Pub Date : 2024-07-01Epub Date: 2024-02-12DOI: 10.1007/s00709-024-01933-2
Hongmei Zhang, Jiafa Wu, Dandan Fu, Min Zhang, Lunji Wang, Minggui Gong
Dehydrins proteins accumulate and play important protective roles in most plants during abiotic stresses. The objective of this study was to characterize a YSK2-type dehydrin gene, WDHN2, isolated from Triticum aestivum previously. In this work, wheat dehydrin WDHN2 was expressed in Escherichia coli and purified by immobilized metal affinity chromatography, which exhibited as a single band by sodium dodecyl sulfonate polyacrylamide gel electrophoresis and western blotting. We show that WDHN2 is capable of alleviating lactate dehydrogenase inactivation from heat and desiccation in vitro enzyme activity protection assay. In vivo assay of Escherichia coli viability demonstrates the enhancement of cell survival by the overexpression of WDHN2. The protein aggregation prevention assay explores that WDHN2 has a broad protective effect on the cellular proteome. The results show that WDHN2 is mainly accumulated in the nucleus and cytosol, suggesting that this dehydrin may exert its function in both cellular compartments. Our data suggest that WDHN2 acts as a chaperone molecular in vivo.
{"title":"Prokaryotic expression, purification, and the in vitro and in vivo protection study of dehydrin WDHN2 from Triticum aestivum.","authors":"Hongmei Zhang, Jiafa Wu, Dandan Fu, Min Zhang, Lunji Wang, Minggui Gong","doi":"10.1007/s00709-024-01933-2","DOIUrl":"10.1007/s00709-024-01933-2","url":null,"abstract":"<p><p>Dehydrins proteins accumulate and play important protective roles in most plants during abiotic stresses. The objective of this study was to characterize a YSK<sub>2</sub>-type dehydrin gene, WDHN2, isolated from Triticum aestivum previously. In this work, wheat dehydrin WDHN2 was expressed in Escherichia coli and purified by immobilized metal affinity chromatography, which exhibited as a single band by sodium dodecyl sulfonate polyacrylamide gel electrophoresis and western blotting. We show that WDHN2 is capable of alleviating lactate dehydrogenase inactivation from heat and desiccation in vitro enzyme activity protection assay. In vivo assay of Escherichia coli viability demonstrates the enhancement of cell survival by the overexpression of WDHN2. The protein aggregation prevention assay explores that WDHN2 has a broad protective effect on the cellular proteome. The results show that WDHN2 is mainly accumulated in the nucleus and cytosol, suggesting that this dehydrin may exert its function in both cellular compartments. Our data suggest that WDHN2 acts as a chaperone molecular in vivo.</p>","PeriodicalId":20731,"journal":{"name":"Protoplasma","volume":" ","pages":"771-781"},"PeriodicalIF":2.5,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139717773","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01Epub Date: 2024-02-29DOI: 10.1007/s00709-024-01937-y
Yanina de Jesús Pérez, Gisela Via Do Pico, Ana María González, María Betiana Angulo
Chrysolaena flexuosa (Sims.) H. Rob. is a South American species in the tribe Vernonieae, with potential ornamental value: it has attractive inflorescences, is suitable for pot cultivation, and its cypselae are useful for dried flower arrangements. Apart from studies on the growth dynamics of this species under cultivation, chromosome number, DNA content, ploidy level, size, pollen viability, and the characterization of phenotypic and genetic variability, it is noteworthy that other aspects regarding the floral architecture, reproductive mode, and gametophyte formation of C. flexuosa have not yet been studied. For this reason, our study encompasses a floral morphoanatomical survey and a comprehensive assessment of gametophyte development in the species. As a result of this study, we report new floral morphotypes, confirming that the morphological variability of the species might be greater than speculated. The morphoanatomy of the androecium and gynoecium and the male and female gametophyte developmental characteristics are uniform in all the populations studied despite the different ploidy levels. Chrysolaena flexuosa has five tetrasporangiate stamens of the dicotyledonous type of development; all the populations studied displayed a unilocular inferior ovary with a single anatropous, unitegumented, and tenuinucellar ovule. Given that all the embryo sacs observed were of the Polygonum-type development regardless of the ploidy level, we infer that the populations analyzed are fertile and undergo sexual reproduction. Our results not only contribute further research in the field of breeding systems and propagation of this species, but also promote the successful introduction of C. flexuosa to the plant ornamental market.
