Munazza Yaqoob, Mahvish Abbasi, Hira Anwar, J. Iqbal, Mohammad Asad, A. Asiri, M. Iqbal
Abstract N-heterocyclic carbenes (NHCs) are an eminent class of carbenes having a heterocyclic ring in which a divalent carbon atom is attached directly to a nitrogen atom. In the NHCs, the donation of lone pair is another important research in the dative bonding and not only in NHCs the dative bond plays a functionalized role in the other classes of complex formation like ylidones L → E ← L and carbones L → C ← L. M–NHC bond is L-M sigma-dative bond and NHCs are considered as strong sigma-donor ligands. The clear picture of the M–NHC bond can be better understood by M–NHC pi-interaction. M-L pi interaction is comprised of two steps. One is L → M sigma-donation and M → L π* back bonding. This dative donor nature of NHC and also its behavior in organoselenium is studied through DFT in which it’s optimized structure, bond lengths, molecular vibrations are calculated.
{"title":"Dative behavior of N-heterocyclic carbenes (NHCs) with selenium in Se-NHC compounds","authors":"Munazza Yaqoob, Mahvish Abbasi, Hira Anwar, J. Iqbal, Mohammad Asad, A. Asiri, M. Iqbal","doi":"10.1515/revic-2021-0031","DOIUrl":"https://doi.org/10.1515/revic-2021-0031","url":null,"abstract":"Abstract N-heterocyclic carbenes (NHCs) are an eminent class of carbenes having a heterocyclic ring in which a divalent carbon atom is attached directly to a nitrogen atom. In the NHCs, the donation of lone pair is another important research in the dative bonding and not only in NHCs the dative bond plays a functionalized role in the other classes of complex formation like ylidones L → E ← L and carbones L → C ← L. M–NHC bond is L-M sigma-dative bond and NHCs are considered as strong sigma-donor ligands. The clear picture of the M–NHC bond can be better understood by M–NHC pi-interaction. M-L pi interaction is comprised of two steps. One is L → M sigma-donation and M → L π* back bonding. This dative donor nature of NHC and also its behavior in organoselenium is studied through DFT in which it’s optimized structure, bond lengths, molecular vibrations are calculated.","PeriodicalId":21162,"journal":{"name":"Reviews in Inorganic Chemistry","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2021-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47879970","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. Bhatti, F. H. Memon, Faisal Rehman, Z. Bhatti, Tehsin Naqvi, K. Thebo
Abstract Environmental contamination is one of the key issues of developing countries in recent days, and several types of methods and technologies have been developed to overcome these issues. This paper highlights the importance of decontamination in a contaminated environment that normally precedes protection, detection and identification followed by medical support. Further, this paper especially focuses on individual and collective NBC decontamination required on navy ships and correspondingly presents solutions (viable and economical) through the use of indigenously developed decontamination equipment. The paper also highlights the integration of various decontamination technologies with pre-existing ship decontamination systems, indicating the need for various decontaminants. Finally, we will also focus on new decontamination systems based on nanomaterials and enzymes and their utilization.
{"title":"Recent progress in decontamination system against chemical and biological materials: challenges and future perspectives","authors":"S. Bhatti, F. H. Memon, Faisal Rehman, Z. Bhatti, Tehsin Naqvi, K. Thebo","doi":"10.1515/revic-2021-0019","DOIUrl":"https://doi.org/10.1515/revic-2021-0019","url":null,"abstract":"Abstract Environmental contamination is one of the key issues of developing countries in recent days, and several types of methods and technologies have been developed to overcome these issues. This paper highlights the importance of decontamination in a contaminated environment that normally precedes protection, detection and identification followed by medical support. Further, this paper especially focuses on individual and collective NBC decontamination required on navy ships and correspondingly presents solutions (viable and economical) through the use of indigenously developed decontamination equipment. The paper also highlights the integration of various decontamination technologies with pre-existing ship decontamination systems, indicating the need for various decontaminants. Finally, we will also focus on new decontamination systems based on nanomaterials and enzymes and their utilization.","PeriodicalId":21162,"journal":{"name":"Reviews in Inorganic Chemistry","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2021-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48196056","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
L. Isola, Tzu-Chia Chen, M. Elveny, A. Alkaim, L. Thangavelu, E. Kianfar
Abstract In general, nanostructured materials with specific size, shape and geometry have unique and different properties from bulk materials. Using reaction media with nanometer and micrometer dimensions, they can produce new nanomaterials with interesting and remarkable properties. In general, nano-reactors are nanometer-sized chambers in which chemical reactions can take place. of course, nanoreactors are somehow part of the reaction, and this is the main difference between them and micro-reactors. One of the useful solutions to achieve the environment of nanoreactors is the use of porous materials, so due to the importance of nanoreactors, porous structures of silicate and zeolite are among the most prominent and widely used compounds in this group.
