Based on the study of the primary documentation related to the excavations carried out by Eurico Miller in the 1970s at Abrigo do Sol, Mato Grosso (Brazil), we propose a new reading of the stratigraphic and chronological information obtained from this rock shelter. Despite the apparent incongruity in the chrono-stratigraphic distribution of published dates, a detailed examination of the stratigraphy and field notes allowed us to identify a chronometric sequence with regular distribution between the Middle Holocene and the Late Pleistocene periods for the Abrigo do Sol site. We present here the original documents related to radiocarbon dating and their analysis. We finally show the implications of this study for understanding this site and the discussions related to the ancient settlements of the Amazon forest.
Observations of radiocarbon (14C) in Earth’s atmosphere and other carbon reservoirs are important to quantify exchanges of CO2 between reservoirs. The amount of 14C is commonly reported in the so-called Delta notation, i.e., Δ14C, the decay- and fractionation-corrected departure of the ratio of 14C to total C from that ratio in an absolute international standard; this Delta notation permits direct comparison of 14C/C ratios in the several reservoirs. However, as Δ14C of atmospheric CO2, Δ14CO2 is based on the ratio of 14CO2 to total atmospheric CO2, its value can and does change not just because of change in the amount of atmospheric14CO2 but also because of change in the amount of total atmospheric CO2, complicating ascription of change in Δ14CO2 to change in one or the other quantity. Here we suggest that presentation of atmospheric 14CO2 amount as mole fraction relative to dry air (moles of 14CO2 per moles of dry air in Earth’s atmosphere), or as moles or molecules of 14CO2 in Earth’s atmosphere, all readily calculated from Δ14CO2 and the amount of atmospheric CO2 (with slight dependence on δ13CO2), complements presentation only as Δ14CO2, and can provide valuable insight into the evolving budget and distribution of atmospheric 14CO2.
Freshwater ecosystems are responsible for a large proportion of global methane emissions to the atmosphere. The radiocarbon (14C) content of this aquatic methane is useful for determining the age and source of this important greenhouse gas. Several methods already exist for the collection of aquatic methane for radiocarbon analysis, but they tend to only sample over short periods of time, which can make them unsuitable for characterizing aquatic methane over longer timespans, and vulnerable to missing short-term events. Here, we describe a new time-integrated method for the collection of aquatic methane that provides samples suitable for radiocarbon analysis, that are representative for periods of up to at least 16 days. We report the results of a suite of tests undertaken to verify the reliability of the method, and the 14C age of aquatic methane from field trials undertaken at sites within Scotland, UK. We believe that this new method provides researchers with a simple approach that is easily deployable and can be used to collect representative time-integrated samples of methane for radiocarbon analysis from a wide range of aquatic environments.
The Eastern Chukotka is considered a unique permafrost region where massive ice bodies are widespread. However, the origin and age of these ice formations are often discussed. The age of the massive ice of Chukotka was established for the first time using AMS 14C dating. It was revealed that three massive ice bodies on the coast of Mechigmen Bay were formed at the end of the Late Pleistocene: a) near the Akkani site, 21,612 to 22,147 cal BP; b) near the Lavrentiya settlement, 27,553 cal BP; and c) near the Lavrentiya settlement, 22,193 cal BP. Stable isotope values in the studied massive ice vary in a rather wide range by about 10‰ for δ18O values (from –14.8‰ to –24.5‰) and about 75‰ for the δ2H values (from –116‰ to –191‰). The studied massive ice bodies are of intrasedimental genesis and formed epigenetically during the final stage of MIS2 (22–27 cal ka BP).