Chrysolaena flexuosa (Sims.) H. Rob.是南美洲的一个物种,属于 Vernonieae 科,具有潜在的观赏价值:它的花序很有吸引力,适合盆栽,其胞果可用于干花插花。除了对该物种在栽培条件下的生长动态、染色体数目、DNA含量、倍性水平、大小、花粉活力以及表型和遗传变异特征的研究外,值得注意的是,有关柔毛苣苔的花卉结构、繁殖模式和配子体形成等其他方面的研究尚未开展。因此,我们的研究包括花卉形态解剖学调查和配子体发育的全面评估。通过这项研究,我们报告了新的花形态类型,证实该物种的形态变异性可能比推测的要大。尽管倍性水平不同,但所研究的所有种群中雄蕊群和雌蕊群的形态解剖以及雌雄配子体的发育特征都是一致的。柔毛金鸡菊有五个双子叶发育类型的四孢子雄蕊;所有研究的种群都显示出单室下位子房,有一个倒生、单被膜和腱状核的胚珠。鉴于观察到的所有胚囊无论倍性水平如何都属于蓼属发育类型,我们推断所分析的种群是可育的,并进行有性生殖。我们的研究结果不仅有助于在该物种的育种系统和繁殖领域开展进一步研究,还能促进成功将柔毛蓼引入植物观赏市场。
{"title":"Exploring floral morphoanatomy and embryology in wild populations of Chrysolaena flexuosa (Vernonia, Asteraceae): a contribution to understanding its ornamental potential.","authors":"Yanina de Jesús Pérez, Gisela Via Do Pico, Ana María González, María Betiana Angulo","doi":"10.1007/s00709-024-01937-y","DOIUrl":"10.1007/s00709-024-01937-y","url":null,"abstract":"<p><p>Chrysolaena flexuosa (Sims.) H. Rob. is a South American species in the tribe Vernonieae, with potential ornamental value: it has attractive inflorescences, is suitable for pot cultivation, and its cypselae are useful for dried flower arrangements. Apart from studies on the growth dynamics of this species under cultivation, chromosome number, DNA content, ploidy level, size, pollen viability, and the characterization of phenotypic and genetic variability, it is noteworthy that other aspects regarding the floral architecture, reproductive mode, and gametophyte formation of C. flexuosa have not yet been studied. For this reason, our study encompasses a floral morphoanatomical survey and a comprehensive assessment of gametophyte development in the species. As a result of this study, we report new floral morphotypes, confirming that the morphological variability of the species might be greater than speculated. The morphoanatomy of the androecium and gynoecium and the male and female gametophyte developmental characteristics are uniform in all the populations studied despite the different ploidy levels. Chrysolaena flexuosa has five tetrasporangiate stamens of the dicotyledonous type of development; all the populations studied displayed a unilocular inferior ovary with a single anatropous, unitegumented, and tenuinucellar ovule. Given that all the embryo sacs observed were of the Polygonum-type development regardless of the ploidy level, we infer that the populations analyzed are fertile and undergo sexual reproduction. Our results not only contribute further research in the field of breeding systems and propagation of this species, but also promote the successful introduction of C. flexuosa to the plant ornamental market.</p>","PeriodicalId":20731,"journal":{"name":"Protoplasma","volume":" ","pages":"831-845"},"PeriodicalIF":2.5,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139990896","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01Epub Date: 2024-01-18DOI: 10.1007/s00709-024-01927-0
Rhiala Gomes Albergaria, Renan Dos Santos Araújo, Gustavo Ferreira Martins
Some mosquitoes, including species of the genus Toxorhynchites, are known for actively preying on other mosquito larvae, making these predators valuable allies in the fight against vector-borne diseases. A comprehensive understanding of the anatomy and physiology of these potential biological control agents is helpful for the development of effective strategies for controlling vector populations. This includes the antennae, a crucial component in the search for hosts, mating, and selection of oviposition sites. This study utilized scanning electron microscopy to characterize the sensilla on the antennae of adult mosquitoes from two species that are exclusively phytophagous, including Toxorhynchites theobaldi and Toxorhynchites violaceus, as well as Lutzia bigoti, which females are allegedly hematophagous. The types of sensilla in each species were compared, and five basic types of antennal sensilla were identified: trichoid, chaetic, coeloconic, basiconic, and ampullacea. The analysis also found that they were morphologically similar across the three species, regardless of feeding habits or sex. The identification and characterization of basic types of antennal sensilla in T. theobaldi, T. violaceus, and L. bigoti suggest that these structures, which play a crucial role in the behavior and ecology, have common functions across different mosquito species, despite differences in feeding habits or sex.
