Saad Aljubayrin, B. Yang, Christian S. Jensen, Rui Zhang
With the rapidly growing availability of vehicle trajectory data, travel costs such as travel time and fuel consumption can be captured accurately as distributions (e.g., travel time distributions) instead of deterministic values (e.g., average travel times). We study a new path finding problem in uncertain road networks, where paths have travel cost distributions. Given a source and a destination, we find optimal, non-dominated paths connecting the source and the destination, where the optimality is defined in terms of the stochastic dominance among cost distributions of paths. We first design an A based framework that utilizes the uncertain graph to obtain the most accurate cost distributions while finding the candidate paths. Next, we propose a three-stage dominance examination method that employs extreme values in each candidate path's cost distribution for early detection of dominated paths, thus reducing the need for expensive distributions convolutions. We conduct extensive experiments using real world road network and trajectory data. The results show that our algorithm outperforms baseline algorithms by up to two orders of magnitude in terms of query response time while achieving the most accurate results.
{"title":"Finding non-dominated paths in uncertain road networks","authors":"Saad Aljubayrin, B. Yang, Christian S. Jensen, Rui Zhang","doi":"10.1145/2996913.2996964","DOIUrl":"https://doi.org/10.1145/2996913.2996964","url":null,"abstract":"With the rapidly growing availability of vehicle trajectory data, travel costs such as travel time and fuel consumption can be captured accurately as distributions (e.g., travel time distributions) instead of deterministic values (e.g., average travel times). We study a new path finding problem in uncertain road networks, where paths have travel cost distributions. Given a source and a destination, we find optimal, non-dominated paths connecting the source and the destination, where the optimality is defined in terms of the stochastic dominance among cost distributions of paths. We first design an A based framework that utilizes the uncertain graph to obtain the most accurate cost distributions while finding the candidate paths. Next, we propose a three-stage dominance examination method that employs extreme values in each candidate path's cost distribution for early detection of dominated paths, thus reducing the need for expensive distributions convolutions. We conduct extensive experiments using real world road network and trajectory data. The results show that our algorithm outperforms baseline algorithms by up to two orders of magnitude in terms of query response time while achieving the most accurate results.","PeriodicalId":20525,"journal":{"name":"Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","volume":"301 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2016-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89036965","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
RFID (Radio Frequency Identification)-based object tracking is increasingly deployed and used in indoor environments such as airports, shopping malls, etc. However, the inherent noise in the raw RFID data makes it difficult to support queries and analyses on the data. In this paper, we propose an RFID data cleansing based on regular expressions. We generate the regular expressions in an automaton that captures all possible indoor paths from the spatial and temporal aspects of indoor space and deployed readers. Given the raw data of an object, the proposed matching algorithm finds all the matching paths using the automaton. We evaluate the proposed approach by conducting experimental studies using real dataset. The results demonstrate the effectiveness of the propose approach.
{"title":"Cleansing indoor RFID data using regular expressions","authors":"A. Baba, Hua Lu, Wei-Shinn Ku, T. Pedersen","doi":"10.1145/2996913.2996979","DOIUrl":"https://doi.org/10.1145/2996913.2996979","url":null,"abstract":"RFID (Radio Frequency Identification)-based object tracking is increasingly deployed and used in indoor environments such as airports, shopping malls, etc. However, the inherent noise in the raw RFID data makes it difficult to support queries and analyses on the data. In this paper, we propose an RFID data cleansing based on regular expressions. We generate the regular expressions in an automaton that captures all possible indoor paths from the spatial and temporal aspects of indoor space and deployed readers. Given the raw data of an object, the proposed matching algorithm finds all the matching paths using the automaton. We evaluate the proposed approach by conducting experimental studies using real dataset. The results demonstrate the effectiveness of the propose approach.","PeriodicalId":20525,"journal":{"name":"Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","volume":"95 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2016-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76228551","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Marjan Alirezaie, Franziska Klügl-Frohnmeyer, A. Loutfi
This paper depicts a sensor-based map navigation approach which targets users, who due to disabilities or lack of technical knowledge are currently not in the focus of map system developments for personalized information. What differentiates our approach from the state-of-art mostly integrating localized social media data, is that our vision is to integrate real time sensor generated data that indicates the situation of different phenomena (such as the physiological functions of the body) related to the user. The challenge hereby is mainly related to knowledge representation and integration. The tentative impact of our vision for future navigation systems is reflected within a scenario.
