expression of tight junction proteins (TJPs), we introduced NDRV via intramuscular infection. The diversity and composition of ileum flora and content of short-chain fatty acids (SCFAs) were analyzed using Illumina MiSeq sequencing. The relationship between changes in the intestinal microbial community and intestinal damage in Cherry Valley ducks infected with NDRV was also assessed to offer new insights into the pathogenesis of NDRV and intestinal flora composition. The results showed that intestinal inflammation and barrier dysfunction occurred following NDRV infection. Additionally, a significant reduction in dominant bacterial species and a decrease in SCFA content within the intestinal microbiota led to weakened colonization resistance and the enrichment of opportunistic pathogens, exacerbating intestinal damage post-NDRV infection. Notably, TJPs and inflammatory cytokine disruptions were linked to a decline in SCFA-producing bacteria and an accumulation of pathogenic bacteria. In summary, changes in the ileum intestinal flora and disruptions to the intestinal barrier were associated with NDRV infection. Consequently, disturbances in intestinal flora caused by NDRV infection can lead to intestinal damage. These findings may offer us a new perspective, targeting the gut microbiota to better understand the progression of NDRV disease and investigate its underlying pathogenesis.
{"title":"The disturbance of intestinal microbiome caused by the novel duck reovirus infection in Cherry Valley ducklings can induce intestinal damage","authors":"Lijie Li , Baishi Lei , Wuchao Zhang , Weizhu Wang , Chuanchuan Shang , Yibin Hu , Kuan Zhao , Wanzhe Yuan","doi":"10.1016/j.psj.2024.104428","DOIUrl":"10.1016/j.psj.2024.104428","url":null,"abstract":"<div><div>Novel duck reovirus disease is an infectious disease mainly caused by novel duck reovirus (<strong>NDRV</strong>), which is characterized by spleen necrosis and persistent diarrhea in ducks. However, the pathogenic mechanism of NDRV infection in Cherry Valley ducks remains unclear. To investigate the distribution of NDRV in the intestines of Cherry Valley ducks, intestinal morphogenesis, intestinal permeability, inflammatory cytokines, and the expression of tight junction proteins (<strong>TJPs</strong>), we introduced NDRV via intramuscular infection. The diversity and composition of ileum flora and content of short-chain fatty acids (<strong>SCFAs</strong>) were analyzed using Illumina MiSeq sequencing. The relationship between changes in the intestinal microbial community and intestinal damage in Cherry Valley ducks infected with NDRV was also assessed to offer new insights into the pathogenesis of NDRV and intestinal flora composition. The results showed that intestinal inflammation and barrier dysfunction occurred following NDRV infection. Additionally, a significant reduction in dominant bacterial species and a decrease in SCFA content within the intestinal microbiota led to weakened colonization resistance and the enrichment of opportunistic pathogens, exacerbating intestinal damage post-NDRV infection. Notably, TJPs and inflammatory cytokine disruptions were linked to a decline in SCFA-producing bacteria and an accumulation of pathogenic bacteria. In summary, changes in the ileum intestinal flora and disruptions to the intestinal barrier were associated with NDRV infection. Consequently, disturbances in intestinal flora caused by NDRV infection can lead to intestinal damage. These findings may offer us a new perspective, targeting the gut microbiota to better understand the progression of NDRV disease and investigate its underlying pathogenesis.</div></div>","PeriodicalId":20459,"journal":{"name":"Poultry Science","volume":"103 12","pages":"Article 104428"},"PeriodicalIF":3.8,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142528237","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-18DOI: 10.1016/j.psj.2024.104438