{"title":"Morphological characterization of antennal sensilla in Toxorhynchites theobaldi, Toxorhynchites violaceus, and Lutzia bigoti adults: a comparative study using scanning electron microscopy.","authors":"Rhiala Gomes Albergaria, Renan Dos Santos Araújo, Gustavo Ferreira Martins","doi":"10.1007/s00709-024-01927-0","DOIUrl":"10.1007/s00709-024-01927-0","url":null,"abstract":"<p><p>Some mosquitoes, including species of the genus Toxorhynchites, are known for actively preying on other mosquito larvae, making these predators valuable allies in the fight against vector-borne diseases. A comprehensive understanding of the anatomy and physiology of these potential biological control agents is helpful for the development of effective strategies for controlling vector populations. This includes the antennae, a crucial component in the search for hosts, mating, and selection of oviposition sites. This study utilized scanning electron microscopy to characterize the sensilla on the antennae of adult mosquitoes from two species that are exclusively phytophagous, including Toxorhynchites theobaldi and Toxorhynchites violaceus, as well as Lutzia bigoti, which females are allegedly hematophagous. The types of sensilla in each species were compared, and five basic types of antennal sensilla were identified: trichoid, chaetic, coeloconic, basiconic, and ampullacea. The analysis also found that they were morphologically similar across the three species, regardless of feeding habits or sex. The identification and characterization of basic types of antennal sensilla in T. theobaldi, T. violaceus, and L. bigoti suggest that these structures, which play a crucial role in the behavior and ecology, have common functions across different mosquito species, despite differences in feeding habits or sex.</p>","PeriodicalId":20731,"journal":{"name":"Protoplasma","volume":" ","pages":"671-684"},"PeriodicalIF":2.5,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139486195","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Centella asiatica (Indian pennywort) is a green leafy vegetable containing centelloside' (triterpenoid), a key phytochemical component in traditional medicine. Being a glycophytic species, they exhibit decline in growth performance and yield traits when subjected to water-deficit (WD) conditions. Glycine betaine (GB) is a low molecular-weight organic metabolite that plays a crucial role in abiotic stress conditions in higher plants. The objective of this study was to investigate the potential of GB in alleviating water-deficit stress (in terms of morphological and physiological responses) in two different genotypes of Indian pennywort, "Nakhon Pathom" (NP; high centelloside-yielding genotype) and "Pathum Thani" (PT; low centelloside-yielding genotype). The genotypes of Indian pennywort were propagated by stolon cutting and transplanted into plastic bags containing 2 kg of garden soil. At the flower-initiation stage (30 days after transplantation), uniform plant material was treated exogenously with 0 (control), 25, and 50 mM GB at 100 mL per plant (one-time foliar spray) and then divided into two groups, 1) well watered (WW; irrigated daily with 400 mL fresh water; 98% field capacity) and 2) water deficit (WD; withheld water for 14 days; 72% field capacity). Foliar application of GB (25 mM) significantly improved leaf osmotic potential in NP under WD conditions via osmotic adjustment by free proline and fructose. Differences in leaf temperature (Tleaf) between WD and WW in NP were maximized (+ 1.93 °C) and the gap of Tleaf was reduced in the case of 25-50 mM GB application. Similarly, crop water stress index (CWSI) in NP and PT plants under WD condition was significantly increased by 1.95- and 1.86-fold over the control, respectively; however, it was significantly decreased by exogenous GB application. Increasing Tleaf and CWSI in drought-stressed plants was closely related to stomatal closure, leading to reduced gas exchange parameters, i.e., stomatal conductance (gs), transpiration rate (E), net photosynthetic rate (Pn), and intercellular CO2 concentration (Ci), and consequently decreased plant biomass and total centelloside yield. Overall physiological, morphological, and secondary metabolite traits were enhanced in NP under WD conditions using 25 mM GB exogenous application compared with the control. The study highlights the significance of GB in Indian pennywort production under limited water irrigation (water deficit) with higher vegetable yield and phytochemical stabilization.
{"title":"Exogenous glycine betaine alleviates water-deficit stress in Indian pennywort (Centella asiatica) under greenhouse conditions.","authors":"Daonapa Chungloo, Rujira Tisarum, Thapanee Samphumphuang, Piyanan Pipatsitee, Thanyaporn Sotesaritkul, Suriyan Cha-Um","doi":"10.1007/s00709-023-01919-6","DOIUrl":"10.1007/s00709-023-01919-6","url":null,"abstract":"<p><p>Centella asiatica (Indian pennywort) is a green leafy vegetable containing centelloside' (triterpenoid), a key phytochemical component in traditional medicine. Being a glycophytic species, they exhibit decline in growth performance and yield traits when subjected to water-deficit (WD) conditions. Glycine betaine (GB) is a low molecular-weight organic metabolite that plays a crucial role in abiotic stress conditions in higher plants. The objective of this study was to investigate the potential of GB in alleviating water-deficit stress (in terms of morphological and physiological responses) in two different genotypes of Indian pennywort, \"Nakhon Pathom\" (NP; high centelloside-yielding genotype) and \"Pathum Thani\" (PT; low centelloside-yielding genotype). The genotypes of Indian pennywort were propagated by stolon cutting and transplanted into plastic bags containing 2 kg of garden soil. At the flower-initiation stage (30 days after transplantation), uniform plant material was treated exogenously with 0 (control), 25, and 50 mM GB at 100 mL per plant (one-time foliar spray) and then divided into two groups, 1) well watered (WW; irrigated daily with 400 mL fresh water; 98% field capacity) and 2) water deficit (WD; withheld water for 14 days; 72% field capacity). Foliar application of GB (25 mM) significantly improved leaf osmotic potential in NP under WD conditions via osmotic adjustment by free proline and fructose. Differences in leaf temperature (T<sub>leaf</sub>) between WD and WW in NP were maximized (+ 1.93 °C) and the gap of T<sub>leaf</sub> was reduced in the case of 25-50 mM GB application. Similarly, crop water stress index (CWSI) in NP and PT plants under WD condition was significantly increased by 1.95- and 1.86-fold over the control, respectively; however, it was significantly decreased by exogenous GB application. Increasing T<sub>leaf</sub> and CWSI in drought-stressed plants was closely related to stomatal closure, leading to reduced gas exchange parameters, i.e., stomatal conductance (g<sub>s</sub>), transpiration rate (E), net photosynthetic rate (P<sub>n</sub>), and intercellular CO<sub>2</sub> concentration (C<sub>i</sub>), and consequently decreased plant biomass and total centelloside yield. Overall physiological, morphological, and secondary metabolite traits were enhanced in NP under WD conditions using 25 mM GB exogenous application compared with the control. The study highlights the significance of GB in Indian pennywort production under limited water irrigation (water deficit) with higher vegetable yield and phytochemical stabilization.</p>","PeriodicalId":20731,"journal":{"name":"Protoplasma","volume":" ","pages":"625-639"},"PeriodicalIF":2.5,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139417935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ovule morphology, megasporogenesis, and megagametogenesis processes were examined in Hydrocleys nymphoides, Alisma plantago-aquatica, and Sagittaria montevidensis. Each of these species belongs to a different clade within the Alismataceae family. It is worth mentioning that the genus Hydrocleys previously belonged to the Limnocharitaceae family but is now classified within the Alismataceae. Flowers in different developmental stages were processed following classical histological methods for their observation with bright-field microscope. The three species present an anatropous and bitegmic mature ovule. This is tenuinucellate in A. plantago-aquatica and S. montevidensis and pseudo-crassinucellate in H. nymphoides. Although all three species have the same type of megasporogenesis, they differ in the megagametogenesis and in the total number of nuclei and cells that form the mature gametophyte. H. nymphoides has a female gametophyte composed of four cells and four nuclei, while A. plantago-aquatica and S. montevidensis have a female gametophyte of five cells and six nuclei. The results are discussed according to the phylogenetic position of each of the species. Moreover, new types of megagametophyte development are described: Hydrocleys and Sagittaria types. The reduction of the female gametophyte with respect to the Polygonum type is found in families belonging to the ANA grade and in other aquatic families within the order Alismatales. We infer that the reduction in the number of cells and nuclei in the female gametophyte is characteristic of species that inhabit aquatic environments. Future studies in aquatic species belonging to other families would be necessary to confirm this hypothesis.
研究了 Hydrocleys nymphoides、Alisma plantago-aquatica 和 Sagittaria montevidensis 的胚珠形态、巨孢子发生和巨型生殖细胞发生过程。这些物种分别属于 Alismataceae 家族中的不同支系。值得一提的是,Hydrocleys 属以前属于 Limnocharitaceae 科,但现在被归入 Alismataceae 科。不同发育阶段的花朵都按照经典的组织学方法进行了处理,并用明视野显微镜进行了观察。这三个物种的成熟胚珠呈倒生和咬合状。A. plantago-aquatica 和 S. montevidensis 的胚珠为tenuinucellate,而 H. nymphoides 的胚珠为 pseudo-crassinucellate。虽然这三个物种的巨孢子发生类型相同,但它们的巨型配子体发生以及形成成熟配子体的细胞核和细胞总数却不同。H. nymphoides 的雌配子体由 4 个细胞和 4 个细胞核组成,而 A. plantago-aquatica 和 S. montevidensis 的雌配子体由 5 个细胞和 6 个细胞核组成。根据每个物种的系统发育位置对结果进行了讨论。此外,还描述了巨型配子体发育的新类型:Hydrocleys和Sagittaria类型。与蓼属类型相比,雌配子体的减少在属于 ANA 级的科和 Alismatales 目中的其他水生科中也有发现。我们推断,雌配子体细胞和细胞核数量的减少是栖息在水生环境中的物种的特征。今后有必要对其他科的水生物种进行研究,以证实这一假设。
{"title":"Megasporogenesis and megagametogenesis in Hydrocleys nymphoides, Alisma plantago-aquatica, and Sagittaria montevidensis (Alismataceae).","authors":"Magali Nicolau, Sofía Reposi, Marina Gotelli, Gabriela Zarlavsky, Beatriz Galati","doi":"10.1007/s00709-024-01930-5","DOIUrl":"10.1007/s00709-024-01930-5","url":null,"abstract":"<p><p>Ovule morphology, megasporogenesis, and megagametogenesis processes were examined in Hydrocleys nymphoides, Alisma plantago-aquatica, and Sagittaria montevidensis. Each of these species belongs to a different clade within the Alismataceae family. It is worth mentioning that the genus Hydrocleys previously belonged to the Limnocharitaceae family but is now classified within the Alismataceae. Flowers in different developmental stages were processed following classical histological methods for their observation with bright-field microscope. The three species present an anatropous and bitegmic mature ovule. This is tenuinucellate in A. plantago-aquatica and S. montevidensis and pseudo-crassinucellate in H. nymphoides. Although all three species have the same type of megasporogenesis, they differ in the megagametogenesis and in the total number of nuclei and cells that form the mature gametophyte. H. nymphoides has a female gametophyte composed of four cells and four nuclei, while A. plantago-aquatica and S. montevidensis have a female gametophyte of five cells and six nuclei. The results are discussed according to the phylogenetic position of each of the species. Moreover, new types of megagametophyte development are described: Hydrocleys and Sagittaria types. The reduction of the female gametophyte with respect to the Polygonum type is found in families belonging to the ANA grade and in other aquatic families within the order Alismatales. We infer that the reduction in the number of cells and nuclei in the female gametophyte is characteristic of species that inhabit aquatic environments. Future studies in aquatic species belonging to other families would be necessary to confirm this hypothesis.