The AMS Golden Valley laboratory is equipped with two accelerator mass spectrometers: the AMS facility from the Budker Institute of Nuclear Physics (BINP) and the Mini Carbon Dating System (MICADAS-28) from Ionplus AG and two graphitization systems: the Automated Graphitization Equipment (AGE-3) from Ionplus AG and the Absorption-catalytic setup (ACS) developed at the Boreskov Institute of Catalysis (BIC). The ACS was designed for graphite preparation from labeled biomedical samples, dissolved organics, and dissolved or gaseous carbon dioxide but has proven to be suitable for the traditional dating of objects no older than 35,000 years. Here we present two series of AMS data for the samples from Glasgow International Radiocarbon Inter-comparison (GIRI), prepared using AGE-3 and ACS, and then measured on MICADAS-28. The mean value of the background F14C was 0.0024 ± 0.0009 and 0.012 ± 0.003 for AGE-3 and ACS, respectively, and both methods gave reproducible results for the OXI.
The Brazil Nut tree (Bertholletia excelsa, Lecythidaceae) is a species of considerable historical, economic and ecological importance in South America. Radiocarbon dating indicates some individuals can live from hundreds to more than 1000 years, which means they have the potential to reconstruct deep time growth patterns and their relationship to anthropogenic management or climate change from pre-colonial to present times. However, age estimates vary considerably amongst trees dated with different methods (i.e. tree-ring analysis, radiocarbon-dating, and repeated diameter measurements). Here we analyze living Brazil Nut trees growing in four distinct regions across the Brazilian Amazon using two dating methods: tree-ring counting and radiocarbon dating. Our results show that the congruence between the two methods varies amongst regions, and the highest congruence is found at the site of Tefé, Amazonas. This region features archaeological sites with anthropogenic Terra Preta soils, and is known for its long-term human forest management. This management likely enhanced light and nutrient availability, which possibly enabled the trees to grow at higher rates and form annual rings. Our findings highlight the need for better understanding of the growth of Brazil Nut trees for ecological research, but also the potential of dendrochronology for exploring climate change and human-forest interactions in the Amazon Basin.
Northern Arizona University, Flagstaff, Arizona, USA, recently installed a MIni CArbon DAting System (MICADAS) with a gas interface system (GIS) for determining the 14C content of CO2 gas released by the acid dissolution of biogenic carbonates. We compare 48 paired graphite, GIS, and direct carbonate 14C determinations of individual mollusk shells and echinoid tests. GIS sample sizes ranged between 0.5 and 1.5 mg and span 0.1 to 45.1 ka BP (n = 42). A reduced major axis regression shows a strong relationship between GIS and graphite percent Modern Carbon (pMC) values (m = 1.011; 95% CI [0.997–1.023], R2 = 0.999) that is superior to the relationship between the direct carbonate and graphite values (m = 0.978; 95% CI [0.959-0.999], R2 = 0.997). Sixty percent of GIS pMC values are within ±0.5 pMC of their graphite counterparts, compared to 26% of direct carbonate pMC values. The precision of GIS analyses is approximately ±70 14C yrs to 6.5 ka BP and decreases to approximately ±130 14C yrs at 12.5 ka BP. This precision is on par with direct carbonate and is approximately five times larger than for graphite. Six Plio-Pleistocene mollusk and echinoid samples yield finite ages when analyzed as direct carbonate but yield non-finite ages when analyzed as graphite or as GIS. Our results show that GIS 14C dating of biogenic carbonates is preferable to direct carbonate 14C dating and is an efficient alternative to standard graphite 14C dating when the precision of graphite 14C dating is not required.
This article discusses the absolute chronology of burials from the 3rd and 2nd millennia BC discovered under the mounds of three barrows in the Kordyshiv cemetery in western Ukraine. Its aim is to create a chronological model of the burials by modeling 27 AMS 14C dates obtained from 21 individuals buried in single and collective graves. Dietary analysis of stable carbon (δ13C) and nitrogen (δ15N) isotope values are presented. The Bayesian modeling of the 14C dates from the three Kordyshiv barrows revealed the extremely important role of these monuments as long-term objects used for ritual purposes. At the end of the 3rd millennium BC, the epi-Corded Ware Culture (epi-CWC) community erected a mound over the central burial in Barrow 2, then interred the graves of three additional deceased. After several hundred years Barrow 2 was reused by Komarów Culture (KC) communities from the Middle Bronze Age (MBA) who interred their deceased in the existing mound. The oldest monument with MBA burials was Barrow 3, in which the dead were buried in a two-stage sequence before and after the mid-2nd millennium BC. The youngest dated grave was Burial 1 in Barrow 1, comprising a collective burial that was interred between 1400 and 1200 BC. The additional analyses of carbon and nitrogen isotopes show significant differences in the diet of epi-CWC individuals buried in Barrow 2 from the individuals representing the KC.