Huanhuan Wang , Lei Zhang , Yinghui Wei , Hang Liu , Yanlu Wang , Ying Ge , Yuchun Pan
Blue-green eggs exhibit unique shell color; however, compared to commercial layers, blue-green eggshell chickens have lower egg production and lack uniform shell colors. Aiming to confirm the molecular mechanisms that affect shell color and egg production, this study collected the uteruses of 12 blue-green eggshell chickens (BG group) and six Hy-Line layers (Brown group), which had significantly different shell color indexes (SCI) and egg numbers at 300 days of age (EN300). Transcriptome sequencing and comparative analyses were subsequently performed. BG hens were divided into two groups for comparative analysis (BGblue vs. BGgreen and BGlow vs. BGhigh, respectively), based on the differences in SCI and EN300, respectively. The result of weighted gene co-expression network (WGCNA) analysis showed that the sequenced and mapped 16,785 genes were clustered into 18 modules, among which six modules with a total of 4270 genes were highly correlated with SCI and EN300 traits. Five hundred and eleven differentially expressed genes (DEGs) belonged to the six key modules. Through KEGG mapping, GO enrichment, and Cytoscape network analysis, nine Hub genes were tightly associated with SCI and EN300. The up-regulated genes were CCR2, CCR8, CD40LG, IL18RAP, INHBA, and P2RY13, while the down-regulated genes were ABCA13, ADCY2, and GRM1. Co-analyses with the results of comparisons between the BG subgroups revealed that the expression of solute carrier (SLC) proteins and ABC transporters were highly related to eggshell color, while cytokine-cytokine receptor interactions and neuroactive ligand-receptor interactions were key pathways affecting egg production. The expression of extracellular cytokines and membrane receptors were significantly up-regulated in low-yield chickens. The candidate DEGs and pathways found in the study will assist in clarifying the molecular mechanisms affecting shell color and egg production, and improve the breeding of blue-green eggshell chickens.
蓝绿蛋鸡的蛋壳颜色独特,但与商品蛋鸡相比,蓝绿蛋鸡的产蛋量较低,蛋壳颜色不均匀。为了证实影响蛋壳颜色和产蛋量的分子机制,本研究采集了12只蓝绿蛋壳鸡(BG组)和6只Hy-Line蛋鸡(Brown组)的子宫,这两组鸡的蛋壳颜色指数(SCI)和300日龄的产蛋量(EN300)有显著差异。随后进行了转录组测序和比较分析。根据 SCI 和 EN300 的差异,将 BG 母鸡分为两组进行比较分析(分别为 BGblue vs. BGgreen 和 BGlow vs. BGhigh)。加权基因共表达网络(WGCNA)分析结果表明,测序并绘制的16785个基因被聚类为18个模块,其中6个模块共4270个基因与SCI和EN300性状高度相关。有 511 个差异表达基因(DEG)属于这六个关键模块。通过KEGG图谱、GO富集和Cytoscape网络分析,9个Hub基因与SCI和EN300密切相关。上调基因为CCR2、CCR8、CD40LG、IL18RAP、INHBA和P2RY13,下调基因为ABCA13、ADCY2和GRM1。与 BG 亚组间比较结果的共同分析表明,溶质载体(SLC)蛋白和 ABC 转运体的表达与蛋壳颜色高度相关,而细胞因子-细胞因子受体相互作用和神经活性配体-受体相互作用是影响产蛋量的关键途径。低产鸡细胞外细胞因子和膜受体的表达明显上调。该研究发现的候选DEGs和通路将有助于阐明影响蛋壳颜色和产蛋量的分子机制,提高蓝绿蛋壳鸡的育种水平。
{"title":"Transcriptome analyses of shell color and egg production traits between the uteruses of blue-green eggshell chickens and Hy-Line brown layers","authors":"Huanhuan Wang , Lei Zhang , Yinghui Wei , Hang Liu , Yanlu Wang , Ying Ge , Yuchun Pan","doi":"10.1016/j.psj.2024.104438","DOIUrl":"10.1016/j.psj.2024.104438","url":null,"abstract":"<div><div>Blue-green eggs exhibit unique shell color; however, compared to commercial layers, blue-green eggshell chickens have lower egg production and lack uniform shell colors. Aiming to confirm the molecular mechanisms that affect shell color and egg production, this study collected the uteruses of 12 blue-green eggshell chickens (BG group) and six Hy-Line layers (Brown