首页 > 最新文献

Regenerative medicine最新文献

英文 中文
Facilitating the ethical sourcing of donor hematopoietic stem cells for cell and gene therapy research and development. 为细胞和基因疗法的研究与开发提供符合道德标准的造血干细胞捐献来源。
IF 2.4 4区 医学 Q4 CELL & TISSUE ENGINEERING Pub Date : 2024-06-02 Epub Date: 2024-06-18 DOI: 10.1080/17460751.2024.2357930
Lina Hamad, Choon Key Chekar, Chloe Anthias, Laura Machin

Aim: Unrelated stem cell donor registries (DRs) are increasingly engaging in the field of cell and gene therapy (CGT). This study aims to explore the values, concerns, needs and expectations of donors and members of the public on donating hematopoietic stem cells (HSCs) for CGT.Methods: Seven focus groups were conducted in 2019 with members of the public, prospective donors and donors on the Anthony Nolan DR in the UK.Results: Participants expressed concerns over increased frequency of donation and incidental findings and required more information on the type of research including the purpose and possible outcomes.Conclusion: Addressing donors' concerns, needs and expectations on donating cellular materials for CGT research and development is essential to maintaining the highest standards for donor care and safety within this rapidly emerging field.

目的:非亲缘干细胞捐献者登记处(DRs)越来越多地参与到细胞和基因治疗(CGT)领域。本研究旨在探讨捐献者和公众对捐献造血干细胞用于细胞和基因治疗的价值观、关注点、需求和期望。研究方法于2019年与公众、潜在捐献者和英国安东尼诺兰DR的捐献者开展了七次焦点小组讨论。结果参与者对捐赠频率增加和偶然发现表示担忧,并要求获得更多有关研究类型的信息,包括目的和可能的结果。结论:解决捐献者对捐献细胞材料用于 CGT 研究和开发的担忧、需求和期望,对于在这一迅速崛起的领域保持最高标准的捐献者护理和安全至关重要。
{"title":"Facilitating the ethical sourcing of donor hematopoietic stem cells for cell and gene therapy research and development.","authors":"Lina Hamad, Choon Key Chekar, Chloe Anthias, Laura Machin","doi":"10.1080/17460751.2024.2357930","DOIUrl":"10.1080/17460751.2024.2357930","url":null,"abstract":"<p><p><b>Aim:</b> Unrelated stem cell donor registries (DRs) are increasingly engaging in the field of cell and gene therapy (CGT). This study aims to explore the values, concerns, needs and expectations of donors and members of the public on donating hematopoietic stem cells (HSCs) for CGT.<b>Methods:</b> Seven focus groups were conducted in 2019 with members of the public, prospective donors and donors on the Anthony Nolan DR in the UK.<b>Results:</b> Participants expressed concerns over increased frequency of donation and incidental findings and required more information on the type of research including the purpose and possible outcomes.<b>Conclusion:</b> Addressing donors' concerns, needs and expectations on donating cellular materials for CGT research and development is essential to maintaining the highest standards for donor care and safety within this rapidly emerging field.</p>","PeriodicalId":21043,"journal":{"name":"Regenerative medicine","volume":" ","pages":"317-326"},"PeriodicalIF":2.4,"publicationDate":"2024-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11346549/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141420607","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PXL01 alters macrophage response with no effect on axonal outgrowth or Schwann cell response after nerve repair in rats. PXL01 可改变巨噬细胞的反应,但对大鼠神经修复后的轴突生长或许旺细胞反应没有影响。
IF 2.4 4区 医学 Q4 CELL & TISSUE ENGINEERING Pub Date : 2024-06-02 Epub Date: 2024-07-03 DOI: 10.1080/17460751.2024.2361515
Derya Burcu Hazer Rosberg, Lena Stenberg, Margit Mahlapuu, Lars B Dahlin

