首页 > 最新文献

Progress in Oceanography最新文献

英文 中文
Distribution patterns of micronektonic crustaceans (Decapoda, Euphausiacea, and Lophogastrida) in the tropical and subtropical Atlantic Ocean 热带和亚热带大西洋微浮游甲壳类(十足目、大戟科和栉水母纲)的分布模式
IF 3.8 3区 地球科学 Q1 OCEANOGRAPHY Pub Date : 2024-08-17 DOI: 10.1016/j.pocean.2024.103331
Javier Díaz-Pérez , José M. Landeira , Santiago Hernández-León , M. José Reyes-Martínez , Juan Ignacio González-Gordillo

Large pelagic crustaceans are a main component of the micronekton community in the deep-sea having an important role in the food webs and the biological carbon pump. However, they are scarcely studied in comparison to other groups such as mesopelagic fish. Here, we analyse day/night and bathymetric variability in taxonomic composition, abundance, and biomass across a latitudinal transect in the Atlantic Ocean from off Brazil (15°S) to the Canary Islands (25°N). A total of 95 species were identified belonging to 9 different families, of which Euphausiidae was the most abundant family and Acanthephyridae the family contributing the most to the total biomass. We found distinct assemblages associated with Atlantic ecoregions related to the environmental variables. Diel vertical migrations were detected along the entire transect, even crossing the oxygen minimum zone, likely due to the metabolic adaptations of these organisms.

大型中上层甲壳类是深海微浮游生物群落的主要组成部分,在食物网和生物碳泵中发挥着重要作用。然而,与中上层鱼类等其他类群相比,对它们的研究很少。在此,我们分析了大西洋从巴西外海(南纬 15°)到加那利群岛(北纬 25°)纬度横断面上分类组成、丰度和生物量的昼夜变化和水深变化。共鉴定出 95 个物种,隶属于 9 个不同的科,其中大戟科(Euphausiidae)是数量最多的科,而金鱼科(Acanthephyridae)是对总生物量贡献最大的科。我们发现了与大西洋生态区域相关的、与环境变量有关的独特组合。在整个横断面上发现了昼夜垂直洄游,甚至跨越了最小含氧区,这可能是由于这些生物的新陈代谢适应性所致。
{"title":"Distribution patterns of micronektonic crustaceans (Decapoda, Euphausiacea, and Lophogastrida) in the tropical and subtropical Atlantic Ocean","authors":"Javier Díaz-Pérez ,&nbsp;José M. Landeira ,&nbsp;Santiago Hernández-León ,&nbsp;M. José Reyes-Martínez ,&nbsp;Juan Ignacio González-Gordillo","doi":"10.1016/j.pocean.2024.103331","DOIUrl":"10.1016/j.pocean.2024.103331","url":null,"abstract":"<div><p>Large pelagic crustaceans are a main component of the micronekton community in the deep-sea having an important role in the food webs and the biological carbon pump. However, they are scarcely studied in comparison to other groups such as mesopelagic fish. Here, we analyse day/night and bathymetric variability in taxonomic composition, abundance, and biomass across a latitudinal transect in the Atlantic Ocean from off Brazil (15°S) to the Canary Islands (25°N). A total of 95 species were identified belonging to 9 different families, of which Euphausiidae was the most abundant family and Acanthephyridae the family contributing the most to the total biomass. We found distinct assemblages associated with Atlantic ecoregions related to the environmental variables. Diel vertical migrations were detected along the entire transect, even crossing the oxygen minimum zone, likely due to the metabolic adaptations of these organisms.</p></div>","PeriodicalId":20620,"journal":{"name":"Progress in Oceanography","volume":"228 ","pages":"Article 103331"},"PeriodicalIF":3.8,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S007966112400137X/pdfft?md5=5c1f10070cb2698b49432fbe6212178b&pid=1-s2.0-S007966112400137X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142012566","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mapping phenoregions and phytoplankton seasonality in Northeast Pacific marine coastal ecosystems via a satellite-based approach 通过卫星方法绘制东北太平洋海洋沿岸生态系统的表层区域和浮游植物季节性分布图
IF 3.8 3区 地球科学 Q1 OCEANOGRAPHY Pub Date : 2024-08-17 DOI: 10.1016/j.pocean.2024.103336
Sejal Pramlall , Jennifer M. Jackson , Christian Marchese , Karyn D. Suchy , Brian P.V. Hunt , Maycira Costa

Phytoplankton phenology describes yearly algal growth cycles and characterises the timing, duration, and magnitude of bloom occurrences. This study used satellite chlorophyll-a data from 1998 to 2020 and the Hierarchical Agglomerative Clustering method to define phenoregions based on phytoplankton phenology spatial patterns over the British Columbia and Southeast Alaska coastal oceans. The defined phenoregions were used to simplify the spatial complexity of the heterogenous study region and thus better describe phytoplankton seasonality across the target area. The cluster analysis allowed the delineation of four coherent regions: two coastal regions and northern and southern shelf/offshore regions. Results showed that each phenoregion had distinguishable phytoplankton phenological characteristics, likely due to different physical forcings acting in these areas. Moreover, the interannual variability of the spring bloom initiation was evaluated considering interactions between sea surface temperature (SST) anomalies and the El Niño Southern Oscillation Index (ENSO). Early spring blooms were associated with positive SST anomalies and El Niño conditions; conversely, average or late spring blooms occurred in years with negative SST anomalies and La Niña conditions, with the strongest relationship occurring in the southern shelf/offshore phenoregion. This study provided new insights into the regionalisation of the British Columbia and Southeast Alaska coastal oceans based on phytoplankton phenology patterns. Given the critical role of phytoplankton as the base of the marine food web, such phenoregions have implications for regional zooplankton biomass and fish production. The link between phytoplankton phenology and climate drivers points to the importance of environmental change in phytoplankton bloom dynamics. Further research into the connection between phytoplankton bloom indices and zooplankton community structure and production would be an important step towards using these indices for ecosystem monitoring and fisheries management.