</p>","PeriodicalId":20731,"journal":{"name":"Protoplasma","volume":" ","pages":"725-733"},"PeriodicalIF":2.5,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139576241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Drought stress is one of the major limiting factors for the production of tomato in Iran. In this study, the efficiency of selenate and Se nanoparticle (SeNP) foliar application on tomato plants was assessed to vestigate mitigating the risk associated with water-deficit conditions. Tomato plants were treated with SeNPs at the concentrations of 0 and 4 mg L-1; after the third sprays, the plants were exposed to water-deficit conditions. The foliar spraying with SeNPs not only improved growth, yield, and developmental switch to the flowering phase but also noticeably mitigated the detrimental risk associated with the water-deficit conditions. Gene expression experiments showed a slight increase in expression of microRNA-172 (miR-172) in the SeNP-treated plants in normal irrigation, whereas miR-172 displayed a downregulation trend in response to drought stress. The bZIP transcription factor and CRTISO genes were upregulated following the SeNP and drought treatments. Drought stress significantly increased the H2O2 accumulation that is mitigated with SeNPs. The foliar spraying with Se or SeNPs shared a similar trend to alleviate the negative effect of drought stress on the membrane integrity. The applied supplements also conferred drought tolerance through noticeable improvements in the non-enzymatic (ascorbate and glutathione) and enzymatic (catalase and peroxidase) antioxidants. The SeNP-mediated improvement in drought stress tolerance correlated significantly with increases in the activity of phenylalanine ammonia-lyase, proline, non-protein thiols, and flavonoid concentrations. SeNPs also improved the fruit quality regarding K, Mg, Fe, and Se concentrations. It was concluded that foliar spraying with SeNPs could mitigate the detrimental risk associated with the water-deficit conditions.
{"title":"Selenium nanoparticles conferred drought tolerance in tomato plants by altering the transcription pattern of microRNA-172 (miR-172), bZIP, and CRTISO genes, upregulating the antioxidant system, and stimulating secondary metabolism.","authors":"Maryam Neysanian, Alireza Iranbakhsh, Rahim Ahmadvand, Zahra Oraghi Ardebili, Mostafa Ebadi","doi":"10.1007/s00709-024-01929-y","DOIUrl":"10.1007/s00709-024-01929-y","url":null,"abstract":"<p><p>Drought stress is one of the major limiting factors for the production of tomato in Iran. In this study, the efficiency of selenate and Se nanoparticle (SeNP) foliar application on tomato plants was assessed to vestigate mitigating the risk associated with water-deficit conditions. Tomato plants were treated with SeNPs at the concentrations of 0 and 4 mg L<sup>-1</sup>; after the third sprays, the plants were exposed to water-deficit conditions. The foliar spraying with SeNPs not only improved growth, yield, and developmental switch to the flowering phase but also noticeably mitigated the detrimental risk associated with the water-deficit conditions. Gene expression experiments showed a slight increase in expression of microRNA-172 (miR-172) in the SeNP-treated plants in normal irrigation, whereas miR-172 displayed a downregulation trend in response to drought stress. The bZIP transcription factor and CRTISO genes were upregulated following the SeNP and drought treatments. Drought stress significantly increased the H<sub>2</sub>O<sub>2</sub> accumulation that is mitigated with SeNPs. The foliar spraying with Se or SeNPs shared a similar trend to alleviate the negative effect of drought stress on the membrane integrity. The applied supplements also conferred drought tolerance through noticeable improvements in the non-enzymatic (ascorbate and glutathione) and enzymatic (catalase and peroxidase) antioxidants. The SeNP-mediated improvement in drought stress tolerance correlated significantly with increases in the activity of phenylalanine ammonia-lyase, proline, non-protein thiols, and flavonoid concentrations. SeNPs also improved the fruit quality regarding K, Mg, Fe, and Se concentrations. It was concluded that foliar spraying with SeNPs could mitigate the detrimental risk associated with the water-deficit conditions.</p>","PeriodicalId":20731,"journal":{"name":"Protoplasma","volume":" ","pages":"735-747"},"PeriodicalIF":2.5,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139642782","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01Epub Date: 2024-01-19DOI: 10.1007/s00709-024-01928-z
Aybüke Okay, Tarık Kırlıoğlu, Yasin Şamil Durdu, Sanem Şafak Akdeniz, İlker Büyük, E Sümer Aras
MADS-box genes are known to play important roles in diverse aspects of growth/devolopment and stress response in several plant species. However, no study has yet examined about MADS-box genes in P. vulgaris. In this study, a total of 79 PvMADS genes were identified and classified as type I and type II according to the phylogenetic analysis. While both type I and type II PvMADS classes were found to contain the MADS domain, the K domain was found to be present only in type II PvMADS proteins, in agreement with the literature. All chromosomes of the common bean were discovered to contain PvMADS genes and 17 paralogous gene pairs were identified. Only two of them were tandemly duplicated gene pairs (PvMADS-19/PvMADS-23 and PvMADS-20/PvMADS-24), and the remaining 15 paralogous gene pairs were segmentally duplicated genes. These duplications were found to play an important role in the expansion of type II PvMADS genes. Moreover, the RNAseq and RT-qPCR analyses showed the importance of PvMADS genes in response to drought stress in P. vulgaris.