{"title":"Knowing without telling: integrating sensing and mapping for creating an artificial companion","authors":"Marjan Alirezaie, Franziska Klügl-Frohnmeyer, A. Loutfi","doi":"10.1145/2996913.2996961","DOIUrl":"https://doi.org/10.1145/2996913.2996961","url":null,"abstract":"This paper depicts a sensor-based map navigation approach which targets users, who due to disabilities or lack of technical knowledge are currently not in the focus of map system developments for personalized information. What differentiates our approach from the state-of-art mostly integrating localized social media data, is that our vision is to integrate real time sensor generated data that indicates the situation of different phenomena (such as the physiological functions of the body) related to the user. The challenge hereby is mainly related to knowledge representation and integration. The tentative impact of our vision for future navigation systems is reflected within a scenario.","PeriodicalId":20525,"journal":{"name":"Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","volume":"25 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2016-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81297025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The recent increase in attention to ride-sharing applications demonstrates the importance of routing algorithms for multiple users who obtain benefits from confluence, that is, traveling together on all or part of their routes. We propose novel and flexible formulation of routing optimization for multiple users who have their respective sources and a single common destination. The formulation is general enough to express each user's benefit (or cost) of confluence for every combination of users. Hence, the formulation can represent a wide range of applications and subsumes almost all formulations proposed in literature. We establish an efficient exact method for the formulation. Interestingly, we found well-known Dreyfus-Wagner Algorithm for the Minimum Steiner Tree Problem (MSTP) is extensible for ours, although our formulation is much harder than the MSTP. Our experimental results obtained on large-scale road networks reveal that our method is efficient in practical settings.
{"title":"Multi-user routing to single destination with confluence","authors":"Kazuki Takise, Yasuhito Asano, Masatoshi Yoshikawa","doi":"10.1145/2996913.2997018","DOIUrl":"https://doi.org/10.1145/2996913.2997018","url":null,"abstract":"The recent increase in attention to ride-sharing applications demonstrates the importance of routing algorithms for multiple users who obtain benefits from confluence, that is, traveling together on all or part of their routes. We propose novel and flexible formulation of routing optimization for multiple users who have their respective sources and a single common destination. The formulation is general enough to express each user's benefit (or cost) of confluence for every combination of users. Hence, the formulation can represent a wide range of applications and subsumes almost all formulations proposed in literature. We establish an efficient exact method for the formulation. Interestingly, we found well-known Dreyfus-Wagner Algorithm for the Minimum Steiner Tree Problem (MSTP) is extensible for ours, although our formulation is much harder than the MSTP. Our experimental results obtained on large-scale road networks reveal that our method is efficient in practical settings.","PeriodicalId":20525,"journal":{"name":"Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","volume":"13 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2016-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82841881","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Public bus services in many cities in countries like India are controlled by private owners, hence, building up a database for all the bus routes is non-trivial. In this paper, we leverage smart-phone based sensing to crowdsource and populate the information repository for bus routes in a city. We have developed an intelligent data logging module for smart-phones and a server side processing mechanism to extract roads and bus routes information. From a 3 month long study involving more than 30 volunteers in 3 different cities in India, we found that the developed system, CrowdMap, can annotate bus routes with a mean error of 10m, while consuming 80% less energy compared to a continuous GPS based system.