浮游植物物候描述了每年的藻类生长周期,并描述了藻华发生的时间、持续时间和规模。本研究利用 1998 年至 2020 年的卫星叶绿素-a 数据和层次聚类法,根据不列颠哥伦比亚省和阿拉斯加东南部沿岸海洋的浮游植物物候学空间模式定义了表层区域。定义的表层区域用于简化异质研究区域的空间复杂性,从而更好地描述目标区域的浮游植物季节性。通过聚类分析,可以划分出四个连贯的区域:两个沿岸区域以及北部和南部陆架/近海区域。结果表明,每个表层区域都有不同的浮游植物物候特征,这可能是由于作用于这些区域的物理作用力不同造成的。此外,考虑到海表温度(SST)异常与厄尔尼诺南方涛动指数(ENSO)之间的相互作用,对春季藻华开始的年际变化进行了评估。早春开花与正的海表温度异常和厄尔尼诺现象有关;相反,在负的海表温度异常和拉尼娜现象出现的年份,春季开花一般或较晚,其中南部陆架/近海表层区域的关系最为密切。这项研究根据浮游植物物候模式,对不列颠哥伦比亚省和阿拉斯加东南部沿岸海洋的区域化提供了新的见解。鉴于浮游植物作为海洋食物网的基础所起的关键作用,这种表层区对区域浮游动物生物量和鱼类产量具有影响。浮游植物物候与气候驱动因素之间的联系表明了环境变化在浮游植物开花动态中的重要性。进一步研究浮游植物开花指数与浮游动物群落结构和产量之间的联系,是将这些指数用于生态系统监测和渔业管理的重要一步。
{"title":"Mapping phenoregions and phytoplankton seasonality in Northeast Pacific marine coastal ecosystems via a satellite-based approach","authors":"Sejal Pramlall ,&nbsp;Jennifer M. Jackson ,&nbsp;Christian Marchese ,&nbsp;Karyn D. Suchy ,&nbsp;Brian P.V. Hunt ,&nbsp;Maycira Costa","doi":"10.1016/j.pocean.2024.103336","DOIUrl":"10.1016/j.pocean.2024.103336","url":null,"abstract":"<div><p>Phytoplankton phenology describes yearly algal growth cycles and characterises the timing, duration, and magnitude of bloom occurrences. This study used satellite chlorophyll-a data from 1998 to 2020 and the Hierarchical Agglomerative Clustering method to define phenoregions based on phytoplankton phenology spatial patterns over the British Columbia and Southeast Alaska coastal oceans. The defined phenoregions were used to simplify the spatial complexity of the heterogenous study region and thus better describe phytoplankton seasonality across the target area. The cluster analysis allowed the delineation of four coherent regions: two coastal regions and northern and southern shelf/offshore regions. Results showed that each phenoregion had distinguishable phytoplankton phenological characteristics, likely due to different physical forcings acting in these areas. Moreover, the interannual variability of the spring bloom initiation was evaluated considering interactions between sea surface temperature (SST) anomalies and the El Niño Southern Oscillation Index (ENSO). Early spring blooms were associated with positive SST anomalies and El Niño conditions; conversely, average or late spring blooms occurred in years with negative SST anomalies and La Niña conditions, with the strongest relationship occurring in the southern shelf/offshore phenoregion. This study provided new insights into the regionalisation of the British Columbia and Southeast Alaska coastal oceans based on phytoplankton phenology patterns. Given the critical role of phytoplankton as the base of the marine food web, such phenoregions have implications for regional zooplankton biomass and fish production. The link between phytoplankton phenology and climate drivers points to the importance of environmental change in phytoplankton bloom dynamics. Further research into the connection between phytoplankton bloom indices and zooplankton community structure and production would be an important step towards using these indices for ecosystem monitoring and fisheries management.</p></div>","PeriodicalId":20620,"journal":{"name":"Progress in Oceanography","volume":"228 ","pages":"Article 103336"},"PeriodicalIF":3.8,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0079661124001423/pdfft?md5=7aa2d9585c327fc795ef3d785b341fea&pid=1-s2.0-S0079661124001423-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142043673","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spatial patterns in chlorophyll a concentration during the winter–spring periods in the Barents Sea 巴伦支海冬春季节叶绿素 a 浓度的空间模式
IF 3.8 3区 地球科学 Q1 OCEANOGRAPHY Pub Date : 2024-08-16 DOI: 10.1016/j.pocean.2024.103332
Vladimir G. Dvoretsky, Veronika V. Vodopianova, Aleksandra S. Bulavina, Ivan A. Pastukhov

Climatic fluctuations have been documented to strongly affect Arctic marine ecosystems. Plankton assemblages serve as the most sensitive indicators of such environmental forcing. We conducted a study to investigate the spatial variability of chlorophyll a (Chl-a) concentration during two pre-bloom periods (March–April 2021 and February–March 2022) in relation to the distribution of different water masses and associated properties. The upper 50 m layer of the water column was homogeneous and stable, characterized by high nutrient concentrations. Our mapping of the Barents Sea based on Chl-a concentrations revealed low estimates during the winter period. In contrast, two distinct Chl-a peaks were observed in the spring. The first region with high Chl-a concentrations was identified in Murmansk Coastal Water and Atlantic Water (0.7–1.4 mg m−3), reflecting the positive impact of the frontal zone between these interacting water masses. The second region with elevated Chl-a concentrations (0.9–1.1 mg m−3) was located in Kolguev-Pechora Water near the southeastern ice edge. Cold water regions (Barents Sea Water, Arctic Water, Novaya Zemlya Coastal Water) exhibited low spring Chl-a concentrations (0.03–0.3 mg m−3). Generalized additive models identified hydrological variables (temperature and salinity), dissolved oxygen content, and nutrient concentrations (nitrite, nitrate, phosphate) as significant predictors explaining a substantial portion of the Chl-a variability.

据记载,气候波动对北极海洋生态系统影响很大。浮游生物群是此类环境胁迫的最敏感指标。我们进行了一项研究,调查了两个开花前时期(2021 年 3 月至 4 月和 2022 年 2 月至 3 月)叶绿素 a(Chl-a)浓度的空间变化与不同水团分布及相关特性的关系。水体上层 50 米水层均匀稳定,营养物质浓度较高。我们根据 Chl-a 浓度绘制的巴伦支海图显示,冬季期间的估计值较低。相比之下,春季出现了两个明显的 Chl-a 高峰。第一个 Chl-a 浓度较高的区域位于摩尔曼斯克沿岸水域和大西洋水域(0.7-1.4 毫克/立方米),反映了这些相互作用的水团之间的锋面带所产生的积极影响。Chl-a 浓度升高(0.9-1.1 毫克/立方米)的第二个区域位于东南冰缘附近的科尔古夫-佩乔拉水域。冷水区(巴伦支海水域、北极水域、新捷姆利亚沿岸水域)的春季 Chl-a 浓度较低(0.03-0.3 毫克/立方米)。广义加和模型确定水文变量(温度和盐度)、溶解氧含量和营养物浓度(亚硝酸盐、硝酸盐、磷酸盐)是重要的预测因子,可解释 Chl-a 变化的很大一部分。
{"title":"Spatial patterns in chlorophyll a concentration during the winter–spring periods in the Barents Sea","authors":"Vladimir G. Dvoretsky,&nbsp;Veronika V. Vodopianova,&nbsp;Aleksandra S. Bulavina,&nbsp;Ivan A. Pastukhov","doi":"10.1016/j.pocean.2024.103332","DOIUrl":"10.1016/j.pocean.2024.103332","url":null,"abstract":"<div><p>Climatic fluctuations have been documented to strongly affect Arctic marine ecosystems. Plankton assemblages serve as the most sensitive indicators of such environmental forcing. We conducted a study to investigate the spatial variability of chlorophyll <em>a</em> (Chl-a) concentration during two pre-bloom periods (March–April 2021 and February–March 2022) in relation to the distribution of different water masses and associated properties. The upper 50 m layer of the water column was homogeneous and stable, characterized by high nutrient concentrations. Our mapping of the Barents Sea based on Chl-a concentrations revealed low estimates during the winter period. In contrast, two distinct Chl-a peaks were observed in the spring. The first region with high Chl-a concentrations was identified in Murmansk Coastal Water and Atlantic Water (0.7–1.4 mg m<sup>−3</sup>), reflecting the positive impact of the frontal zone between these interacting water masses. The second region with elevated Chl-a concentrations (0.9–1.1 mg m<sup>−3</sup>) was located in Kolguev-Pechora Water near the southeastern ice edge. Cold water regions (Barents Sea Water, Arctic Water, Novaya Zemlya Coastal Water) exhibited low spring Chl-a concentrations (0.03–0.3 mg m<sup>−3</sup>). Generalized additive models identified hydrological variables (temperature and salinity), dissolved oxygen content, and nutrient concentrations (nitrite, nitrate, phosphate) as significant predictors explaining a substantial portion of the Chl-a variability.</p></div>","PeriodicalId":20620,"journal":{"name":"Progress in Oceanography","volume":"228 ","pages":"Article 103332"},"PeriodicalIF":3.8,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142012565","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spatiotemporal variations in vertical profiles of Fukushima-derived 137Cs in the Kuroshio-Oyashio confluence region from 2011 to 2018: Implications for local water mass dynamics and basin-scale circulations 2011 年至 2018 年黑潮-大矢志汇流区福岛 137Cs 垂直剖面的时空变化:对当地水团动力学和海盆尺度环流的影响
IF 3.8 3区 地球科学 Q1 OCEANOGRAPHY Pub Date : 2024-08-14 DOI: 10.1016/j.pocean.2024.103321
Fule Zhang , Dekun Huang , Yunping Xu , Jiang Huang , Jinzhou Du , Tao Yu