众所周知,MADS-box 基因在多种植物的生长/发育和胁迫反应中发挥着重要作用。然而,还没有研究考察过粗壮褐藻中的 MADS-box 基因。本研究共鉴定了 79 个 PvMADS 基因,并根据系统进化分析将其分为 I 型和 II 型。虽然发现 I 型和 II 型 PvMADS 类都含有 MADS 结构域,但发现 K 结构域只存在于 II 型 PvMADS 蛋白中,这与文献报道一致。发现芸豆的所有染色体都含有 PvMADS 基因,并鉴定出 17 对同源基因。其中只有两个是串联重复的基因对(PvMADS-19/PvMADS-23 和 PvMADS-20/PvMADS-24),其余 15 个同源基因对都是片段重复的基因。研究发现,这些重复基因在 II 型 PvMADS 基因的扩增中发挥了重要作用。此外,RNAseq 和 RT-qPCR 分析表明了 PvMADS 基因在应对干旱胁迫中的重要性。
{"title":"Omics approaches to understand the MADS-box gene family in common bean (Phaseolus vulgaris L.) against drought stress.","authors":"Aybüke Okay, Tarık Kırlıoğlu, Yasin Şamil Durdu, Sanem Şafak Akdeniz, İlker Büyük, E Sümer Aras","doi":"10.1007/s00709-024-01928-z","DOIUrl":"10.1007/s00709-024-01928-z","url":null,"abstract":"<p><p>MADS-box genes are known to play important roles in diverse aspects of growth/devolopment and stress response in several plant species. However, no study has yet examined about MADS-box genes in P. vulgaris. In this study, a total of 79 PvMADS genes were identified and classified as type I and type II according to the phylogenetic analysis. While both type I and type II PvMADS classes were found to contain the MADS domain, the K domain was found to be present only in type II PvMADS proteins, in agreement with the literature. All chromosomes of the common bean were discovered to contain PvMADS genes and 17 paralogous gene pairs were identified. Only two of them were tandemly duplicated gene pairs (PvMADS-19/PvMADS-23 and PvMADS-20/PvMADS-24), and the remaining 15 paralogous gene pairs were segmentally duplicated genes. These duplications were found to play an important role in the expansion of type II PvMADS genes. Moreover, the RNAseq and RT-qPCR analyses showed the importance of PvMADS genes in response to drought stress in P. vulgaris.</p>","PeriodicalId":20731,"journal":{"name":"Protoplasma","volume":" ","pages":"709-724"},"PeriodicalIF":2.5,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11196313/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139491916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-01Epub Date: 2024-01-08DOI: 10.1007/s00709-023-01924-9
Esra Arslan Yuksel, Murat Aydin, Guleray Agar, Mahmut Sinan Taspinar
Overdoses of pesticides lead to a decrease in the yield and quality of plants, such as beans. The unconscious use of deltamethrin, one of the synthetic insecticides, increases the amount of reactive oxygen species (ROS) by causing oxidative stress in plants. In this case, plants tolerate stress by activating the antioxidant defense mechanism and many genes. 5-Aminolevulinic acid (ALA) improves tolerance to stress by acting exogenously in low doses. There are many gene families that are effective in the regulation of this mechanism. In addition, one of the response mechanisms at the molecular level against environmental stressors in plants is retrotransposon movement. In this study, the expression levels of superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT), glutathione reductase (GR), and stress-associated protein (SAP) genes were determined by Q-PCR in deltamethrin (0.5 ppm) and various doses (20, 40, and 80 mg/l) of ALA-treated bean seedlings. In addition, one of the response mechanisms at the molecular level against environmental stressors in plants is retrotransposon movement. It was determined that deltamethrin increased the expression of SOD (1.8-fold), GPX (1.4-fold), CAT (2.7-fold), and SAP (2.5-fold) genes, while 20 and 40 mg/l ALA gradually increased the expression of these genes at levels close to control, but 80 mg/l ALA increased the expression of these genes almost to the same level as deltamethrin (2.1-fold, 1.4-fold, 2.6-fold, and 2.6-fold in SOD, GPX, CAT, and SAP genes, respectively). In addition, retrotransposon-microsatellite amplified polymorphism (REMAP) was performed to determine the polymorphism caused by retrotransposon movements. While deltamethrin treatment has caused a decrease in genomic template stability (GTS) (27%), ALA treatments have prevented this decline. At doses of 20, 40, and 80 mg/L of ALA treatments, the GTS ratios were determined to be 96.8%, 74.6%, and 58.7%, respectively. Collectively, these findings demonstrated that ALA has the utility of alleviating pesticide stress effects on beans.