{"title":"Application of micro and porous materials as nano-reactors","authors":"L. Isola, Tzu-Chia Chen, M. Elveny, A. Alkaim, L. Thangavelu, E. Kianfar","doi":"10.1515/revic-2021-0007","DOIUrl":"https://doi.org/10.1515/revic-2021-0007","url":null,"abstract":"Abstract In general, nanostructured materials with specific size, shape and geometry have unique and different properties from bulk materials. Using reaction media with nanometer and micrometer dimensions, they can produce new nanomaterials with interesting and remarkable properties. In general, nano-reactors are nanometer-sized chambers in which chemical reactions can take place. of course, nanoreactors are somehow part of the reaction, and this is the main difference between them and micro-reactors. One of the useful solutions to achieve the environment of nanoreactors is the use of porous materials, so due to the importance of nanoreactors, porous structures of silicate and zeolite are among the most prominent and widely used compounds in this group.","PeriodicalId":21162,"journal":{"name":"Reviews in Inorganic Chemistry","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2021-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46623155","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract This review covers over 30 examples of monomeric Pt(II) complexes of the types: Pt(η3–P1O1P2)(Y) (Y = PL, CL, OL), Pt(η3–P1N1P2)(Y) (Y = H, NL, CL, Cl, PL) and Pt(η3–P1P2N1)(Y) (Y = Cl). The heterotridentate donor ligands create 11 types of a couple chelate rings with common central atom O1 (η3–P1O1P2), N1 (η3–P1N1P2) and P2 (η3–P1P2N1). The most frequent is P1C2N1C2P2. Some cooperative effects between chelate rings and Y donor ligands were found and discussed. A degree of distortions of square-planar geometry about Pt(II) were also calculated.
{"title":"Heterotridentate organodiphosphines in Pt(η3–P1X1P2)(Y) derivatives-structural aspects","authors":"M. Melnik, P. Mikuš","doi":"10.1515/revic-2021-0011","DOIUrl":"https://doi.org/10.1515/revic-2021-0011","url":null,"abstract":"Abstract This review covers over 30 examples of monomeric Pt(II) complexes of the types: Pt(η3–P1O1P2)(Y) (Y = PL, CL, OL), Pt(η3–P1N1P2)(Y) (Y = H, NL, CL, Cl, PL) and Pt(η3–P1P2N1)(Y) (Y = Cl). The heterotridentate donor ligands create 11 types of a couple chelate rings with common central atom O1 (η3–P1O1P2), N1 (η3–P1N1P2) and P2 (η3–P1P2N1). The most frequent is P1C2N1C2P2. Some cooperative effects between chelate rings and Y donor ligands were found and discussed. A degree of distortions of square-planar geometry about Pt(II) were also calculated.","PeriodicalId":21162,"journal":{"name":"Reviews in Inorganic Chemistry","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2021-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42332400","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract Organic-inorganic lead halide perovskite solar cells have rapidly emerged as a newfangled material for solar energy harnessing. Perovskite solar cells have succeeded in gaining a power conversion efficiency of 25% in the last year, further enhancement in the efficiency is anticipated due to advanced engineering of the different components making up the complete cell architecture with enhanced performance, stability and efficiency. Significant components of perovskite solar cell configurational architecture are the electron transport layer, active perovskite absorber layer, hole transport layer and counter electrode. Considering the profound role of transport layers in charge mobility, current review has particularly elucidated the advancements in the charge transport layers. The time duration of the review is from 2010 to 2021. However, the special focus has been laid on the recent articles. The influence of different organic and inorganic materials used for development of transport layers influencing the cell performance have been summarized. Materials used for transport layers have been modified by utilization of myriad of engineered substances through doping and surface functionalization strategies but every method have been marked by posing serious challenges towards the stability and efficiency of the cell and thus, hindering its commercialization. The review also provides an elucidation of the mechanical challenges and abatement strategies. These strategies are associated with the charge transport layers for enhancement of cell functionality.