Background: Adjunctive pharmacological treatment may improve nerve regeneration. We investigated nerve regeneration processes of PXL01 - a lactoferrin-derived peptide - after repair of the sciatic nerve in healthy Wistar rats.Materials & methods: PXL01, sodium hyaluronate (carrier) or sodium chloride was administered around the repair. After 6 days axonal outgrowth, Schwann cell response, pan- (CD68) and pro-healing (CD206) macrophages in sciatic nerve, sensory neuronal response in dorsal root ganglia (DRG) and expression of heat shock protein 27 (HSP27) in sciatic nerves and DRGs were analyzed.Results: Despite a lower number of pan-macrophages, other investigated variables in sciatic nerves or DRGs did not differ between the treatment groups.Conclusion: PLX01 applied locally inhibits inflammation through pan-macrophages in repaired sciatic nerves without any impact on nerve regeneration or pro-healing macrophages.

背景:辅助药物治疗可改善神经再生。我们研究了乳铁蛋白衍生肽 PXL01 在健康 Wistar 大鼠坐骨神经修复后的神经再生过程。材料与方法:在修复处周围注射 PXL01、透明质酸钠(载体)或氯化钠。6 天后,分析坐骨神经的轴突生长、许旺细胞反应、泛(CD68)和促愈合(CD206)巨噬细胞、背根神经节(DRG)的感觉神经元反应以及坐骨神经和 DRG 的热休克蛋白 27(HSP27)表达。结果:尽管泛巨噬细胞的数量较少,但坐骨神经或背根神经节的其他研究变量在治疗组之间没有差异。结论局部应用 PLX01 可通过修复的坐骨神经中的泛巨噬细胞抑制炎症,而不会影响神经再生或促进愈合的巨噬细胞。
{"title":"PXL01 alters macrophage response with no effect on axonal outgrowth or Schwann cell response after nerve repair in rats.","authors":"Derya Burcu Hazer Rosberg, Lena Stenberg, Margit Mahlapuu, Lars B Dahlin","doi":"10.1080/17460751.2024.2361515","DOIUrl":"10.1080/17460751.2024.2361515","url":null,"abstract":"<p><p><b>Background:</b> Adjunctive pharmacological treatment may improve nerve regeneration. We investigated nerve regeneration processes of PXL01 - a lactoferrin-derived peptide - after repair of the sciatic nerve in healthy Wistar rats.<b>Materials & methods:</b> PXL01, sodium hyaluronate (carrier) or sodium chloride was administered around the repair. After 6 days axonal outgrowth, Schwann cell response, pan- (CD68) and pro-healing (CD206) macrophages in sciatic nerve, sensory neuronal response in dorsal root ganglia (DRG) and expression of heat shock protein 27 (HSP27) in sciatic nerves and DRGs were analyzed.<b>Results:</b> Despite a lower number of pan-macrophages, other investigated variables in sciatic nerves or DRGs did not differ between the treatment groups.<b>Conclusion:</b> PLX01 applied locally inhibits inflammation through pan-macrophages in repaired sciatic nerves without any impact on nerve regeneration or pro-healing macrophages.</p>","PeriodicalId":21043,"journal":{"name":"Regenerative medicine","volume":" ","pages":"327-343"},"PeriodicalIF":2.4,"publicationDate":"2024-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11346556/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141493147","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Industry updates from the field of stem cell research and regenerative medicine in February 2024. 2024 年 2 月干细胞研究和再生医学领域的行业动态。
IF 2.4 4区 医学 Q4 CELL & TISSUE ENGINEERING Pub Date : 2024-06-02 Epub Date: 2024-04-30 DOI: 10.1080/17460751.2024.2340888
Dusko Ilic, Mirjana Liovic

Latest developments in the field of stem cell research and regenerative medicine compiled from publicly available information and press releases from non-academic institutions in February 2024.