group), which had significantly different shell color indexes (SCI) and egg numbers at 300 days of age (EN300). Transcriptome sequencing and comparative analyses were subsequently performed. BG hens were divided into two groups for comparative analysis (BGblue vs. BGgreen and BGlow vs. BGhigh, respectively), based on the differences in SCI and EN300, respectively. The result of weighted gene co-expression network (WGCNA) analysis showed that the sequenced and mapped 16,785 genes were clustered into 18 modules, among which six modules with a total of 4270 genes were highly correlated with SCI and EN300 traits. Five hundred and eleven differentially expressed genes (DEGs) belonged to the six key modules. Through KEGG mapping, GO enrichment, and Cytoscape network analysis, nine Hub genes were tightly associated with SCI and EN300. The up-regulated genes were <em>CCR2, CCR8, CD40LG, IL</em>18RAP, <em>INHBA</em>, and <em>P2RY13</em>, while the down-regulated genes were <em>ABCA13, ADCY2</em>, and <em>GRM1</em>. Co-analyses with the results of comparisons between the BG subgroups revealed that the expression of solute carrier (SLC) proteins and ABC transporters were highly related to eggshell color, while cytokine-cytokine receptor interactions and neuroactive ligand-receptor interactions were key pathways affecting egg production. The expression of extracellular cytokines and membrane receptors were significantly up-regulated in low-yield chickens. The candidate DEGs and pathways found in the study will assist in clarifying the molecular mechanisms affecting shell color and egg production, and improve the breeding of blue-green eggshell chickens.</div></div>","PeriodicalId":20459,"journal":{"name":"Poultry Science","volume":"103 12","pages":"Article 104438"},"PeriodicalIF":3.8,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142546956","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fowl adenovirus type 4 (FAdV-4) and duck adenovirus type 3 (DAdV-3) are the causative agents of clinical diseases in poultry and have caused considerable economic losses to the waterfowl industry in China. Both FAdV-4 and DAdV-3 are classified into the genus Aviadenovirus under the family Adenoviridae. The high-resolution melting (HRM) assay has become a useful method for virus genotyping, which offers the possibility of rapidly developing a differentiation technique in which the melting profile depends on the GC content of the product in the qPCR platform. The aim of this study was to develop a qPCR-HRM assay for sensitive FAdV-4 and DAdV-3 detection and differentiation. Here, specific primers were designed on the basis of the 100 K genes of FAdV-4 and DAdV-3, and a qPCR-HRM assay was established through optimization of the reaction conditions. A specificity test revealed that this method could detect only FAdV-4 and DAdV-3, with no cross-reaction with other common duck-derived viruses. A sensitivity test revealed that the lowest detection limits of FAdV-4 and DAdV-3 were 2.84 copies/µL and 2.85 copies/µL, respectively. A repeatability test demonstrated that the coefficient of variation was less than 2.5 % in both the intragroup and the intergroup analyses. Field sample distributions of FAdV-4 and DAdV-3 were investigated, and the percentages of DAdV-3-positive, FAdV-4-positive and coinfection-positive in Muscovy ducks were 27.78 %, 16.67 % and 11.11 %, respectively. Further studies are needed to provide more insight into the pathogenesis of FAdV-4 and DAdV-3 coinfection in ducks. In conclusion, the qPCR-HRM assay provides an accurate, sensitive, reliable and cost-effective alternative method for detecting and distinguishing FAdV-4 and DAdV-3.
