Latest developments in the field of stem cell research and regenerative medicine compiled from publicly available information and press releases from non-academic institutions in November 2023.
Latest developments in the field of stem cell research and regenerative medicine compiled from publicly available information and press releases from non-academic institutions in November 2023.
Aim: This study aimed to evaluate the trends in organoid culture research within the field of regenerative medicine from 2002 to 2022. Methods: The worldwide distribution of organoid research in regenerative medicine articles indexed in the Scopus database was analyzed. Result: A total of 840 documents were analyzed, averaging 42 publications annually. The USA (n = 296) led in publications, followed by China (n = 127), Japan (n = 91) and the UK (n = 75). Since 2011, research has surged, particularly in China, which emerged as a prominent center. Conclusion: The findings highlight significant growth in organoid research, promising future organ transplantation. Research trends integrate tissue engineering, gene modification and induced pluripotent stem cell technologies, reflecting a move toward personalized medicine.
Aim: Mesenchymal stem cells (MSCs) are pluripotent cells with significant therapeutic potential. The objective of this study was to examine the inflammatory profile of MSCs cultured under different conditions. Methods: MSCs were cultured by three strategies: seeding on an extracellular matrix (ECM), spheroids in static culture and spheroids in a bioreactor. Paracrine factors and CD206, a marker of M2 macrophage phenotype, were measured. Results: MSCs grown as spheroids in a bioreactor produced more IL-6 and IL-8 (p < 0.05). Supernatant collected from spheroids under both culture conditions increased the M2 macrophage phenotype almost twofold. Conclusion: Results indicate that the inflammatory profile of the supernatant collected from MSCs can be modified through culture conditions which has impacts for the future of regenerative medicine.
Latest developments in the field of stem cell research and regenerative medicine compiled from publicly available information and press releases from non-academic institutions in October 2023.
Tweetable abstract Inflammatory skin diseases account for most chronic skin conditions. 3D bioprinting is an exciting technology that can revolutionize the understanding and approach to treatment of atopic dermatitis and graft-versus-host disease.
Objective: This study aimed to explore the efficacy and optimal delivery time of human umbilical cord mesenchymal stem cells (hUC-MSCs) in treating collagenase-induced Achilles tendinopathy. Methods: Achilles tendinopathy in rats at early or advanced stages was induced by injecting collagenase I into bilateral Achilles tendons. A total of 28 injured rats were injected with a hUC-MSC solution or normal saline into bilateral tendons twice and sampled after 4 weeks for histological staining, gene expression analysis, transmission electron microscope assay and biomechanical testing analysis. Results: The results revealed better histological performance and a larger collagen fiber diameter in the MSC group. mRNA expression of TNF-α, IL-1β and MMP-3 was lower after MSC transplantation. Early MSC delivery promoted collagen I and TIMP-3 synthesis, and strengthened tendon toughness. Conclusion: hUC-MSCs demonstrated a therapeutic effect in treating collagenase-induced Achilles tendinopathy, particularly in the early stage of tendinopathy.
We are delighted to welcome you to the 19th volume of Regenerative Medicine. In this foreword, we reflect on the content highlights from 2023 and discuss what we can look forward to in the year ahead.
Aim: To determine the mechanism of Calcitonin gene-related peptide (CGRP) in bone healing.Materials & methods: Alkaline phosphatase (ALP) activity and inflammatory-factor levels were detected using ELISA. Osteogenic differentiation was assessed using Alizarin red staining technique. The interaction between histone deacetylase 6 (HDAC6) and A-kinase anchoring protein 12 (AKAP12) was investigated through Co- immunoprecipitation.Results: CGRP treatment promoted rat bone marrow-derived macrophages (BMDMs) M2 polarization. CGRP facilitated osteogenic differentiation by enhancing M2 polarization of BMDMs. Mechanistically, CGRP promoted AKAP12 acetylation to activate the extracellular regulated protein kinases pathway by HDAC6 inhibition.Conclusion: CGRP promoted M2 polarization of rat BMDMs and facilitated osteogenic differentiation through the HDAC6/AKAP12/extracellular regulated protein kinases signaling pathway, thereby promoting bone healing.