Pub Date : 2024-07-24DOI: 10.1177/09544062241258866
Guomin Liu, Jianfei Zhou, Yongjun Yu, Meng Zou, Yao Chen, Zhuang Wang
Composite tubes are widely adopted in engineering protections owning to desirable passive energy absorption. With the aim of enhancing energy absorption and making full use of structural materials, a novel tube inspired by the structure of cattle horn has been designed. It consisted of a shell composed of nested tubes and a core composed of evenly distributed tubes, which are connected by beams. The energy absorption properties of bionic tube, six-cell tube, four-cell tube and circular tube were compared by numerical models verified by axial compression. The factors affecting mechanical responses and energy absorption capacities of bionic tube were analysed. Compared to the six-cell tube, the bionic tube exhibited a 104.91% increase in peak load, a 239.51% increase in mean load and an 83.39% increase in specific energy absorption. Under the premise of ensuring the energy absorption, mean load and crushing force efficiency, the mass and peak load can be controlled by limiting the wall thickness and height of core. The proposed bionic tube had the potential to be applied in the automobile and aerospace industry.
{"title":"Design and mechanical properties analysis of bionic tube based on cattle horn structure","authors":"Guomin Liu, Jianfei Zhou, Yongjun Yu, Meng Zou, Yao Chen, Zhuang Wang","doi":"10.1177/09544062241258866","DOIUrl":"https://doi.org/10.1177/09544062241258866","url":null,"abstract":"Composite tubes are widely adopted in engineering protections owning to desirable passive energy absorption. With the aim of enhancing energy absorption and making full use of structural materials, a novel tube inspired by the structure of cattle horn has been designed. It consisted of a shell composed of nested tubes and a core composed of evenly distributed tubes, which are connected by beams. The energy absorption properties of bionic tube, six-cell tube, four-cell tube and circular tube were compared by numerical models verified by axial compression. The factors affecting mechanical responses and energy absorption capacities of bionic tube were analysed. Compared to the six-cell tube, the bionic tube exhibited a 104.91% increase in peak load, a 239.51% increase in mean load and an 83.39% increase in specific energy absorption. Under the premise of ensuring the energy absorption, mean load and crushing force efficiency, the mass and peak load can be controlled by limiting the wall thickness and height of core. The proposed bionic tube had the potential to be applied in the automobile and aerospace industry.","PeriodicalId":20558,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science","volume":"354 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141783018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-24DOI: 10.1177/09544062241256504
Saurabh K. Yadav, Chandra B. Khatri, Abhishek Kumar, Sumita Chaturvedi
Surface texture plays a role in enhancing the performance of hydrodynamic journal bearings by reducing friction coefficients and increasing load-carrying capacity. However, its impact on the dynamic performance of the bearings remains largely unexplored. This study aims to fill this gap by investigating the optimized surface texture of twin-grooved two-lobe hydrodynamic journal bearings using genetic algorithms. Through the optimization of surface texture, significant enhancements in the dynamic performance of the bearings, including improvements in fluid film damping, stiffness, and omega threshold speed, are achieved. Utilizing GA optimization, textured bearings demonstrate a remarkable enhancement in dynamic performance, with an impressive increase of 195.55% in omega threshold speed. These findings provide valuable insights for enhancing bearing designs and stability, thereby contributing to advancements in tribological engineering.