{"title":"Newfangled progressions in the charge transport layers impacting the stability and efficiency of perovskite solar cells","authors":"S. Jaffri, K. Ahmad","doi":"10.1515/revic-2021-0004","DOIUrl":"https://doi.org/10.1515/revic-2021-0004","url":null,"abstract":"Abstract Organic-inorganic lead halide perovskite solar cells have rapidly emerged as a newfangled material for solar energy harnessing. Perovskite solar cells have succeeded in gaining a power conversion efficiency of 25% in the last year, further enhancement in the efficiency is anticipated due to advanced engineering of the different components making up the complete cell architecture with enhanced performance, stability and efficiency. Significant components of perovskite solar cell configurational architecture are the electron transport layer, active perovskite absorber layer, hole transport layer and counter electrode. Considering the profound role of transport layers in charge mobility, current review has particularly elucidated the advancements in the charge transport layers. The time duration of the review is from 2010 to 2021. However, the special focus has been laid on the recent articles. The influence of different organic and inorganic materials used for development of transport layers influencing the cell performance have been summarized. Materials used for transport layers have been modified by utilization of myriad of engineered substances through doping and surface functionalization strategies but every method have been marked by posing serious challenges towards the stability and efficiency of the cell and thus, hindering its commercialization. The review also provides an elucidation of the mechanical challenges and abatement strategies. These strategies are associated with the charge transport layers for enhancement of cell functionality.","PeriodicalId":21162,"journal":{"name":"Reviews in Inorganic Chemistry","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2021-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48280585","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract Pyridoxal and Pyridoxal 5-phosphate are two among the six aqua soluble vitamers of vitamin B6. They can form Schiff bases readily due to the presence of aldehyde group. Schiff bases can offer diverse coordination possibilities for many transition metals as has been found in a large volume of research till now. The coordination complexes thus formed gives insight into the active core structure and enzymatic activities of vit B6 containing enzymes. Apart from that, these complexes have been found useful as catalysts for synthesis of fine chemicals, as sensors and for their diverse biological activities.
{"title":"Recent reports on Pyridoxal derived Schiff base complexes","authors":"Samik Gupta","doi":"10.1515/revic-2020-0026","DOIUrl":"https://doi.org/10.1515/revic-2020-0026","url":null,"abstract":"Abstract Pyridoxal and Pyridoxal 5-phosphate are two among the six aqua soluble vitamers of vitamin B6. They can form Schiff bases readily due to the presence of aldehyde group. Schiff bases can offer diverse coordination possibilities for many transition metals as has been found in a large volume of research till now. The coordination complexes thus formed gives insight into the active core structure and enzymatic activities of vit B6 containing enzymes. Apart from that, these complexes have been found useful as catalysts for synthesis of fine chemicals, as sensors and for their diverse biological activities.","PeriodicalId":21162,"journal":{"name":"Reviews in Inorganic Chemistry","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2021-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46472283","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract A set of well defined signaling molecules responsible for normal functioning of human physiology including nitric oxide along with carbon monoxide and hydrogen sulphide are referred as “gasotransmitters”. Due to their involvement in almost every system of a human body, the care of highly sensitive organs using these molecules as drugs represents highly fascinating area of research. In connection with these interesting aspects, the applied aspects of these gaseous molecules in maintaining healthy eye and vision have been targeted in this review. Several examples of eye-droppers including NORMs like latanoprost and nipradiol, CORMs like CORM-3 and CORM-A1, and Hydrogen sulfide releasing system like GYY4137 have been discussed in this context. Therefore the relation of these trio-gasotransmitters with the ophthalmic homeostasis on one hand, and de-infecting role on the other hand has been mainly highlighted. Some molecular systems capable of mimicking gasotransmitter action have also been introduced in connection with the titled theme.