Tracking the processes of the spread of Fukushima-derived 137Cs (137CsF) contributes to a better understanding of North Pacific water dynamics. In this study, the vertical distributions of 137Cs and 90Sr in the Kuroshio-Oyashio confluence region were investigated in May 2018, and 137CsF was separated from the background 137Cs by exploiting the constant global fallout 137Cs/90Sr ratio. To the north of 35°N, 137CsF peaked in the upper 100 m layer, whereas in and just south of the Kuroshio Extension (KE), 137CsF exhibited subsurface peaks at depths of 300–500 m. The T/S diagram indicated that the 137CsF maxima were distributed mainly within the range of lighter central mode water (L-CMW) during May 2018, even in and just south of the KE. We found that anticyclonic (cyclonic) eddies can promote (prevent) the intrusion of 137CsF into the ocean interior. In addition, the high activity of regional anticyclonic eddies in the upstream KE resulted in the modification of 137CsF-rich subtropical mode water (STMW) to L-CMW. Temporal changes in the 137CsF vertical profiles and inventories revealed that 137CsF in transitional and subarctic regions has increased since July 2014, implying the existence of additional sources of 137CsF after July 2014, whereas 137CsF in and just south of the KE has remained constant since July 2014, indicating that the 137CsF entrained by STMW has recirculated in the western subtropical gyre. The comparison between surface 137CsF concentrations in transitional and subarctic regions and those observed in Oyashio waters during 2018 did not support the return of 137CsF to our study area via the western or whole subarctic gyre by May 2018. In contrast, the sea surface height distributions from 2016 to 2017 provide clear evidence that the warm-core rings and quasistationary Isoguchi western jet generated from the Kuroshio Current and KE intruded into the transitional region and even into the subarctic region. Therefore, we concluded that a portion of the 137CsF that subducted into the subtropical western North Pacific during 2011–2012 have entered the transition zone and even the subarctic region since 2016. These results not only enhance our understanding of the protracted spread and fate of 137CsF in the North Pacific but also provide important insights into North Pacific water mass circulation and mixing patterns.

跟踪福岛源 137Cs(137CsF)的扩散过程有助于更好地了解北太平洋水体动力学。本研究调查了 2018 年 5 月黑潮-大矢代汇流区 137Cs 和 90Sr 的垂直分布,并利用恒定的全球降尘 137Cs/90Sr 比率将 137CsF 与本底 137Cs 分离开来。T/S图显示,2018年5月期间,137CsF最大值主要分布在较轻的中央模式水(L-CMW)范围内,即使在黑潮扩展区(KE)及其以南也是如此。我们发现,反气旋(气旋)涡可以促进(阻止)137CsF侵入海洋内部。此外,KE 上游的区域性反气旋漩涡活动频繁,导致富含 137CsF 的副热带模式水(STMW)转变为低纬度模式水(L-CMW)。137CsF 垂直剖面和库存的时间变化显示,2014 年 7 月以来,过渡区和亚北极区的 137CsF 有所增加,这意味着在 2014 年 7 月之后存在额外的 137CsF 来源,而自 2014 年 7 月以来,KE 内及以南地区的 137CsF 保持不变,这表明 STMW 所夹带的 137CsF 在西副热带涡旋中再循环。过渡区和副北极区的海面 137CsF 浓度与 2018 年期间在大屋洋水域观测到的浓度进行了比较,结果并不支持 137CsF 在 2018 年 5 月之前通过西部或整个副北极涡旋返回我们的研究区域。与此相反,2016 年至 2017 年的海面高度分布提供了明确的证据,证明从黑潮和 KE 产生的暖核环流和准静止矶口西喷流侵入了过渡区甚至亚北极区。因此,我们得出结论,2011-2012 年期间潜入北太平洋副热带西部的 137CsF 有一部分自 2016 年以来进入了过渡带甚至亚北极地区。这些结果不仅加深了我们对 137CsF 在北太平洋长期扩散和归宿的理解,还为我们了解北太平洋水团环流和混合模式提供了重要启示。
{"title":"Spatiotemporal variations in vertical profiles of Fukushima-derived 137Cs in the Kuroshio-Oyashio confluence region from 2011 to 2018: Implications for local water mass dynamics and basin-scale circulations","authors":"Fule Zhang ,&nbsp;Dekun Huang ,&nbsp;Yunping Xu ,&nbsp;Jiang Huang ,&nbsp;Jinzhou Du ,&nbsp;Tao Yu","doi":"10.1016/j.pocean.2024.103321","DOIUrl":"10.1016/j.pocean.2024.103321","url":null,"abstract":"<div><p>Tracking the processes of the spread of Fukushima-derived <sup>137</sup>Cs (<sup>137</sup>Cs<sub>F</sub>) contributes to a better understanding of North Pacific water dynamics. In this study, the vertical distributions of <sup>137</sup>Cs and <sup>90</sup>Sr in the Kuroshio-Oyashio confluence region were investigated in May 2018, and <sup>137</sup>Cs<sub>F</sub> was separated from the background <sup>137</sup>Cs by exploiting the constant global fallout <sup>137</sup>Cs/<sup>90</sup>Sr ratio. To the north of 35°N, <sup>137</sup>Cs<sub>F</sub> peaked in the upper 100 m layer, whereas in and just south of the Kuroshio Extension (KE), <sup>137</sup>Cs<sub>F</sub> exhibited subsurface peaks at depths of 300–500 m. The T/S diagram indicated that the <sup>137</sup>Cs<sub>F</sub> maxima were distributed mainly within the range of lighter central mode water (L-CMW) during May 2018, even in and just south of the KE. We found that anticyclonic (cyclonic) eddies can promote (prevent) the intrusion of <sup>137</sup>Cs<sub>F</sub> into the ocean interior. In addition, the high activity of regional anticyclonic eddies in the upstream KE resulted in the modification of <sup>137</sup>Cs<sub>F</sub>-rich subtropical mode water (STMW) to L-CMW. Temporal changes in the <sup>137</sup>Cs<sub>F</sub> vertical profiles and inventories revealed that <sup>137</sup>Cs<sub>F</sub> in transitional and subarctic regions has increased since July 2014, implying the existence of additional sources of <sup>137</sup>Cs<sub>F</sub> after July 2014, whereas <sup>137</sup>Cs<sub>F</sub> in and just south of the KE has remained constant since July 2014, indicating that the <sup>137</sup>Cs<sub>F</sub> entrained by STMW has recirculated in the western subtropical gyre. The comparison between surface <sup>137</sup>Cs<sub>F</sub> concentrations in transitional and subarctic regions and those observed in Oyashio waters during 2018 did not support the return of <sup>137</sup>Cs<sub>F</sub> to our study area via the western or whole subarctic gyre by May 2018. In contrast, the sea surface height distributions from 2016 to 2017 provide clear evidence that the warm-core rings and quasistationary Isoguchi western jet generated from the Kuroshio Current and KE intruded into the transitional region and even into the subarctic region. Therefore, we concluded that a portion of the <sup>137</sup>Cs<sub>F</sub> that subducted into the subtropical western North Pacific during 2011–2012 have entered the transition zone and even the subarctic region since 2016. These results not only enhance our understanding of the protracted spread and fate of <sup>137</sup>Cs<sub>F</sub> in the North Pacific but also provide important insights into North Pacific water mass circulation and mixing patterns.</p></div>","PeriodicalId":20620,"journal":{"name":"Progress in Oceanography","volume":"228 ","pages":"Article 103321"},"PeriodicalIF":3.8,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141984763","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modulation of the internal wave regime over a tropical seamount ecosystem by basin-scale oceanographic processes 海盆尺度海洋过程对热带海山生态系统内部波浪机制的调控
IF 3.8 3区 地球科学 Q1 OCEANOGRAPHY Pub Date : 2024-08-09 DOI: 10.1016/j.pocean.2024.103323
E. Robinson, P. Hosegood, A. Bolton

