Short-duration archeological sites situated entirely within plateaus in the radiocarbon calibration curve pose unique challenges for our understanding of past processes at regional and global scales. This paper aims to overcome these limitations by leveraging the specific characteristics of two depositional contexts, the Early Neolithic Swifterbant Culture sites S3 and S4, located in the Dutch wetlands. These sites are of exceptional significance as they provide the earliest conclusive evidence of crop cultivation and animal husbandry outside the expansion of Linearbandkeramik (LBK) farmers in north-western Europe. Here, we present a customized approach that combines radiocarbon dating and Bayesian modeling, predicated on vertical sequences of short-lived plant remains. Our innovative approach enables us to determine, at a fine scale, the temporal position and duration of the prominent archeological contexts at S3 and S4, and explore the chronological relationship between the two sites. Through our analysis, we propose a new chronology for the onset of Neolithization in the Dutch wetlands.
There are now 101 radiocarbon dates from the long Paleolithic and post-Paleolithic culture-stratigraphic sequence in El Mirón Cave, Cantabrian Spain. Here we report on two dates on bone from two different humans whose remains were found in disturbed surface sediments in the cave vestibule rear and that confirm the existence of burials in addition to previously reported residential occupations in the vestibule front pertaining to the Chalcolithic and early Bronze Age periods (ca. 5500–3500 cal BP). In another attempt to resolve problems of stratigraphic incoherence of dates from the early Magdalenian periods in the vestibule rear, six new assays on faunal remains from Levels 119, 117, 114, 108, and 106 were run at Queen’s University in Belfast. There continue to be date inversions in the Lower Magdalenian range of levels that may be explained by a combination of intensive anthropic and rodent activity, major rock fall, slope wash and gravity-caused object movements, as well as possible problems in following some thin levels during excavations over a large area and across many years of work in the cave vestibule interior, particularly in the absence of any layers that are culturally sterile or even poor. Nonetheless, the coherent age of the Initial Magdalenian is fully confirmed by a new date from Level 21 in the vestibule front at ca. 22,000–20,500 cal BP), as is the general age range of the Lower Magdalenian (ca. 20,500–18,000 cal BP).
Seven accelerator mass spectrometry radiocarbon (AMS 14C) dates (7260±106∼7607±95 BP averaged 7444±103 BP) on a giant oyster shell, collected from an ancient shore of the Taipei Basin, are similar to the LSC (liquid scintillation counting) 14C age (7260±46 BP) of a grass sample inside the shell. The calibrated 14C ages of the C. gigas by Marine20 are 7490±240∼7805±230 cal BP (average 7660±96 cal BP), generally agreed with the calibrated LSC 14C ages of the grass and the oyster shell. Combined with other 14C ages of shoreline samples in the Taipei Basin, it is evident that sea level rose from 8600 to 7600 cal BP and reached a stand higher than modern sea level. During this marine transgression, the sedimentation rate along the shoreline was very high because 14C dating was not able to detect age differences for 4–5 m thick sediment sequences. Sixty-nine analyses of δ18O and δ13C from the oldest part of the shell exhibit clear seasonal cycles, with a 4-year period of growth in the 5.5-cm section. According to the δ18O values, the ancient oyster grew in a warmer-than-present shoreline environment, suggesting that the current absence of the giant oyster in Taiwan is not due to warming conditions.
Marine radiocarbon (14C) ages are an important geochronology tool for the understanding of past earthquakes and tsunamis that have impacted the coastline of New Zealand. To advance this field of research, we need an improved understanding of the radiocarbon marine reservoir correction for coastal waters of New Zealand. Here we report 170 new ΔR20 (1900–1950) measurements from around New Zealand made on pre-1950 marine shells and mollusks killed by the 1931 Napier earthquake. The influence of feeding method, living depth and environmental preference on ΔR is evaluated and we find no influence from these factors except for samples living at or around the high tide mark on rocky open coastlines, which tend to have anomalously low ΔR values. We examine how ΔR varies spatially around the New Zealand coastline and identify continuous stretches of coastline with statistically similar ΔR values. We recommend subdividing the New Zealand coast into four regions with different marine reservoir corrections: A: south and western South Island, ΔR20 –113 ± 33 yr, B: Cook Strait and western North Island, ΔR20 –171 ± 29 yr, C: northeastern North Island, ΔR20 –143 ± 18 yr, D: eastern North Island and eastern South Island, ΔR20 –70 ± 39 yr.