{"title":"Detection and differentiation of fowl adenovirus serotype 4 and duck adenovirus 3 using high resolution melting curve assay","authors":"Shuyu Chen , Cuiteng Chen , Mengyan Zhang , YuYi Chen , Wenyu Zhang , Huanru Fu , Yu Huang , Longfei Cheng , Chunhe Wan","doi":"10.1016/j.psj.2024.104426","DOIUrl":"10.1016/j.psj.2024.104426","url":null,"abstract":"<div><div>Fowl adenovirus type 4 (FAdV-4) and duck adenovirus type 3 (DAdV-3) are the causative agents of clinical diseases in poultry and have caused considerable economic losses to the waterfowl industry in China. Both FAdV-4 and DAdV-3 are classified into the genus <em>Aviadenovirus</em> under the family <em>Adenoviridae</em>. The high-resolution melting (HRM) assay has become a useful method for virus genotyping, which offers the possibility of rapidly developing a differentiation technique in which the melting profile depends on the GC content of the product in the qPCR platform. The aim of this study was to develop a qPCR-HRM assay for sensitive FAdV-4 and DAdV-3 detection and differentiation. Here, specific primers were designed on the basis of the 100 K genes of FAdV-4 and DAdV-3, and a qPCR-HRM assay was established through optimization of the reaction conditions. A specificity test revealed that this method could detect only FAdV-4 and DAdV-3, with no cross-reaction with other common duck-derived viruses. A sensitivity test revealed that the lowest detection limits of FAdV-4 and DAdV-3 were 2.84 copies/µL and 2.85 copies/µL, respectively. A repeatability test demonstrated that the coefficient of variation was less than 2.5 % in both the intragroup and the intergroup analyses. Field sample distributions of FAdV-4 and DAdV-3 were investigated, and the percentages of DAdV-3-positive, FAdV-4-positive and coinfection-positive in Muscovy ducks were 27.78 %, 16.67 % and 11.11 %, respectively. Further studies are needed to provide more insight into the pathogenesis of FAdV-4 and DAdV-3 coinfection in ducks. In conclusion, the qPCR-HRM assay provides an accurate, sensitive, reliable and cost-effective alternative method for detecting and distinguishing FAdV-4 and DAdV-3.</div></div>","PeriodicalId":20459,"journal":{"name":"Poultry Science","volume":"103 12","pages":"Article 104426"},"PeriodicalIF":3.8,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142567014","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-18DOI: 10.1016/j.psj.2024.104437
Dandan Sun , Yongtong Liu , Xiaoqin Li, Mengqi Ge, Meiyi Zhu, Yuqin He, Zhuocheng Hou
To deepen our understanding of long-chain fatty acid carbon chain elongation and desaturation in ducks, this study systematically analyzed the transcriptional activities of key gene promoters, including ELOVLs, FADSs, and SCDs. Predictive modeling coupled with statistical analysis revealed a prevalence of binding motifs for transcription factors, particularly those associated with Sp1, NF-1, and C/EBPalpha. Moreover, variation analysis of resequencing data from both wild and domestic ducks, specifically mallards and Pekin ducks, informed targeted mutagenesis within the core promoter regions of ELOVL2, ELOVL5, and ELOVL6. Notably, mutations at positions -56 G>C in ELOVL2, -52 T>C in ELOVL5, and -513 T>C in ELOVL6 significantly diminished transcriptional activity. These findings substantially enhance our understanding of the molecular mechanisms regulating the biosynthesis of long-chain fatty acids in ducks and support future genetic selection initiatives aimed at developing Pekin duck breeds with enhanced nutritional value.
{"title":"Transcriptional activity and variation analysis of genes critical for long-chain fatty acid (C≥16) elongation and desaturation in Pekin ducks","authors":"Dandan Sun , Yongtong Liu , Xiaoqin Li, Mengqi Ge, Meiyi Zhu, Yuqin He, Zhuocheng Hou","doi":"10.1016/j.psj.2024.104437","DOIUrl":"10.1016/j.psj.2024.104437","url":null,"abstract":"<div><div>To deepen our understanding of long-chain fatty acid carbon chain elongation and desaturation in ducks, this study systematically analyzed the transcriptional activities of key gene promoters, including <em>ELOVL</em>s, <em>FADS</em>s, and <em>SCD</em>s. Predictive modeling coupled with statistical analysis revealed a prevalence of binding motifs for transcription factors, particularly those associated with <em>Sp1, NF-1</em>, and <em>C/EBPalpha</em>. Moreover, variation analysis of resequencing data from both wild and domestic ducks, specifically mallards and Pekin ducks, informed targeted mutagenesis within the core promoter regions of <em>ELOVL2, ELOVL5</em>, and <em>ELOVL6</em>. Notably, mutations at positions -56 G>C in <em>ELOVL2</em>, -52 T>C in <em>ELOVL5</em>, and -513 T>C in <em>ELOVL6</em> significantly diminished transcriptional activity. These findings substantially enhance our understanding of the molecular mechanisms regulating the biosynthesis of long-chain fatty acids in ducks and support future genetic selection initiatives aimed at developing Pekin duck breeds with enhanced nutritional value.</div></div>","PeriodicalId":20459,"journal":{"name":"Poultry Science","volume":"103 12","pages":"Article 104437"},"PeriodicalIF":3.8,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142593459","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}