Shallow seamounts are becoming increasingly recognised as key habitats for conservation due to their role as biological refuges, particularly throughout oligotrophic oceans. Traditionally, Taylor caps have been invoked as the mechanism driving biomass aggregation over seamounts but emerging evidence based on higher resolution measurements highlights the importance of internal waves (IW) to the local ecosystem. These waves can flush the benthic habitat with cool water from depth and impact on nutrient supply over short time scales through turbulent mixing that may also influence fish behaviour. They are dependent on the regional stratification, however, and thus influenced by planetary-scale variability in oceanographic conditions. We present here detailed observations of the internal wave regime over a shallow seamount, called Sandes, in the central Indian Ocean throughout different phases of the Indian Ocean Dipole (IOD) that modulated the regional stratification. A deep thermocline, caused by the 2019 IOD event precluded internal wave activity over the summit, whereas a thermocline collocated with the summit during 2020 when the IOD reversed polarity resulted in a 30 m amplitude internal tide signal (t ∼ 12.5 h). A shallow thermocline, observed during 2022, resulted in propagation of IWs over the summit with less visible internal tide. Harmonic analysis shows the presence of high frequency waves (t ∼ 15 min) on both flanks of the seamount during 2020 & 2022, which are likely a result of local shear instability, whereas 2019 shows an asymmetric response, potentially due to the strong background current and suppression of the thermocline beneath the depth of the summit. The potential importance of the waves over the summit to the local ecosystem may be attributed to the elevated turbulence measured at the thermocline during internal wave propagation, with ε > 10-5 W kg-1 routinely observed. Our results highlight the ability of thermocline depth to act as a gating condition for internal wave evolution over the summit. These results show that, whilst the water column exhibits variability at short spatiotemporal scales compared to the frequently cited Taylor cap dynamics, it is also regulated by the wider basin scale processes. Thus, a more integrated approach is needed when assessing these dynamic and environmentally critical habitats to include the effects of physical oceanographic controls across multiple spatiotemporal scales.