{"title":"Optimization of twin grooved two-lobe textured hydrodynamic journal bearing design by using genetic algorithm","authors":"Saurabh K. Yadav, Chandra B. Khatri, Abhishek Kumar, Sumita Chaturvedi","doi":"10.1177/09544062241256504","DOIUrl":"https://doi.org/10.1177/09544062241256504","url":null,"abstract":"Surface texture plays a role in enhancing the performance of hydrodynamic journal bearings by reducing friction coefficients and increasing load-carrying capacity. However, its impact on the dynamic performance of the bearings remains largely unexplored. This study aims to fill this gap by investigating the optimized surface texture of twin-grooved two-lobe hydrodynamic journal bearings using genetic algorithms. Through the optimization of surface texture, significant enhancements in the dynamic performance of the bearings, including improvements in fluid film damping, stiffness, and omega threshold speed, are achieved. Utilizing GA optimization, textured bearings demonstrate a remarkable enhancement in dynamic performance, with an impressive increase of 195.55% in omega threshold speed. These findings provide valuable insights for enhancing bearing designs and stability, thereby contributing to advancements in tribological engineering.","PeriodicalId":20558,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science","volume":"38 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141783015","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A quadrilateral non-classical Mindlin element that incorporates voltage effects was introduced for examining the bending and free vibration of piezoelectric multilayer plates. The model was developed to examine multilayer plates in the presence of voltage effects. Hamilton’s principle was initially employed to formulate the equation of motion for a multilayer Mindlin plate, considering both size and voltage effects. The equations of motion were resolved through the Galerkin’s method. The suggested element is a rectangular element featuring four-nodes, each possessing 15 degrees of freedom, accounting for both bending and stretching deformations. This element meets the requirements for C0 continuity and C1 weak continuity, and incorporates size and voltage effects. The results were examined with both experimental and analytical data. Upon investigating the voltage effect, it was found that the stiffness matrix depends on both the magnitude and sign of the voltage. Furthermore, it has been demonstrated that the natural frequencies of higher modes are less affected by voltage variations compared to lower modes. In the end, the model was compared to experimental results obtained from a multilayer microcantilever.
{"title":"A quadrilateral non-classical microplate element considering the voltage effect","authors":"Moharam Habibnejad Korayem, Rouzbeh Nouhi Hefzabad","doi":"10.1177/09544062241256481","DOIUrl":"https://doi.org/10.1177/09544062241256481","url":null,"abstract":"A quadrilateral non-classical Mindlin element that incorporates voltage effects was introduced for examining the bending and free vibration of piezoelectric multilayer plates. The model was developed to examine multilayer plates in the presence of voltage effects. Hamilton’s principle was initially employed to formulate the equation of motion for a multilayer Mindlin plate, considering both size and voltage effects. The equations of motion were resolved through the Galerkin’s method. The suggested element is a rectangular element featuring four-nodes, each possessing 15 degrees of freedom, accounting for both bending and stretching deformations. This element meets the requirements for C<jats:sub>0</jats:sub> continuity and C<jats:sub>1</jats:sub> weak continuity, and incorporates size and voltage effects. The results were examined with both experimental and analytical data. Upon investigating the voltage effect, it was found that the stiffness matrix depends on both the magnitude and sign of the voltage. Furthermore, it has been demonstrated that the natural frequencies of higher modes are less affected by voltage variations compared to lower modes. In the end, the model was compared to experimental results obtained from a multilayer microcantilever.","PeriodicalId":20558,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science","volume":"21 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141783020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-24DOI: 10.1177/09544062241256508
Mert Eren Ayğahoğlu, Abdullah Çakan, Mete Kalyoncu
A wearable chair is designed to reduce musculoskeletal disorders in workers. Two-staged optimization process using The Bees Algorithm is conducted to determine the lowest operable height of the chair and minimize the maximum force among the three supports. Geometric, dimensional, and rotational angle constraints are defined accordingly. A CAD model of the chair is imported into ADAMS software for simulation. The simulation results identified the most stressed rod in the chair. A spring is selected and implemented in ADAMS to counteract the applied force on this rod. A comparison between the force on the most stressed support and the spring force through a defined motion revealed minimal differences, indicating that the spring effectively counteracted the applied force. The results demonstrated the successful application of The Bees Algorithm to wearable chairs and the successful implementation of a spring to counteract applied force, thereby achieving the objectives of this study.