2024 年 2 月干细胞研究和再生医学领域的最新进展,汇编自公开信息和非学术机构的新闻稿。
{"title":"Industry updates from the field of stem cell research and regenerative medicine in February 2024.","authors":"Dusko Ilic, Mirjana Liovic","doi":"10.1080/17460751.2024.2340888","DOIUrl":"https://doi.org/10.1080/17460751.2024.2340888","url":null,"abstract":"<p><p>Latest developments in the field of stem cell research and regenerative medicine compiled from publicly available information and press releases from non-academic institutions in February 2024.</p>","PeriodicalId":21043,"journal":{"name":"Regenerative medicine","volume":"19 6","pages":"279-287"},"PeriodicalIF":2.4,"publicationDate":"2024-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142036791","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Use of allograft bone matrix in clinical orthopedics. 异体骨基质在临床骨科中的应用。
IF 2.4 4区 医学 Q4 CELL & TISSUE ENGINEERING Pub Date : 2024-05-03 Epub Date: 2024-07-19 DOI: 10.1080/17460751.2024.2353473
Shaan Manawar, Erica Myrick, Peter Awad, Victor Hung, Cassidy Hinton, Keith Kenter, Karen Bovid, Yong Li

Clinical orthopedics continuously aims to improve methods for bone formation. Clinical applications where bone formation is necessary include critical long bone defects in orthopedic trauma or tumor patients. Though some biomaterials combined with autologous stem cells significantly improve bone repair, critical-size damages are still challenged with the suitable implantation of biomaterials and donor cell survival. Extracellular matrix (ECM) is the fundamental structure in tissues that can nest and nourish resident cells as well as support specific functions of the tissue type. ECM also plays a role in cell signaling to promote bone growth, healing and turnover. In the last decade, the use of bone-derived ECMs or ECM-similar biomaterials have been widely investigated, including decellularized and demineralized bone ECM. In this article, we reviewed the current productions and applications of decellularized and demineralized bone matrices. We also introduce the current study of whole limb decellularization and recellularization.

临床骨科一直致力于改进骨形成的方法。需要进行骨形成的临床应用包括骨科创伤或肿瘤患者的关键性长骨缺损。虽然一些生物材料与自体干细胞结合可显著改善骨修复,但临界大小的损伤仍面临生物材料的适当植入和供体细胞存活的挑战。细胞外基质(ECM)是组织的基本结构,可筑巢和滋养驻留细胞,并支持组织类型的特定功能。ECM 还在细胞信号传递中发挥作用,促进骨骼生长、愈合和新陈代谢。近十年来,人们广泛研究了骨源性 ECM 或类似 ECM 的生物材料的使用,包括脱细胞和脱矿物质骨 ECM。在这篇文章中,我们回顾了脱细胞和去矿物质骨基质目前的生产和应用情况。我们还介绍了目前对全肢脱细胞和再细胞化的研究。
{"title":"Use of allograft bone matrix in clinical orthopedics.","authors":"Shaan Manawar, Erica Myrick, Peter Awad, Victor Hung, Cassidy Hinton, Keith Kenter, Karen Bovid, Yong Li","doi":"10.1080/17460751.2024.2353473","DOIUrl":"10.1080/17460751.2024.2353473","url":null,"abstract":"<p><p>Clinical orthopedics continuously aims to improve methods for bone formation. Clinical applications where bone formation is necessary include critical long bone defects in orthopedic trauma or tumor patients. Though some biomaterials combined with autologous stem cells significantly improve bone repair, critical-size damages are still challenged with the suitable implantation of biomaterials and donor cell survival. Extracellular matrix (ECM) is the fundamental structure in tissues that can nest and nourish resident cells as well as support specific functions of the tissue type. ECM also plays a role in cell signaling to promote bone growth, healing and turnover. In the last decade, the use of bone-derived ECMs or ECM-similar biomaterials have been widely investigated, including decellularized and demineralized bone ECM. In this article, we reviewed the current productions and applications of decellularized and demineralized bone matrices. We also introduce the current study of whole limb decellularization and recellularization.</p>","PeriodicalId":21043,"journal":{"name":"Regenerative medicine","volume":" ","pages":"247-256"},"PeriodicalIF":2.4,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11321266/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141724324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Industry updates from the field of stem cell research and regenerative medicine in January 2024. 2024 年 1 月干细胞研究和再生医学领域的行业动态。
IF 2.4 4区 医学 Q4 CELL & TISSUE ENGINEERING Pub Date : 2024-05-03 Epub Date: 2024-03-13 DOI: 10.2217/rme-2024-0034
Dusko Ilic, Mirjana Liovic

Latest developments in the field of stem cell research and regenerative medicine compiled from publicly available information and press releases from nonacademic institutions in January 2024.