浅海海隆作为生物庇护所,尤其是在整个寡营养海洋中发挥着重要作用,因此越来越被认为是需要保护的关键栖息地。传统上,泰勒帽被认为是海山生物量聚集的驱动机制,但基于更高分辨率测量的新证据强调了内波(IW)对当地生态系统的重要性。这些波浪能从深处用冷水冲刷海底生境,并通过湍流混合在短时间内影响营养物质的供应,还可能影响鱼类的行为。不过,这些波浪取决于区域分层情况,因此会受到海洋条件行星尺度变化的影响。我们在此详细观测了印度洋中部一座名为桑德斯(Sandes)的浅海海山在印度洋偶极子(IOD)的不同阶段调节区域分层的内波机制。由 2019 年 IOD 事件引起的深温跃层排除了山顶的内波活动,而 2020 年 IOD 极性反转时与山顶共存的温跃层导致了 30 米振幅的内潮信号(t∼ 12.5 小时)。2022 年观测到的浅温跃层导致 IWs 在山顶上空传播,内潮不明显。谐波分析显示,2020 & 2022 年期间,海山两侧出现了高频波(t ∼ 15 分钟),这可能是局部剪切不稳定性的结果,而 2019 年则出现了非对称响应,这可能是由于强大的背景海流和山顶深度下的温跃层受到抑制。山顶上空的波浪对当地生态系统的潜在重要性可归因于内波传播过程中在温跃层测量到的湍流升高,常规观测到的湍流值为 ε > 10-5 W kg-1。我们的结果凸显了温跃层深度作为顶点内波演化的门控条件的能力。这些结果表明,虽然与经常引用的泰勒帽动力学相比,水柱在短时相尺度上表现出可变性,但它也受到更广泛的海盆尺度过程的调节。因此,在评估这些动态的、对环境至关重要的栖息地时,需要采用更加综合的方法,将物理海洋学控制在多个时空尺度上的影响包括在内。
{"title":"Modulation of the internal wave regime over a tropical seamount ecosystem by basin-scale oceanographic processes","authors":"E. Robinson,&nbsp;P. Hosegood,&nbsp;A. Bolton","doi":"10.1016/j.pocean.2024.103323","DOIUrl":"10.1016/j.pocean.2024.103323","url":null,"abstract":"<div><p>Shallow seamounts are becoming increasingly recognised as key habitats for conservation due to their role as biological refuges, particularly throughout oligotrophic oceans. Traditionally, Taylor caps have been invoked as the mechanism driving biomass aggregation over seamounts but emerging evidence based on higher resolution measurements highlights the importance of internal waves (IW) to the local ecosystem. These waves can flush the benthic habitat with cool water from depth and impact on nutrient supply over short time scales through turbulent mixing that may also influence fish behaviour. They are dependent on the regional stratification, however, and thus influenced by planetary-scale variability in oceanographic conditions. We present here detailed observations of the internal wave regime over a shallow seamount, called Sandes, in the central Indian Ocean throughout different phases of the Indian Ocean Dipole (IOD) that modulated the regional stratification. A deep thermocline, caused by the 2019 IOD event precluded internal wave activity over the summit, whereas a thermocline collocated with the summit during 2020 when the IOD reversed polarity resulted in a 30 m amplitude internal tide signal (t ∼ 12.5 h). A shallow thermocline, observed during 2022, resulted in propagation of IWs over the summit with less visible internal tide. Harmonic analysis shows the presence of high frequency waves (t ∼ 15 min) on both flanks of the seamount during 2020 &amp; 2022, which are likely a result of local shear instability, whereas 2019 shows an asymmetric response, potentially due to the strong background current and suppression of the thermocline beneath the depth of the summit. The potential importance of the waves over the summit to the local ecosystem may be attributed to the elevated turbulence measured at the thermocline during internal wave propagation, with ε &gt; 10<sup>-5</sup> W kg-1 routinely observed. Our results highlight the ability of thermocline depth to act as a gating condition for internal wave evolution over the summit. These results show that, whilst the water column exhibits variability at short spatiotemporal scales compared to the frequently cited Taylor cap dynamics, it is also regulated by the wider basin scale processes. Thus, a more integrated approach is needed when assessing these dynamic and environmentally critical habitats to include the effects of physical oceanographic controls across multiple spatiotemporal scales.</p></div>","PeriodicalId":20620,"journal":{"name":"Progress in Oceanography","volume":"228 ","pages":"Article 103323"},"PeriodicalIF":3.8,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0079661124001290/pdfft?md5=69c0ff806a3b9722cc417038334d4c91&pid=1-s2.0-S0079661124001290-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141964570","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Water mass evolution and general circulation of Baffin Bay: Observations from two shipboard surveys in 2021 巴芬湾的水团演变和总体环流:2021 年两次船载调查的观测结果
IF 3.8 3区 地球科学 Q1 OCEANOGRAPHY Pub Date : 2024-08-09 DOI: 10.1016/j.pocean.2024.103322
Jie Huang , Robert S. Pickart , Frank Bahr , Leah T. McRaven , Jean-Éric Tremblay , Christine Michel , Emil Jeansson , Ben Kopec , Jeffrey M. Welker , Sólveig R. Ólafsdóttir

Baffin Bay is an Arctic marginal sea connected to the North Atlantic via Davis Strait and the Labrador Sea. While the exchange of heat and freshwater through Davis Strait is known to strongly influence the subpolar North Atlantic, there are significant gaps in our understanding of the circulation and water mass distribution and transformation throughout Baffin Bay, in part due to limited direct velocity observations. In this study, high-resolution hydrographic, nutrient, oxygen isotope, and velocity data from two shipboard surveys in late-summer to early-fall 2021 are used to address these gaps. During the time period of observation, Baffin Bay was dominated by cold, fresh, nitrate-depleted Polar Water (PW) in the upper 300 m, with the coldest and freshest PW distributed along the western shelf and slope adjacent to Baffin Island. Only a small amount of warm and salty Atlantic-origin water was measured entering the southeastern bay at depth, which is diluted rapidly when passing through Davis Strait. Pacific-origin freshwater was dominant in the upper 200 m on the western side, with relatively small amounts of meteoric water on both sides of the bay. The circulation in Baffin Bay was generally cyclonic, consisting of a strong, surface-intensified western boundary current and a slower, weakly baroclinic eastern boundary current. Much of the eastern boundary current bifurcated to the west at the northern end of the Labrador Sea, and, as the remaining flow progressed through Davis Strait, it transitioned from surface-intensified to bottom-intensified. Basin-scale recirculation of the PW was documented using the shipboard data, which was also evident in the velocity field of an ocean reanalysis product for the same time period. Examination of the reanalysis fields from 1993 to 2021 indicates that the circulation in Baffin Bay was anomalously cyclonic during summer/fall 2021. Such basin-scale circulation anomalies can arise due to both the local wind stress curl pattern and remote wind forcing associated with the Arctic Oscillation index.