过量使用杀虫剂会导致豆类等植物的产量和质量下降。不自觉地使用合成杀虫剂之一的溴氰菊酯,会增加活性氧(ROS)的数量,导致植物氧化应激。在这种情况下,植物通过激活抗氧化防御机制和许多基因来承受压力。5-Aminolevulinic acid(ALA)可通过低剂量外源作用提高植物对胁迫的耐受性。有许多基因家族能有效调节这一机制。此外,植物在分子水平上对环境胁迫的反应机制之一是逆转录转座子运动。本研究通过 Q-PCR 方法测定了经溴氰菊酯(0.5 ppm)和不同剂量(20、40 和 80 mg/l)ALA 处理的蚕豆幼苗中超氧化物歧化酶(SOD)、抗坏血酸过氧化物酶(APX)、过氧化氢酶(CAT)、谷胱甘肽还原酶(GR)和胁迫相关蛋白(SAP)基因的表达水平。此外,植物在分子水平上对环境胁迫的反应机制之一是逆转录转座子运动。经测定,溴氰菊酯可增加 SOD(1.8 倍)、GPX(1.4 倍)、CAT(2.7 倍)和 SAP(2.但 80 毫克/升的 ALA 可使这些基因的表达量几乎达到与溴氰菊酯相同的水平(SOD、GPX、CAT 和 SAP 基因的表达量分别为 2.1 倍、1.4 倍、2.6 倍和 2.6 倍)。此外,还进行了反转座子微卫星扩增多态性分析(REMAP),以确定反转座子移动引起的多态性。溴氰菊酯处理导致基因组模板稳定性(GTS)下降(27%),而 ALA 处理则阻止了这种下降。在 20、40 和 80 毫克/升的 ALA 处理剂量下,GTS 比率分别为 96.8%、74.6% 和 58.7%。总之,这些研究结果表明,ALA 有助于减轻农药对豆类的胁迫效应。
{"title":"5-Aminolevulinic acid treatment mitigates pesticide stress in bean seedlings by regulating stress-related gene expression and retrotransposon movements.","authors":"Esra Arslan Yuksel, Murat Aydin, Guleray Agar, Mahmut Sinan Taspinar","doi":"10.1007/s00709-023-01924-9","DOIUrl":"10.1007/s00709-023-01924-9","url":null,"abstract":"<p><p>Overdoses of pesticides lead to a decrease in the yield and quality of plants, such as beans. The unconscious use of deltamethrin, one of the synthetic insecticides, increases the amount of reactive oxygen species (ROS) by causing oxidative stress in plants. In this case, plants tolerate stress by activating the antioxidant defense mechanism and many genes. 5-Aminolevulinic acid (ALA) improves tolerance to stress by acting exogenously in low doses. There are many gene families that are effective in the regulation of this mechanism. In addition, one of the response mechanisms at the molecular level against environmental stressors in plants is retrotransposon movement. In this study, the expression levels of superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT), glutathione reductase (GR), and stress-associated protein (SAP) genes were determined by Q-PCR in deltamethrin (0.5 ppm) and various doses (20, 40, and 80 mg/l) of ALA-treated bean seedlings. In addition, one of the response mechanisms at the molecular level against environmental stressors in plants is retrotransposon movement. It was determined that deltamethrin increased the expression of SOD (1.8-fold), GPX (1.4-fold), CAT (2.7-fold), and SAP (2.5-fold) genes, while 20 and 40 mg/l ALA gradually increased the expression of these genes at levels close to control, but 80 mg/l ALA increased the expression of these genes almost to the same level as deltamethrin (2.1-fold, 1.4-fold, 2.6-fold, and 2.6-fold in SOD, GPX, CAT, and SAP genes, respectively). In addition, retrotransposon-microsatellite amplified polymorphism (REMAP) was performed to determine the polymorphism caused by retrotransposon movements. While deltamethrin treatment has caused a decrease in genomic template stability (GTS) (27%), ALA treatments have prevented this decline. At doses of 20, 40, and 80 mg/L of ALA treatments, the GTS ratios were determined to be 96.8%, 74.6%, and 58.7%, respectively. Collectively, these findings demonstrated that ALA has the utility of alleviating pesticide stress effects on beans.</p>","PeriodicalId":20731,"journal":{"name":"Protoplasma","volume":" ","pages":"581-592"},"PeriodicalIF":2.9,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11021237/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139404157","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gall formation impacts the development of plant species by altering the structure and mobilization of reserves, and the functional and physiological patterns of the host organ. The current study aimed to evaluate the impact generated by the Neolithus fasciatus galling insect (Hemiptera: Triozidae) in Sapium glandulosum leaves (Euphorbiaceae) at the cytological, histological, histochemical, and biochemical levels. Non-galled leaves and galls in the young, mature, and senescent stages were evaluated. The non-galled leaf has a uniseriate epidermis, stomata only on the abaxial side, a dorsiventral mesophyll, and parenchyma cells with thin primary walls containing chloroplasts with plastoglobules. The gall has a parenchymatous compartmentalized cortex. The young and mature galls already have a dense cytoplasm, especially in the inner cells of the cortex, with chloroplasts, mitochondria, Golgi complex, and large and evident nuclei. In senescent galls, there are signs of organelle degradation and cell digestion. Carbohydrates occur in greater amounts in the mature gall, mainly in the starch grain form, while proteins and lipids predominate in non-galled leaves. Secondary metabolites occur mainly in the young gall and may be related to its protection and to the signaling of its development. Sapium glandulosum galls have histological and cytological compartmentalization of the cortex with a large amount of carbohydrates, which supply energy to maintain the development of the structure.