{"title":"Design optimization of a wearable chair using The Bees Algorithm","authors":"Mert Eren Ayğahoğlu, Abdullah Çakan, Mete Kalyoncu","doi":"10.1177/09544062241256508","DOIUrl":"https://doi.org/10.1177/09544062241256508","url":null,"abstract":"A wearable chair is designed to reduce musculoskeletal disorders in workers. Two-staged optimization process using The Bees Algorithm is conducted to determine the lowest operable height of the chair and minimize the maximum force among the three supports. Geometric, dimensional, and rotational angle constraints are defined accordingly. A CAD model of the chair is imported into ADAMS software for simulation. The simulation results identified the most stressed rod in the chair. A spring is selected and implemented in ADAMS to counteract the applied force on this rod. A comparison between the force on the most stressed support and the spring force through a defined motion revealed minimal differences, indicating that the spring effectively counteracted the applied force. The results demonstrated the successful application of The Bees Algorithm to wearable chairs and the successful implementation of a spring to counteract applied force, thereby achieving the objectives of this study.","PeriodicalId":20558,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science","volume":"41 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141783023","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-24DOI: 10.1177/09544062241258912
Ming Li, Xing Yan, Mingpo Zheng, Zhifeng Liu, Fuping Li, Ying Li
Bolted connection is one of the most widely used connection forms in various mechanical structures. However, the discretization of preload during tightening will be aggravated by the presence of geometric error caused by manufacturing. In this work, the geometric error transmitted by all parts of the bolted joint is equated to the existence of a certain wedge angle between the nut and the bearing surface of the connected part, that is, the nut and the bearing surface are in non-parallel contact. A torque-preload mathematical equation is theoretically established to account for non-parallel contact. On this basis, the relation between torque and preload deviation is considered to analyze the formation mechanism of preload deviation according to non-parallel contact. Subsequently, the influence of non-parallel contact on tightening performance was quantitatively analyzed by experiments and finite element. The analysis results showed that the tightening process under non-parallel contact can be divided into two stages: nonlinear increase stage and linear increase stage. Among them, the deviation mainly appears in the first stage. Tightening performance analysis herein is helpful to reduce the influence of geometric error on the preload control and further improve its reliability.
{"title":"Tightening performance analysis of bolted connection considering non-parallel contact","authors":"Ming Li, Xing Yan, Mingpo Zheng, Zhifeng Liu, Fuping Li, Ying Li","doi":"10.1177/09544062241258912","DOIUrl":"https://doi.org/10.1177/09544062241258912","url":null,"abstract":"Bolted connection is one of the most widely used connection forms in various mechanical structures. However, the discretization of preload during tightening will be aggravated by the presence of geometric error caused by manufacturing. In this work, the geometric error transmitted by all parts of the bolted joint is equated to the existence of a certain wedge angle between the nut and the bearing surface of the connected part, that is, the nut and the bearing surface are in non-parallel contact. A torque-preload mathematical equation is theoretically established to account for non-parallel contact. On this basis, the relation between torque and preload deviation is considered to analyze the formation mechanism of preload deviation according to non-parallel contact. Subsequently, the influence of non-parallel contact on tightening performance was quantitatively analyzed by experiments and finite element. The analysis results showed that the tightening process under non-parallel contact can be divided into two stages: nonlinear increase stage and linear increase stage. Among them, the deviation mainly appears in the first stage. Tightening performance analysis herein is helpful to reduce the influence of geometric error on the preload control and further improve its reliability.","PeriodicalId":20558,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science","volume":"69 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141782937","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-24DOI: 10.1177/09544062241257826
KJ Anand, Thippeswamy Ekbote, Saleemsab Doddamani, E Ashoka
Compared to single natural fibre composites, hybridising natural fibres with filler particles presents a promising avenue for enhancing composites physical, mechanical, and damping properties. This study delves into incorporating clamshell powder, a filler derived from clams’ hard protective outer shells, into polymer composites. The focus is on investigating the potential of clamshell powder as a filler material to augment the mechanical and damping properties of epoxy-bamboo mat composites. The weight ratio of clamshell fillers varied from 0% to 9%, and the compression moulding method was used to fabricate the composites. As per ASTM standards, mechanical properties were evaluated by conducting tensile and flexural tests. Free vibration tests by impact hammer technique were employed to evaluate the natural frequency, damping ratio, and mode shapes of developed composites to measure damping properties. Results revealed that adding clamshell filler significantly improved composites tensile strength, flexural strength, and damping properties. The addition of clamshell elevated the tensile strength by 18.5%, and flexural strength by 24.2% for composite with 6 wt% filler, which can be attributed to the efficiency of load transfer and the interfacial bonding between fillers and epoxy matrix. SEM analysis supported the experimental results obtained. The highest damping value is received for 9 wt% filler, showing 30% enhancement compared to composites without clamshell filler. Modal analyses using ANSYS software further validated the positive impact of clamshell filler. This study underscores the potential of clamshell filler in enhancing the mechanical and damping properties of epoxy-bamboo composites, broadening their applicability in various fields.