巴芬湾是一个北极边缘海,通过戴维斯海峡和拉布拉多海与北大西洋相连。虽然人们知道通过戴维斯海峡进行的热量和淡水交换对北大西洋次极地有很大影响,但我们对整个巴芬湾的环流和水团分布及转化的了解还有很大差距,部分原因是直接的流速观测有限。在本研究中,利用 2021 年夏末至初秋期间两次船载调查获得的高分辨率水文地理、营养盐、氧同位素和流速数据来弥补这些差距。在观测期间,巴芬湾上层 300 米处主要是寒冷、新鲜、硝酸盐贫化的极地水(PW),最冷、最新鲜的极地水分布在巴芬岛附近的西部陆架和斜坡。仅测得少量来自大西洋的暖咸水进入东南海湾深处,这些水在通过戴维斯海峡时被迅速稀释。源于太平洋的淡水在西侧上 200 米处占主导地位,海湾两侧都有相对少量的流星水。巴芬湾的环流总体上呈气旋状,由一股强烈的、表面强化的西部边界流和一股较慢的、弱气压的东部边界流组成。大部分东部边界流在拉布拉多海北端向西分叉,剩余的流经戴维斯海峡时,从表层加强型过渡到底层加强型。利用船载数据记录了 PW 的海盆尺度再循环,这在同一时期的海洋再分析产品的速度场中也很明显。对 1993 年至 2021 年的再分析场的研究表明,巴芬湾的环流在 2021 年夏季/秋季呈异常气旋状。这种海盆尺度的环流异常可能是由于与北极涛动指数相关的本地风应力卷曲模式和远距离风力强迫造成的。
{"title":"Water mass evolution and general circulation of Baffin Bay: Observations from two shipboard surveys in 2021","authors":"Jie Huang ,&nbsp;Robert S. Pickart ,&nbsp;Frank Bahr ,&nbsp;Leah T. McRaven ,&nbsp;Jean-Éric Tremblay ,&nbsp;Christine Michel ,&nbsp;Emil Jeansson ,&nbsp;Ben Kopec ,&nbsp;Jeffrey M. Welker ,&nbsp;Sólveig R. Ólafsdóttir","doi":"10.1016/j.pocean.2024.103322","DOIUrl":"10.1016/j.pocean.2024.103322","url":null,"abstract":"<div><p>Baffin Bay is an Arctic marginal sea connected to the North Atlantic via Davis Strait and the Labrador Sea. While the exchange of heat and freshwater through Davis Strait is known to strongly influence the subpolar North Atlantic, there are significant gaps in our understanding of the circulation and water mass distribution and transformation throughout Baffin Bay, in part due to limited direct velocity observations. In this study, high-resolution hydrographic, nutrient, oxygen isotope, and velocity data from two shipboard surveys in late-summer to early-fall 2021 are used to address these gaps. During the time period of observation, Baffin Bay was dominated by cold, fresh, nitrate-depleted Polar Water (PW) in the upper 300 m, with the coldest and freshest PW distributed along the western shelf and slope adjacent to Baffin Island. Only a small amount of warm and salty Atlantic-origin water was measured entering the southeastern bay at depth, which is diluted rapidly when passing through Davis Strait. Pacific-origin freshwater was dominant in the upper 200 m on the western side, with relatively small amounts of meteoric water on both sides of the bay. The circulation in Baffin Bay was generally cyclonic, consisting of a strong, surface-intensified western boundary current and a slower, weakly baroclinic eastern boundary current. Much of the eastern boundary current bifurcated to the west at the northern end of the Labrador Sea, and, as the remaining flow progressed through Davis Strait, it transitioned from surface-intensified to bottom-intensified. Basin-scale recirculation of the PW was documented using the shipboard data, which was also evident in the velocity field of an ocean reanalysis product for the same time period. Examination of the reanalysis fields from 1993 to 2021 indicates that the circulation in Baffin Bay was anomalously cyclonic during summer/fall 2021. Such basin-scale circulation anomalies can arise due to both the local wind stress curl pattern and remote wind forcing associated with the Arctic Oscillation index.</p></div>","PeriodicalId":20620,"journal":{"name":"Progress in Oceanography","volume":"229 ","pages":"Article 103322"},"PeriodicalIF":3.8,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142163344","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
State, variability, and trophic interactions in the Atlantic gateway to the Arctic 北极大西洋门户的状态、变化和营养相互作用
IF 3.8 3区 地球科学 Q1 OCEANOGRAPHY Pub Date : 2024-08-01 DOI: 10.1016/j.pocean.2024.103276
{"title":"State, variability, and trophic interactions in the Atlantic gateway to the Arctic","authors":"","doi":"10.1016/j.pocean.2024.103276","DOIUrl":"10.1016/j.pocean.2024.103276","url":null,"abstract":"","PeriodicalId":20620,"journal":{"name":"Progress in Oceanography","volume":"226 ","pages":"Article 103276"},"PeriodicalIF":3.8,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S007966112400082X/pdfft?md5=4988e5b28f0b417a7d6ef674629a909c&pid=1-s2.0-S007966112400082X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141023542","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Seasonality in phytoplankton communities and production in three Arctic fjords across a climate gradient 跨越气候梯度的三个北极峡湾浮游植物群落和产量的季节性变化
IF 3.8 3区 地球科学 Q1 OCEANOGRAPHY Pub Date : 2024-07-28 DOI: 10.1016/j.pocean.2024.103317
Cheshtaa Chitkara , Thomas Juul-Pedersen , Diana Krawczyk , Janne E. Søreide , Anna Vader , Rolf Gradinger , Mie HS Winding , Tobias R Vonnahme

Phytoplankton communities and production in Arctic fjords undergo strong seasonal variations. Phytoplankton blooms are periods with high primary production, leading to elevated algal biomass fueling higher trophic levels. Blooms are typically driven bottom-up by light and nutrient availability but may also be top-down controlled by grazing. While phytoplankton spring blooms are common across all Arctic systems, summer and autumn blooms and their drivers are less predictable. Here we compare the long-term (≥4 years) bloom phenology and protist community composition in three Arctic fjords: Nuup Kangerlua in western Greenland, Ramfjorden in northern Norway, and Adventfjorden in western Svalbard. While Nuup Kangerlua is impacted by tidewater glaciers, Ramfjorden and Adventfjorden are impacted by river-runoff. We discuss and contrast the presence and predictability of spring, summer, and autumn blooms in these fjords and the main physical, chemical, and biological drivers. Spring blooms occurred in all three fjords in April/May as soon as sufficient sunlight was available and typically terminated when nutrients were depleted. Chain-forming diatoms together with the haptophyte Phaeocystis pouchetii were key spring bloom taxa in all three fjords. Summer blooms were found in Nuup Kangerlua and Ramfjorden but were not common in Adventfjorden. In Nuup Kangerlua nutrient supply via subglacial upwelling was the key driver of a diatom-dominated summer bloom. This summer bloom extended far into autumn with strong winds resupplying nutrients to the surface later in the season. In Ramfjorden runoff from a vegetated catchment provided organic nutrients for a flagellate-dominated summer bloom in 2019. A late autumn bloom dominated by Skeletonema spp. and other chain-forming diatoms was present after nutrients were resupplied by wind mixing. In Adventfjorden, we observed only minor summer blooms in 2 of the 8 years, while autumn blooms were never observed. With global warming, we suggest that summer blooms will be negatively impacted in fjords where tidewater glaciers retreat and become land terminating. In fjords with rich vegetated catchments, harmful algal blooms may occur more frequently as summers and autumns become warmer and wetter. However, for fjords in high-Arctic latitudes (>78 N), the day length will continue to restrict the potential for autumn blooms.