{"title":"Unsupervised annotated city traffic map generation","authors":"Rohit Verma, Surjya Ghosh, Aviral Shrivastava, Niloy Ganguly, Bivas Mitra, Sandip Chakraborty","doi":"10.1145/2996913.2996942","DOIUrl":"https://doi.org/10.1145/2996913.2996942","url":null,"abstract":"Public bus services in many cities in countries like India are controlled by private owners, hence, building up a database for all the bus routes is non-trivial. In this paper, we leverage smart-phone based sensing to crowdsource and populate the information repository for bus routes in a city. We have developed an intelligent data logging module for smart-phones and a server side processing mechanism to extract roads and bus routes information. From a 3 month long study involving more than 30 volunteers in 3 different cities in India, we found that the developed system, CrowdMap, can annotate bus routes with a mean error of 10m, while consuming 80% less energy compared to a continuous GPS based system.","PeriodicalId":20525,"journal":{"name":"Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","volume":"6 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2016-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87820456","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Michael Matheny, Raghvendra Singh, L. Zhang, Kaiqiang Wang, J. M. Phillips
Finding anomalous regions within spatial data sets is a central task for biosurveillance, homeland security, policy making, and many other important areas. These communities have mainly settled on spatial scan statistics as a rigorous way to discover regions where a measured quantity (e.g., crime) is statistically significant in its difference from a baseline population. However, most common approaches are inefficient and thus, can only be run with very modest data sizes (a few thousand data points) or make assumptions on the geographic distributions of the data. We address these challenges by designing, exploring, and analyzing sample-then-scan algorithms. These algorithms randomly sample data at two scales, one to define regions and the other to approximate the counts in these regions. Our experiments demonstrate that these algorithms are efficient and accurate independent of the size of the original data set, and our analysis explains why this is the case. For the first time, these sample-then-scan algorithms allow spatial scan statistics to run on a million or more data points without making assumptions on the spatial distribution of the data. Moreover, our experiments and analysis give insight into when it is appropriate to trust the various types of spatial anomalies when the data is modeled as a random sample from a larger but unknown data set.
{"title":"Scalable spatial scan statistics through sampling","authors":"Michael Matheny, Raghvendra Singh, L. Zhang, Kaiqiang Wang, J. M. Phillips","doi":"10.1145/2996913.2996939","DOIUrl":"https://doi.org/10.1145/2996913.2996939","url":null,"abstract":"Finding anomalous regions within spatial data sets is a central task for biosurveillance, homeland security, policy making, and many other important areas. These communities have mainly settled on spatial scan statistics as a rigorous way to discover regions where a measured quantity (e.g., crime) is statistically significant in its difference from a baseline population. However, most common approaches are inefficient and thus, can only be run with very modest data sizes (a few thousand data points) or make assumptions on the geographic distributions of the data. We address these challenges by designing, exploring, and analyzing sample-then-scan algorithms. These algorithms randomly sample data at two scales, one to define regions and the other to approximate the counts in these regions. Our experiments demonstrate that these algorithms are efficient and accurate independent of the size of the original data set, and our analysis explains why this is the case. For the first time, these sample-then-scan algorithms allow spatial scan statistics to run on a million or more data points without making assumptions on the spatial distribution of the data. Moreover, our experiments and analysis give insight into when it is appropriate to trust the various types of spatial anomalies when the data is modeled as a random sample from a larger but unknown data set.","PeriodicalId":20525,"journal":{"name":"Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","volume":"191 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2016-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75830233","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bo Lyu, Shijian Li, Yanhua Li, Jie Fu, Andrew C. Trapp, Haiyong Xie, Yong Liao
The fast pace of global urbanization is drastically changing the population distributions over the world, which leads to significant changes in geographical population densities. Such changes in turn alter the underlying geographical power demand over time, and drive power substations to become over-supplied (demand << capacity) or under-supplied (demand ≈ capacity). In this paper, we make the first attempt to investigate the problem of power substation-user assignment by analyzing large-scale power grid data. We develop a Scalable Power User Assignment (SPUA) framework, that takes large-scale spatial power user/substation distribution data and temporal user power consumption data as input, and assigns users to substations, in a manner that minimizes the maximum substation utilization among all substations. To evaluate the performance of our SPUA framework, we conduct evaluations on real power consumption data and user/substation location data collected from a province in China for 35 days in 2015. The evaluation results demonstrate that our SPUA framework can achieve a 20%--65% reduction on the maximum substation utilization, and 2 to 3.7 times reduction on total transmission loss over other baseline methods.