{"title":"Effect of clamshell powder on the mechanical and damping properties of epoxy-bamboo composites","authors":"KJ Anand, Thippeswamy Ekbote, Saleemsab Doddamani, E Ashoka","doi":"10.1177/09544062241257826","DOIUrl":"https://doi.org/10.1177/09544062241257826","url":null,"abstract":"Compared to single natural fibre composites, hybridising natural fibres with filler particles presents a promising avenue for enhancing composites physical, mechanical, and damping properties. This study delves into incorporating clamshell powder, a filler derived from clams’ hard protective outer shells, into polymer composites. The focus is on investigating the potential of clamshell powder as a filler material to augment the mechanical and damping properties of epoxy-bamboo mat composites. The weight ratio of clamshell fillers varied from 0% to 9%, and the compression moulding method was used to fabricate the composites. As per ASTM standards, mechanical properties were evaluated by conducting tensile and flexural tests. Free vibration tests by impact hammer technique were employed to evaluate the natural frequency, damping ratio, and mode shapes of developed composites to measure damping properties. Results revealed that adding clamshell filler significantly improved composites tensile strength, flexural strength, and damping properties. The addition of clamshell elevated the tensile strength by 18.5%, and flexural strength by 24.2% for composite with 6 wt% filler, which can be attributed to the efficiency of load transfer and the interfacial bonding between fillers and epoxy matrix. SEM analysis supported the experimental results obtained. The highest damping value is received for 9 wt% filler, showing 30% enhancement compared to composites without clamshell filler. Modal analyses using ANSYS software further validated the positive impact of clamshell filler. This study underscores the potential of clamshell filler in enhancing the mechanical and damping properties of epoxy-bamboo composites, broadening their applicability in various fields.","PeriodicalId":20558,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science","volume":"71 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141783021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-24DOI: 10.1177/09544062241255588
Yueming Zhang, Shuo Liu, Shuting Ji
In order to study the effect of design parameters on the contact performance of cycloid reducer, a new contact collision force model applicable to various restitution coefficients is proposed. Firstly, based on the L-N nonlinear contact theory and improved Winkler model, a contact force model with contact depth index and damping was proposed. Secondly, Hertzian contact theory was used to clarify the contact area, precise position and relative contact speed between the output pin and the cycloidal wheel in the presence of a clearance. By using the improved contact force model and simulation analysis, the effects of structural design parameters and working condition parameters on contact force were discussed. Finally, with the goal of reducing the contact force and volume of the reducer, the NSGA-II multi-objective genetic algorithm was used to construct an optimization model for the structural parameters of the reducer. The results show that the optimized structural parameters can effectively reduce the contact force of the output mechanism.