北极峡湾的浮游植物群落和产量有很大的季节性变化。浮游植物绽放期是初级生产力较高的时期,会导致藻类生物量增加,从而促进营养级的提高。藻华通常受光照和养分供应自下而上的驱动,但也可能受放牧自上而下的控制。虽然浮游植物春季藻华在所有北极系统中都很常见,但夏季和秋季藻华及其驱动因素的可预测性较低。在此,我们比较了三个北极峡湾的长期(≥4 年)水华物候和原生生物群落组成:这些峡湾分别位于格陵兰岛西部的努普-康格鲁亚(Nuup Kangerlua)、挪威北部的拉姆峡湾(Ramfjorden)和斯瓦尔巴群岛西部的安 Adventfjorden。努普-康格鲁亚受潮汐冰川的影响,而拉姆峡湾和安 Adventfjorden 则受河流径流的影响。我们讨论并对比了这些峡湾春季、夏季和秋季水华的存在和可预测性,以及主要的物理、化学和生物驱动因素。所有三个峡湾的春季藻华都发生在四、五月份,只要有充足的阳光,藻华就会出现,通常在养分耗尽时终止。在所有三个峡湾中,成链硅藻和拟囊藻都是春季藻华的主要分类群。在努普-康格鲁亚和拉姆峡湾发现了夏季水华,但在安 Adventfjorden 并不常见。在努普-康格鲁亚(Nuup Kangerlua),通过冰川下上升流提供的营养物质是硅藻为主的夏季水华的主要驱动力。夏季藻华一直持续到秋季,到了秋季后期,强风将营养物质重新补充到海面。在拉姆峡湾(Ramfjorden),来自植被覆盖集水区的径流为 2019 年以鞭毛藻为主的夏季水华提供了有机养分。在风的混合作用下,营养物质重新补充后,出现了以鞘藻属和其他成链硅藻为主的晚秋藻华。在 Adventfjorden,我们在 8 年中的 2 年只观察到了轻微的夏季藻华,而从未观察到秋季藻华。我们认为,随着全球变暖,潮汐冰川退缩并成为陆地末端的峡湾夏季水华将受到不利影响。在植被丰富的峡湾,随着夏季和秋季变得更加温暖潮湿,有害藻华可能会更频繁地出现。不过,对于北极高纬度地区(北纬 78 度)的峡湾来说,昼长将继续限制秋季藻华发生的可能性。
{"title":"Seasonality in phytoplankton communities and production in three Arctic fjords across a climate gradient","authors":"Cheshtaa Chitkara ,&nbsp;Thomas Juul-Pedersen ,&nbsp;Diana Krawczyk ,&nbsp;Janne E. Søreide ,&nbsp;Anna Vader ,&nbsp;Rolf Gradinger ,&nbsp;Mie HS Winding ,&nbsp;Tobias R Vonnahme","doi":"10.1016/j.pocean.2024.103317","DOIUrl":"10.1016/j.pocean.2024.103317","url":null,"abstract":"<div><p>Phytoplankton communities and production in Arctic fjords undergo strong seasonal variations. Phytoplankton blooms are periods with high primary production, leading to elevated algal biomass fueling higher trophic levels. Blooms are typically driven bottom-up by light and nutrient availability but may also be top-down controlled by grazing. While phytoplankton spring blooms are common across all Arctic systems, summer and autumn blooms and their drivers are less predictable. Here we compare the long-term (≥4 years) bloom phenology and protist community composition in three Arctic fjords: Nuup Kangerlua in western Greenland, Ramfjorden in northern Norway, and Adventfjorden in western Svalbard. While Nuup Kangerlua is impacted by tidewater glaciers, Ramfjorden and Adventfjorden are impacted by river-runoff. We discuss and contrast the presence and predictability of spring, summer, and autumn blooms in these fjords and the main physical, chemical, and biological drivers. Spring blooms occurred in all three fjords in April/May as soon as sufficient sunlight was available and typically terminated when nutrients were depleted. Chain-forming diatoms together with the haptophyte <em>Phaeocystis pouchetii</em> were key spring bloom taxa in all three fjords. Summer blooms were found in Nuup Kangerlua and Ramfjorden but were not common in Adventfjorden. In Nuup Kangerlua nutrient supply via subglacial upwelling was the key driver of a diatom-dominated summer bloom. This summer bloom extended far into autumn with strong winds resupplying nutrients to the surface later in the season. In Ramfjorden runoff from a vegetated catchment provided organic nutrients for a flagellate-dominated summer bloom in 2019. A late autumn bloom dominated by S<em>keletonema spp</em>. and other chain-forming diatoms was present after nutrients were resupplied by wind mixing. In Adventfjorden, we observed only minor summer blooms in 2 of the 8 years, while autumn blooms were never observed. With global warming, we suggest that summer blooms will be negatively impacted in fjords where tidewater glaciers retreat and become land terminating. In fjords with rich vegetated catchments, harmful algal blooms may occur more frequently as summers and autumns become warmer and wetter. However, for fjords in high-Arctic latitudes (&gt;78 N), the day length will continue to restrict the potential for autumn blooms.</p></div>","PeriodicalId":20620,"journal":{"name":"Progress in Oceanography","volume":"227 ","pages":"Article 103317"},"PeriodicalIF":3.8,"publicationDate":"2024-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S007966112400123X/pdfft?md5=2a70f7b72ee600a4bf07d1f7bb4585f6&pid=1-s2.0-S007966112400123X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141845042","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bioregionalization of the subarctic Pacific based on phytoplankton phenology and composition 基于浮游植物物候学和组成的亚北极太平洋生物区域划分
IF 3.8 3区 地球科学 Q1 OCEANOGRAPHY Pub Date : 2024-07-26 DOI: 10.1016/j.pocean.2024.103315
Marta Konik , M. Angelica Peña , Toru Hirawake , Brian P.V. Hunt , Perumthuruthil Suseelan Vishnu , Lisa B. Eisner , Astrid Bracher , Hongyan Xi , Christian Marchese , Maycira Costa

The subarctic Pacific is generally perceived as relatively homogeneous since the North Pacific Subpolar Gyre dominates the water circulation in the area. However, previous research showed significant spatial differences in phytoplankton abundance and community structure. This study aimed to identify regions associated with distinct phytoplankton phenology and composition to comprehensively describe the main phytoplankton variability patterns across the subarctic Pacific. To this end, satellite GlobColour time series observations and an extensive in situ phytoplankton pigment dataset were used in the analysis. Five bioregions were identified, based on the Self-Organized Mapping technique, using a greater than 20-year satellite data series. The bioregions in the open Pacific waters were dominated by green algae, haptophytes, and pelagophytes and were divided into the areas affected by the North Pacific Transition Zone and beyond. The other bioregions were defined around the Pacific basin margins where the diatom contribution was generally higher, with a particular distinction of waters surrounding the Kuril and the Aleutian Islands. Our bioregion designations allow for future evaluation of the processes controlling the physical and biological dynamics within each bioregion, which has direct implications for foraging conditions available to higher trophic levels, including potential food resource competition.

由于北太平洋次极地环流主导着该地区的水循环,因此人们通常认为次北极太平洋的水质相对单一。然而,以往的研究表明,浮游植物的丰度和群落结构存在显著的空间差异。本研究旨在确定与不同浮游植物物候和组成相关的区域,以全面描述整个亚极地太平洋的主要浮游植物变异模式。为此,在分析中使用了卫星 GlobColour 时间序列观测数据和广泛的现场浮游植物色素数据集。根据自组织绘图技术,利用超过 20 年的卫星数据序列,确定了五个生物区。太平洋开阔水域的生物区以绿藻、七彩藻和浮游植物为主,分为受北太平洋过渡带影响的区域和其他区域。其他生物区是在太平洋海盆边缘划定的,那里的硅藻含量通常较高,尤其是千岛群岛和阿留申群岛周围的水域。我们的生物区划有助于今后评估每个生物区内物理和生物动态的控制过程,这对较高营养级的觅食条件有直接影响,包括潜在的食物资源竞争。
{"title":"Bioregionalization of the subarctic Pacific based on phytoplankton phenology and composition","authors":"Marta Konik ,&nbsp;M. Angelica Peña ,&nbsp;Toru Hirawake ,&nbsp;Brian P.V. Hunt ,&nbsp;Perumthuruthil Suseelan Vishnu ,&nbsp;Lisa B. Eisner ,&nbsp;Astrid Bracher ,&nbsp;Hongyan Xi ,&nbsp;Christian Marchese ,&nbsp;Maycira Costa","doi":"10.1016/j.pocean.2024.103315","DOIUrl":"10.1016/j.pocean.2024.103315","url":null,"abstract":"<div><p>The subarctic Pacific is generally perceived as relatively homogeneous since the North Pacific Subpolar Gyre dominates the water circulation in the area. However, previous research showed significant spatial differences in phytoplankton abundance and community structure. This study aimed to identify regions associated with distinct phytoplankton phenology and composition to comprehensively describe the main phytoplankton variability patterns across the subarctic Pacific. To this end, satellite GlobColour time series observations and an extensive in situ phytoplankton pigment dataset were used in the analysis. Five bioregions were identified, based on the Self-Organized Mapping technique, using a greater than 20-year satellite data series. The bioregions in the open Pacific waters were dominated by green algae, haptophytes, and pelagophytes and were divided into the areas affected by the North Pacific Transition Zone and beyond. The other bioregions were defined around the Pacific basin margins where the diatom contribution was generally higher, with a particular distinction of waters surrounding the Kuril and the Aleutian Islands. Our bioregion designations allow for future evaluation of the processes controlling the physical and biological dynamics within each bioregion, which has direct implications for foraging conditions available to higher trophic levels, including potential food resource competition.</p></div>","PeriodicalId":20620,"journal":{"name":"Progress in Oceanography","volume":"228 ","pages":"Article 103315"},"PeriodicalIF":3.8,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0079661124001216/pdfft?md5=471a5d5b0588f01b800e459506ce2b93&pid=1-s2.0-S0079661124001216-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141978501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
At the base of deep-sea food webs: Assemblage and trophic structure of suprabenthos and zooplankton in submarine canyons 深海食物网的底部:海底峡谷中上底栖生物和浮游动物的组合和营养结构
IF 3.8 3区 地球科学 Q1 OCEANOGRAPHY Pub Date : 2024-07-26 DOI: 10.1016/j.pocean.2024.103318
Paula Masiá , Julian Sozio , Zaira Da Ros , Emanuela Fanelli