{"title":"Scalable user assignment in power grids: a data driven approach","authors":"Bo Lyu, Shijian Li, Yanhua Li, Jie Fu, Andrew C. Trapp, Haiyong Xie, Yong Liao","doi":"10.1145/2996913.2996970","DOIUrl":"https://doi.org/10.1145/2996913.2996970","url":null,"abstract":"The fast pace of global urbanization is drastically changing the population distributions over the world, which leads to significant changes in geographical population densities. Such changes in turn alter the underlying geographical power demand over time, and drive power substations to become over-supplied (demand << capacity) or under-supplied (demand ≈ capacity). In this paper, we make the first attempt to investigate the problem of power substation-user assignment by analyzing large-scale power grid data. We develop a Scalable Power User Assignment (SPUA) framework, that takes large-scale spatial power user/substation distribution data and temporal user power consumption data as input, and assigns users to substations, in a manner that minimizes the maximum substation utilization among all substations. To evaluate the performance of our SPUA framework, we conduct evaluations on real power consumption data and user/substation location data collected from a province in China for 35 days in 2015. The evaluation results demonstrate that our SPUA framework can achieve a 20%--65% reduction on the maximum substation utilization, and 2 to 3.7 times reduction on total transmission loss over other baseline methods.","PeriodicalId":20525,"journal":{"name":"Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","volume":"33 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2016-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74627072","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Samuli Hemminki, Keisuke Kuribayashi, S. Konomi, P. Nurmi, S. Tarkoma
We propose crowd replication as a low-effort, easy to implement and cost-effective mechanism for quantifying the uses, activities, and sociability of public spaces. Crowd replication combines mobile sensing, direct observation, and mathematical modeling to enable resource efficient and accurate quantification of public spaces. The core idea behind crowd replication is to instrument the researcher investigating a public space with sensors embedded on commodity devices and to engage him/her into imitation of people using the space. By combining the collected sensor data with a direct observations and population model, individual sensor traces can be generalized to capture the behavior of a larger population. We validate the use of crowd replication as a data collection mechanism through a field study conducted within an exemplary metropolitan urban space. Results of our evaluation show that crowd replication accurately captures real human dynamics (0.914 correlation between indicators estimated from crowd replication and visual surveillance) and captures data that is representative of the behavior of people within the public space.
{"title":"Quantitative evaluation of public spaces using crowd replication","authors":"Samuli Hemminki, Keisuke Kuribayashi, S. Konomi, P. Nurmi, S. Tarkoma","doi":"10.1145/2996913.2996946","DOIUrl":"https://doi.org/10.1145/2996913.2996946","url":null,"abstract":"We propose crowd replication as a low-effort, easy to implement and cost-effective mechanism for quantifying the uses, activities, and sociability of public spaces. Crowd replication combines mobile sensing, direct observation, and mathematical modeling to enable resource efficient and accurate quantification of public spaces. The core idea behind crowd replication is to instrument the researcher investigating a public space with sensors embedded on commodity devices and to engage him/her into imitation of people using the space. By combining the collected sensor data with a direct observations and population model, individual sensor traces can be generalized to capture the behavior of a larger population. We validate the use of crowd replication as a data collection mechanism through a field study conducted within an exemplary metropolitan urban space. Results of our evaluation show that crowd replication accurately captures real human dynamics (0.914 correlation between indicators estimated from crowd replication and visual surveillance) and captures data that is representative of the behavior of people within the public space.","PeriodicalId":20525,"journal":{"name":"Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","volume":"37 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2016-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79823991","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The Delaunay triangulation is the standard choice for building triangulated irregular networks (TINs) to represent terrain surfaces. However, the Delaunay triangulation is based only on the 2D coordinates of the data points, ignoring their elevation. It has long been recognized that sometimes it may be beneficial to use other, non-Delaunay, criteria to build TINs. Data-dependent triangulations were introduced decades ago to address this. However, they are rarely used in practice, mostly because the optimization of data- dependent criteria often results in triangulations with many thin and elongated triangles. Recently, in the field of computational geometry, higher order Delaunay triangulations (HODTs) were introduced, trying to tackle both issues at the same time-data-dependent criteria and good triangle shape. Nevertheless, most previous studies about them have been limited to theoretical aspects. In this work we present the first extensive experimental study on the practical use of HODTs, as a tool to build data-dependent TINs. We present experiments with two USGS terrains that show that HODTs can give significant improvements over the Delaunay triangulation for the criteria identified as most important for data-dependent triangulations. The resulting triangulations have data-dependent values comparable to those obtained with pure data-dependent approaches, without compromising the shape of the triangles, and are faster to compute.