{"title":"Contact analysis of output mechanism of cycloidal pinwheel reducer","authors":"Yueming Zhang, Shuo Liu, Shuting Ji","doi":"10.1177/09544062241255588","DOIUrl":"https://doi.org/10.1177/09544062241255588","url":null,"abstract":"In order to study the effect of design parameters on the contact performance of cycloid reducer, a new contact collision force model applicable to various restitution coefficients is proposed. Firstly, based on the L-N nonlinear contact theory and improved Winkler model, a contact force model with contact depth index and damping was proposed. Secondly, Hertzian contact theory was used to clarify the contact area, precise position and relative contact speed between the output pin and the cycloidal wheel in the presence of a clearance. By using the improved contact force model and simulation analysis, the effects of structural design parameters and working condition parameters on contact force were discussed. Finally, with the goal of reducing the contact force and volume of the reducer, the NSGA-II multi-objective genetic algorithm was used to construct an optimization model for the structural parameters of the reducer. The results show that the optimized structural parameters can effectively reduce the contact force of the output mechanism.","PeriodicalId":20558,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science","volume":"22 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141783016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study investigated the performance of High-Velocity Oxygen Fuel (HVOF)-sprayed Titanium Carbide (TiC) and TiC + 50C (50%TiC + 50%CoNi) coatings on SS316 steel under three-body abrasion conditions. The microstructural analysis revealed a homogeneous distribution of TiC particles within the TiC coatings, while the TiC + 50C coatings exhibited a more complex microstructure due to the presence of Co-Ni alloy. Mechanical testing demonstrated the superior microhardness of TiC coatings compared to the SS316 substrate, suggesting enhanced wear resistance. Slurry abrasion tests indicated reduced mass loss rates for both TiC and TiC + 50C coatings compared to uncoated SS316 steel, with TiC coatings exhibiting superior resistance to abrasive wear. Post-abrasion examination revealed distinct wear patterns, including abrasive chipping, plowing marks, crater formation, wear traces, and surface ruggedness.
{"title":"Exploring wear resistance: Three-body abrasion evaluation of HVOF-sprayed TiC and CoNi coatings on SS316 steel","authors":"Vikrant Singh, Samandeep Kaur, Vijay Kumar, Anuj Bansal, Anil Kumar Singla, Sachin Jha","doi":"10.1177/09544062241262257","DOIUrl":"https://doi.org/10.1177/09544062241262257","url":null,"abstract":"This study investigated the performance of High-Velocity Oxygen Fuel (HVOF)-sprayed Titanium Carbide (TiC) and TiC + 50C (50%TiC + 50%CoNi) coatings on SS316 steel under three-body abrasion conditions. The microstructural analysis revealed a homogeneous distribution of TiC particles within the TiC coatings, while the TiC + 50C coatings exhibited a more complex microstructure due to the presence of Co-Ni alloy. Mechanical testing demonstrated the superior microhardness of TiC coatings compared to the SS316 substrate, suggesting enhanced wear resistance. Slurry abrasion tests indicated reduced mass loss rates for both TiC and TiC + 50C coatings compared to uncoated SS316 steel, with TiC coatings exhibiting superior resistance to abrasive wear. Post-abrasion examination revealed distinct wear patterns, including abrasive chipping, plowing marks, crater formation, wear traces, and surface ruggedness.","PeriodicalId":20558,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science","volume":"50 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141783029","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-23DOI: 10.1177/09544062241262223
Hui Yang, Dongtian Wu, Yan Wang, Hong Xiao
Space missions require novel mechanisms that can have compact form in complex space environments. This study proposes a modular triangular pyramid parabolic cylinder deployment mechanism. The modular deployable unit contains an over-constrained triangular pyramid deployable mechanism and a symmetrical trapezoidal Bricard linkage that drives the longitudinal and transverse motions of the mechanism. A cable net is added between two symmetrical linkages to form a parabolic cylindrical reflector and is analyzed by the force density method. The Denavit-Hartenberg (D-H) coordinate method is used to analyze the kinematic characteristics. Based on the analytical solution for the angular displacement, the degrees of freedom of the mechanism are derived from screw theory. Subsequently, the angular velocity and acceleration of the joint points are obtained. Finally, kinematic models of the modular triangular pyramid parabolic cylinder deployable mechanism are established, and the accuracy of the theoretical model is verified using a numerical method. This novel parabolic cylinder deployable mechanism will have a significant influence in aerospace domain. Crucially, the work has value to design deployment mechanism for parabolic cylinder antenna.