Submarine canyons act as hotspots of biodiversity, hosting vulnerable marine ecosystems, and playing a fundamental role in bridging coastal zones with deeper areas. Here, we investigated the suprabenthic and Deep Scattering Layer (DSL) zooplankton fauna, that play a key role in deep-sea food webs, as main resources for both mobile and sessile megafauna, in two submarine canyons (Squillace and Amendolara) of the Ionian Sea (Central Mediterranean Sea). Our results highlighted different taxonomic and functional diversity between the two adjacent canyons: (i) biomass and abundance of suprabenthos followed an opposite trend in the two canyons, increasing both with depth in Amendolara (higher abundance and biomass in the lower part of the canyon), and decreasing with depth in Squillace (greater in the head of the canyon); (ii) DSL zooplankton abundance and biomass followed a spatial distribution, decreasing with increasing distance from the coast for both canyons (i.e. lower offshore than at the head of the canyon). Food-web structure investigated by means of stable isotope analysis of δ13C and δ15N showed a more diverse trophic niche for suprabenthos than for zooplankton. Furthermore, possible feeding modes of species with unknown feeding behaviour have been proposed. The results of the current article highlight the different ecological processes occurring within each canyon. Understanding the spatial variations of communities inhabiting submarine canyons, especially those at the base of deep-sea food webs which can act as driver of megafaunal communities (both sessile and mobile-commercial species), is essential to focalise future conservation efforts.

海底峡谷是生物多样性的热点地区,承载着脆弱的海洋生态系统,在连接沿海地区和深海地区方面发挥着重要作用。在这里,我们调查了爱奥尼亚海(地中海中部)的两个海底峡谷(斯奎莱斯峡谷和阿门多拉拉峡谷)中的底栖和深散射层浮游动物动物群,它们在深海食物网中发挥着关键作用,是移动和无柄巨型动物的主要资源。我们的研究结果突显了两个相邻峡谷在分类学和功能多样性方面的不同:(i) 两个峡谷中的上底栖生物的生物量和丰度呈相反趋势,在阿门多拉拉,随着深度的增加,上底栖生物的生物量和丰度都在增加(峡谷下部的丰度和生物量较高),而在斯奎莱斯,随着深度的增加,上底栖生物的生物量和丰度都在减少(峡谷头部的生物量和丰度较高);(ii) DSL 浮游动物的丰度和生物量呈空间分布,在两个峡谷中,随着离海岸距离的增加,浮游动物的丰度和生物量都在减少(即近海的浮游动物的丰度和生物量低于峡谷的浮游动物的丰度和生物量)。(ii) 在两个峡谷中,DSL 浮游动物的丰度和生物量随距离海岸的增加而减少(即近海比峡谷头低)。通过对 δ13C 和 δ15N 的稳定同位素分析,对食物网结构进行了研究,结果表明上底栖生物的营养龛位比浮游动物更为多样。此外,还提出了未知摄食行为物种的可能摄食模式。本文的研究结果突显了每个峡谷内发生的不同生态过程。了解栖息在海底峡谷中的群落的空间变化,特别是那些位于深海食物网底部的群落的空间变化(这些群落可能是巨型动物群落(包括无柄物种和移动商业物种)的驱动力),对于集中未来的保护工作至关重要。
{"title":"At the base of deep-sea food webs: Assemblage and trophic structure of suprabenthos and zooplankton in submarine canyons","authors":"Paula Masiá ,&nbsp;Julian Sozio ,&nbsp;Zaira Da Ros ,&nbsp;Emanuela Fanelli","doi":"10.1016/j.pocean.2024.103318","DOIUrl":"10.1016/j.pocean.2024.103318","url":null,"abstract":"<div><p>Submarine canyons act as hotspots of biodiversity, hosting vulnerable marine ecosystems, and playing a fundamental role in bridging coastal zones with deeper areas. Here, we investigated the suprabenthic and Deep Scattering Layer (DSL) zooplankton fauna, that play a key role in deep-sea food webs, as main resources for both mobile and sessile megafauna, in two submarine canyons (Squillace and Amendolara) of the Ionian Sea (Central Mediterranean Sea). Our results highlighted different taxonomic and functional diversity between the two adjacent canyons: (<em>i</em>) biomass and abundance of suprabenthos followed an opposite trend in the two canyons, increasing both with depth in Amendolara (higher abundance and biomass in the lower part of the canyon), and decreasing with depth in Squillace (greater in the head of the canyon); (<em>ii</em>) DSL zooplankton abundance and biomass followed a spatial distribution, decreasing with increasing distance from the coast for both canyons (i.e. lower offshore than at the head of the canyon). Food-web structure investigated by means of stable isotope analysis of <em>δ</em><sup>13</sup>C and <em>δ</em><sup>15</sup>N showed a more diverse trophic niche for suprabenthos than for zooplankton. Furthermore, possible feeding modes of species with unknown feeding behaviour have been proposed. The results of the current article highlight the different ecological processes occurring within each canyon. Understanding the spatial variations of communities inhabiting submarine canyons, especially those at the base of deep-sea food webs which can act as driver of megafaunal communities (both sessile and mobile-commercial species), is essential to focalise future conservation efforts.</p></div>","PeriodicalId":20620,"journal":{"name":"Progress in Oceanography","volume":"228 ","pages":"Article 103318"},"PeriodicalIF":3.8,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0079661124001241/pdfft?md5=f6e9fddc8d8bacaab2b620e26c8b0668&pid=1-s2.0-S0079661124001241-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141840941","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Progress in Oceanography
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1