2024 年 1 月干细胞研究和再生医学领域的最新进展,根据公开信息和非学术机构的新闻稿汇编而成。
{"title":"Industry updates from the field of stem cell research and regenerative medicine in January 2024.","authors":"Dusko Ilic, Mirjana Liovic","doi":"10.2217/rme-2024-0034","DOIUrl":"https://doi.org/10.2217/rme-2024-0034","url":null,"abstract":"<p><p>Latest developments in the field of stem cell research and regenerative medicine compiled from publicly available information and press releases from nonacademic institutions in January 2024.</p>","PeriodicalId":21043,"journal":{"name":"Regenerative medicine","volume":"19 5","pages":"209-219"},"PeriodicalIF":2.4,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141907593","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Peripheral nerve regeneration: a challenge far from being overcome. 外周神经再生:一个远未克服的挑战。
IF 2.4 4区 医学 Q4 CELL & TISSUE ENGINEERING Pub Date : 2024-04-01 Epub Date: 2023-10-03 DOI: 10.2217/rme-2023-0072
Rui Alvites, Bruna Lopes, André Coelho, Ana Colette Maurício
{"title":"Peripheral nerve regeneration: a challenge far from being overcome.","authors":"Rui Alvites, Bruna Lopes, André Coelho, Ana Colette Maurício","doi":"10.2217/rme-2023-0072","DOIUrl":"10.2217/rme-2023-0072","url":null,"abstract":"","PeriodicalId":21043,"journal":{"name":"Regenerative medicine","volume":" ","pages":"155-159"},"PeriodicalIF":2.4,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41177017","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Industry updates from the field of stem cell research and regenerative medicine in December 2023. 2023 年 12 月干细胞研究和再生医学领域的行业动态。
IF 2.7 4区 医学 Q4 CELL & TISSUE ENGINEERING Pub Date : 2024-04-01 Epub Date: 2024-02-15 DOI: 10.2217/rme-2024-0029
Dusko Ilic, Mirjana Liovic

Latest developments in the field of stem cell research and regenerative medicine compiled from publicly available information and press releases from non-academic institutions in December 2023.

2023 年 12 月干细胞研究和再生医学领域的最新进展,汇编自公开信息和非学术机构的新闻稿。
{"title":"Industry updates from the field of stem cell research and regenerative medicine in December 2023.","authors":"Dusko Ilic, Mirjana Liovic","doi":"10.2217/rme-2024-0029","DOIUrl":"10.2217/rme-2024-0029","url":null,"abstract":"<p><p>Latest developments in the field of stem cell research and regenerative medicine compiled from publicly available information and press releases from non-academic institutions in December 2023.</p>","PeriodicalId":21043,"journal":{"name":"Regenerative medicine","volume":" ","pages":"145-153"},"PeriodicalIF":2.7,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139736022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An assessment of co-contraction in reinnervated muscle. 再神经支配肌肉共收缩的评估。
IF 2.4 4区 医学 Q4 CELL & TISSUE ENGINEERING Pub Date : 2024-04-01 Epub Date: 2023-11-13 DOI: 10.2217/rme-2023-0049
Matthew Wilcox, Hazel Brown, Kathryn Johnson, Marco Sinisi, Tom J Quick

Aim: To investigate co-contraction in reinnervated elbow flexor muscles following a nerve transfer. Materials & methods: 12 brachial plexus injury patients who received a nerve transfer to reanimate elbow flexion were included in this study. Surface electromyography (EMG) recordings were used to quantify co-contraction during sustained and repeated isometric contractions of reinnervated and contralateral uninjured elbow flexor muscles. Reuslts: For the first time, this study reveals reinnervated muscles demonstrated a trend toward higher co-contraction ratios when compared with uninjured muscle and this is correlated with an earlier onset of muscle fatigability. Conclusion: Measurements of co-contraction should be considered within muscular function assessments to help drive improvements in motor recovery therapies.