{"title":"Hemiptera-induced galls of Sapium glandulosum have histological and cytological compartmentalization created with a large amount of carbohydrate.","authors":"Lorena Moreira Pires Rosa, Maraíza Sousa Silva, Renê Gonçalves da Silva Carneiro, Mariana Machado, Vinícius Coelho Kuster","doi":"10.1007/s00709-023-01921-y","DOIUrl":"10.1007/s00709-023-01921-y","url":null,"abstract":"<p><p>Gall formation impacts the development of plant species by altering the structure and mobilization of reserves, and the functional and physiological patterns of the host organ. The current study aimed to evaluate the impact generated by the Neolithus fasciatus galling insect (Hemiptera: Triozidae) in Sapium glandulosum leaves (Euphorbiaceae) at the cytological, histological, histochemical, and biochemical levels. Non-galled leaves and galls in the young, mature, and senescent stages were evaluated. The non-galled leaf has a uniseriate epidermis, stomata only on the abaxial side, a dorsiventral mesophyll, and parenchyma cells with thin primary walls containing chloroplasts with plastoglobules. The gall has a parenchymatous compartmentalized cortex. The young and mature galls already have a dense cytoplasm, especially in the inner cells of the cortex, with chloroplasts, mitochondria, Golgi complex, and large and evident nuclei. In senescent galls, there are signs of organelle degradation and cell digestion. Carbohydrates occur in greater amounts in the mature gall, mainly in the starch grain form, while proteins and lipids predominate in non-galled leaves. Secondary metabolites occur mainly in the young gall and may be related to its protection and to the signaling of its development. Sapium glandulosum galls have histological and cytological compartmentalization of the cortex with a large amount of carbohydrates, which supply energy to maintain the development of the structure.</p>","PeriodicalId":20731,"journal":{"name":"Protoplasma","volume":" ","pages":"593-606"},"PeriodicalIF":2.9,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139404158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Trema, a genus of the popularly known Cannabaceae, has recently been the subject of cannabinoid bioprospection. T. micrantha is a tree with pharmacological potential widely used in folk medicine. It has two types of glandular trichomes, bulbous and filiform, spread throughout the plant body. Considering the proximity of this species to Cannabis sativa and Trema orientalis, species containing cannabinoids, the glandular trichomes of T. micrantha are also expected to be related to the secretion of these compounds. Thus, this study aims to detail the morphology of secretory trichomes during the synthesis, storing and release of metabolites in T. micrantha. We tested the proposition that they could be a putative type of cannabinoid-secreting gland. Pistillate and staminate flowers and leaves were collected and processed for ontogenic, histochemical, and ultrastructural analyses. Both types of glandular trichomes originate from a protodermal cell. They are putative cannabinoid-secreting sites because: (1) terpene-phenols and, more specifically, cannabinoids were detected in situ; (2) their secretory subcellular apparatus is consistent with that found in C. sativa: modified plastids, polyribosomes, an extensive rough endoplasmic reticulum, and a moniliform smooth endoplasmic reticulum. Plastids and smooth endoplasmic reticulum are involved in the synthesis of terpenes, while the rough endoplasmic reticulum acts in the phenolic synthesis. These substances cross the plasma membrane by exocytosis and are released outside the trichome through cuticle pores. The study of the cell biology of the putative cannabinoid glands can promote the advancement of prospecting for natural products in plants.
{"title":"The putative cannabinoid-secreting trichome of Trema micrantha (L.) Blume (Cannabaceae).","authors":"Simone Pádua Teixeira, Isabel Cristina Nascimento, Marina Priolo Grejo, Viviane Gonçalves Leite, Sílvia Rodrigues Machado","doi":"10.1007/s00709-023-01907-w","DOIUrl":"10.1007/s00709-023-01907-w","url":null,"abstract":"<p><p>Trema, a genus of the popularly known Cannabaceae, has recently been the subject of cannabinoid bioprospection. T. micrantha is a tree with pharmacological potential widely used in folk medicine. It has two types of glandular trichomes, bulbous and filiform, spread throughout the plant body. Considering the proximity of this species to Cannabis sativa and Trema orientalis, species containing cannabinoids, the glandular trichomes of T. micrantha are also expected to be related to the secretion of these compounds. Thus, this study aims to detail the morphology of secretory trichomes during the synthesis, storing and release of metabolites in T. micrantha. We tested the proposition that they could be a putative type of cannabinoid-secreting gland. Pistillate and staminate flowers and leaves were collected and processed for ontogenic, histochemical, and ultrastructural analyses. Both types of glandular trichomes originate from a protodermal cell. They are putative cannabinoid-secreting sites because: (1) terpene-phenols and, more specifically, cannabinoids were detected in situ; (2) their secretory subcellular apparatus is consistent with that found in C. sativa: modified plastids, polyribosomes, an extensive rough endoplasmic reticulum, and a moniliform smooth endoplasmic reticulum. Plastids and smooth endoplasmic reticulum are involved in the synthesis of terpenes, while the rough endoplasmic reticulum acts in the phenolic synthesis. These substances cross the plasma membrane by exocytosis and are released outside the trichome through cuticle pores. The study of the cell biology of the putative cannabinoid glands can promote the advancement of prospecting for natural products in plants.</p>","PeriodicalId":20731,"journal":{"name":"Protoplasma","volume":" ","pages":"463-475"},"PeriodicalIF":2.9,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138299759","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}