{"title":"Design and kinematics analysis of a parabolic cylinder deployment mechanism with modular over-constrained triangular pyramid","authors":"Hui Yang, Dongtian Wu, Yan Wang, Hong Xiao","doi":"10.1177/09544062241262223","DOIUrl":"https://doi.org/10.1177/09544062241262223","url":null,"abstract":"Space missions require novel mechanisms that can have compact form in complex space environments. This study proposes a modular triangular pyramid parabolic cylinder deployment mechanism. The modular deployable unit contains an over-constrained triangular pyramid deployable mechanism and a symmetrical trapezoidal Bricard linkage that drives the longitudinal and transverse motions of the mechanism. A cable net is added between two symmetrical linkages to form a parabolic cylindrical reflector and is analyzed by the force density method. The Denavit-Hartenberg (D-H) coordinate method is used to analyze the kinematic characteristics. Based on the analytical solution for the angular displacement, the degrees of freedom of the mechanism are derived from screw theory. Subsequently, the angular velocity and acceleration of the joint points are obtained. Finally, kinematic models of the modular triangular pyramid parabolic cylinder deployable mechanism are established, and the accuracy of the theoretical model is verified using a numerical method. This novel parabolic cylinder deployable mechanism will have a significant influence in aerospace domain. Crucially, the work has value to design deployment mechanism for parabolic cylinder antenna.","PeriodicalId":20558,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science","volume":"42 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141783076","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-23DOI: 10.1177/09544062241261593
Junfeng Hu, Hao Zhou
The continuum manipulator exhibits excellent flexibility, enabling it to navigate through unstructured and narrow spaces. However, the current motion capabilities of the continuum arm are limited to expansion, bending, or their combination, which restricts its application range and potential uses. Designing a continuum manipulator capable of twisting motion around its axis poses a significant challenge. In this study, we propose a torsion module for the continuum manipulator that enables twisting motions. This module comprises a central trunk made of a torsion spring and a driving mechanism consisting of two tendons arranged in cylindrical helix symmetry. By stretching these driving cables, the module can achieve twisting motion. We describe the principle behind torsional motion, establish a kinematic model for the continuum torsional module, and analyze how structural parameters affect its performance in terms of twisting motion. Furthermore, we construct a continuum arm incorporating this torsion module to enable both twisting and bending motions. We present examples showcasing the versatile capabilities of this continuum manipulator in various specialized scenarios. Experimental results demonstrate that the addition of torsional functionality enhances dexterity and expands design possibilities for continuum manipulators.
{"title":"Design and performance analysis of continuum manipulator with twisting rotation","authors":"Junfeng Hu, Hao Zhou","doi":"10.1177/09544062241261593","DOIUrl":"https://doi.org/10.1177/09544062241261593","url":null,"abstract":"The continuum manipulator exhibits excellent flexibility, enabling it to navigate through unstructured and narrow spaces. However, the current motion capabilities of the continuum arm are limited to expansion, bending, or their combination, which restricts its application range and potential uses. Designing a continuum manipulator capable of twisting motion around its axis poses a significant challenge. In this study, we propose a torsion module for the continuum manipulator that enables twisting motions. This module comprises a central trunk made of a torsion spring and a driving mechanism consisting of two tendons arranged in cylindrical helix symmetry. By stretching these driving cables, the module can achieve twisting motion. We describe the principle behind torsional motion, establish a kinematic model for the continuum torsional module, and analyze how structural parameters affect its performance in terms of twisting motion. Furthermore, we construct a continuum arm incorporating this torsion module to enable both twisting and bending motions. We present examples showcasing the versatile capabilities of this continuum manipulator in various specialized scenarios. Experimental results demonstrate that the addition of torsional functionality enhances dexterity and expands design possibilities for continuum manipulators.","PeriodicalId":20558,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science","volume":"83 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141783027","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}