{"title":"Implementing data-dependent triangulations with higher order Delaunay triangulations","authors":"Natalia Rodríguez, Rodrigo I. Silveira","doi":"10.1145/2996913.2996958","DOIUrl":"https://doi.org/10.1145/2996913.2996958","url":null,"abstract":"The Delaunay triangulation is the standard choice for building triangulated irregular networks (TINs) to represent terrain surfaces. However, the Delaunay triangulation is based only on the 2D coordinates of the data points, ignoring their elevation. It has long been recognized that sometimes it may be beneficial to use other, non-Delaunay, criteria to build TINs. Data-dependent triangulations were introduced decades ago to address this. However, they are rarely used in practice, mostly because the optimization of data- dependent criteria often results in triangulations with many thin and elongated triangles. Recently, in the field of computational geometry, higher order Delaunay triangulations (HODTs) were introduced, trying to tackle both issues at the same time-data-dependent criteria and good triangle shape. Nevertheless, most previous studies about them have been limited to theoretical aspects. In this work we present the first extensive experimental study on the practical use of HODTs, as a tool to build data-dependent TINs. We present experiments with two USGS terrains that show that HODTs can give significant improvements over the Delaunay triangulation for the criteria identified as most important for data-dependent triangulations. The resulting triangulations have data-dependent values comparable to those obtained with pure data-dependent approaches, without compromising the shape of the triangles, and are faster to compute.","PeriodicalId":20525,"journal":{"name":"Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","volume":"27 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2016-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84464266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xun Zhou, Amin Vahedian Khezerlou, A. Liu, M. Shafiq, Fan Zhang
Given a spatial field and the traffic flow between neighboring locations, the early detection of gathering events (edge) problem aims to discover and localize a set of most likely gathering events. It is important for city planners to identify emerging gathering events which might cause public safety or sustainability concerns. However, it is challenging to solve the edge problem due to numerous candidate gathering footprints in a spatial field and the non-trivial task to balance pattern quality and computational efficiency. Prior solutions to model the edge problem lack the ability to describe the dynamic flow of traffic and the potential gathering destinations because they rely on static or undirected footprints. In contrast, in this paper, we model the footprint of a gathering event as a Gathering directed acyclic Graph (G-Graph), where the root of the G-Graph is the potential destination and the directed edges represent the most likely paths traffic takes to move towards the destination. We also proposed an efficient algorithm called SmartEdge to discover the most likely non-overlapping G-Graphs in the given spatial field. Our analysis shows that the proposed G-Graph model and the SmartEdge algorithm have the ability to efficiently and effectively capture important gathering events from real-world human mobility data. Our experimental evaluations show that SmartEdge saves 50% computation time over the baseline algorithm.
{"title":"A traffic flow approach to early detection of gathering events","authors":"Xun Zhou, Amin Vahedian Khezerlou, A. Liu, M. Shafiq, Fan Zhang","doi":"10.1145/2996913.2996998","DOIUrl":"https://doi.org/10.1145/2996913.2996998","url":null,"abstract":"Given a spatial field and the traffic flow between neighboring locations, the early detection of gathering events (edge) problem aims to discover and localize a set of most likely gathering events. It is important for city planners to identify emerging gathering events which might cause public safety or sustainability concerns. However, it is challenging to solve the edge problem due to numerous candidate gathering footprints in a spatial field and the non-trivial task to balance pattern quality and computational efficiency. Prior solutions to model the edge problem lack the ability to describe the dynamic flow of traffic and the potential gathering destinations because they rely on static or undirected footprints. In contrast, in this paper, we model the footprint of a gathering event as a Gathering directed acyclic Graph (G-Graph), where the root of the G-Graph is the potential destination and the directed edges represent the most likely paths traffic takes to move towards the destination. We also proposed an efficient algorithm called SmartEdge to discover the most likely non-overlapping G-Graphs in the given spatial field. Our analysis shows that the proposed G-Graph model and the SmartEdge algorithm have the ability to efficiently and effectively capture important gathering events from real-world human mobility data. Our experimental evaluations show that SmartEdge saves 50% computation time over the baseline algorithm.","PeriodicalId":20525,"journal":{"name":"Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","volume":"2015 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2016-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82618484","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}