目的:探讨神经移植后肘关节屈肌的共收缩。材料与方法:本研究纳入12例臂丛神经损伤患者,接受神经转移术恢复肘关节屈曲。表面肌电图(EMG)记录用于量化再神经支配和对侧未损伤肘关节屈肌持续和重复等距收缩期间的共收缩。结果:本研究首次揭示了与未受伤肌肉相比,再神经支配肌肉表现出更高的共收缩率的趋势,这与肌肉疲劳的早期发作有关。结论:在肌肉功能评估中应考虑联合收缩的测量,以帮助推动运动恢复治疗的改进。
{"title":"An assessment of co-contraction in reinnervated muscle.","authors":"Matthew Wilcox, Hazel Brown, Kathryn Johnson, Marco Sinisi, Tom J Quick","doi":"10.2217/rme-2023-0049","DOIUrl":"10.2217/rme-2023-0049","url":null,"abstract":"<p><p><b>Aim:</b> To investigate co-contraction in reinnervated elbow flexor muscles following a nerve transfer. <b>Materials & methods:</b> 12 brachial plexus injury patients who received a nerve transfer to reanimate elbow flexion were included in this study. Surface electromyography (EMG) recordings were used to quantify co-contraction during sustained and repeated isometric contractions of reinnervated and contralateral uninjured elbow flexor muscles. <b>Reuslts:</b> For the first time, this study reveals reinnervated muscles demonstrated a trend toward higher co-contraction ratios when compared with uninjured muscle and this is correlated with an earlier onset of muscle fatigability. <b>Conclusion:</b> Measurements of co-contraction should be considered within muscular function assessments to help drive improvements in motor recovery therapies.</p>","PeriodicalId":21043,"journal":{"name":"Regenerative medicine","volume":" ","pages":"161-170"},"PeriodicalIF":2.4,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89719377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Retraction: Photoencapsulated-BMP2 in visible light-cured thiol-acrylate hydrogels for craniofacial bone tissue engineering. 撤回:可见光固化硫醇-丙烯酸酯水凝胶中的光胶囊化 BMP2 用于颅面部骨组织工程。
IF 2.4 4区 医学 Q4 CELL & TISSUE ENGINEERING Pub Date : 2024-04-01 Epub Date: 2024-03-05 DOI: 10.2217/rme-2020-0062r1
{"title":"Retraction: Photoencapsulated-BMP2 in visible light-cured thiol-acrylate hydrogels for craniofacial bone tissue engineering.","authors":"","doi":"10.2217/rme-2020-0062r1","DOIUrl":"10.2217/rme-2020-0062r1","url":null,"abstract":"","PeriodicalId":21043,"journal":{"name":"Regenerative medicine","volume":" ","pages":"207"},"PeriodicalIF":2.4,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140028869","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Retraction: Photoencapsulated-mesenchymal stromal cells in biodegradable thiol-acrylate hydrogels enhance regeneration of craniofacial bone tissue defects. 撤回:生物可降解硫醇-丙烯酸酯水凝胶中的光胶囊化间充质基质细胞可促进颅面部骨组织缺损的再生。
IF 2.4 4区 医学 Q4 CELL & TISSUE ENGINEERING Pub Date : 2024-04-01 Epub Date: 2024-03-05 DOI: 10.2217/rme-2020-0061r1
{"title":"Retraction: Photoencapsulated-mesenchymal stromal cells in biodegradable thiol-acrylate hydrogels enhance regeneration of craniofacial bone tissue defects.","authors":"","doi":"10.2217/rme-2020-0061r1","DOIUrl":"10.2217/rme-2020-0061r1","url":null,"abstract":"","PeriodicalId":21043,"journal":{"name":"Regenerative medicine","volume":" ","pages":"205"},"PeriodicalIF":2.4,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140028870","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Regenerative medicine
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1