{"title":"NO, CO and H2S based pharmaceuticals in the mission of vision (eye health): a comprehensive review","authors":"J. Mir, R. Maurya, Mohd. Washid Khan","doi":"10.1515/revic-2021-0009","DOIUrl":"https://doi.org/10.1515/revic-2021-0009","url":null,"abstract":"Abstract A set of well defined signaling molecules responsible for normal functioning of human physiology including nitric oxide along with carbon monoxide and hydrogen sulphide are referred as “gasotransmitters”. Due to their involvement in almost every system of a human body, the care of highly sensitive organs using these molecules as drugs represents highly fascinating area of research. In connection with these interesting aspects, the applied aspects of these gaseous molecules in maintaining healthy eye and vision have been targeted in this review. Several examples of eye-droppers including NORMs like latanoprost and nipradiol, CORMs like CORM-3 and CORM-A1, and Hydrogen sulfide releasing system like GYY4137 have been discussed in this context. Therefore the relation of these trio-gasotransmitters with the ophthalmic homeostasis on one hand, and de-infecting role on the other hand has been mainly highlighted. Some molecular systems capable of mimicking gasotransmitter action have also been introduced in connection with the titled theme.","PeriodicalId":21162,"journal":{"name":"Reviews in Inorganic Chemistry","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2021-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49655134","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Khalil Ahmad, Habib-ur-Rehman Shah, Muhammad Ashfaq, H. Nawaz
Abstract Water contamination is worldwide issue, undermining whole biosphere, influencing life of a large number of individuals all over the world. Water contamination is one of the chief worldwide danger issues for death, sickness, and constant decrease of accessible drinkable water around the world. Among the others, presence of arsenic, is considered as the most widely recognized lethal contaminant in water bodies and poses a serious threat not exclusively to humans but also towards aquatic lives. Hence, steps must be taken to decrease quantity of arsenic in water to permissible limits. Recently, metal-organic frameworks (MOFs) with outstanding stability, sorption capacities, and ecofriendly performance have empowered enormous improvements in capturing substantial metal particles. MOFs have been affirmed as good performance adsorbents for arsenic removal having extended surface area and displayed remarkable results as reported in literature. In this review we look at MOFs which have been recently produced and considered for potential applications in arsenic metal expulsion. We have delivered a summary of up-to-date abilities as well as significant characteristics of MOFs used for this removal. In this review conventional and advanced materials applied to treat water by adsorptive method are also discussed briefly.
{"title":"Removal of decidedly lethal metal arsenic from water using metal organic frameworks: a critical review","authors":"Khalil Ahmad, Habib-ur-Rehman Shah, Muhammad Ashfaq, H. Nawaz","doi":"10.1515/revic-2021-0005","DOIUrl":"https://doi.org/10.1515/revic-2021-0005","url":null,"abstract":"Abstract Water contamination is worldwide issue, undermining whole biosphere, influencing life of a large number of individuals all over the world. Water contamination is one of the chief worldwide danger issues for death, sickness, and constant decrease of accessible drinkable water around the world. Among the others, presence of arsenic, is considered as the most widely recognized lethal contaminant in water bodies and poses a serious threat not exclusively to humans but also towards aquatic lives. Hence, steps must be taken to decrease quantity of arsenic in water to permissible limits. Recently, metal-organic frameworks (MOFs) with outstanding stability, sorption capacities, and ecofriendly performance have empowered enormous improvements in capturing substantial metal particles. MOFs have been affirmed as good performance adsorbents for arsenic removal having extended surface area and displayed remarkable results as reported in literature. In this review we look at MOFs which have been recently produced and considered for potential applications in arsenic metal expulsion. We have delivered a summary of up-to-date abilities as well as significant characteristics of MOFs used for this removal. In this review conventional and advanced materials applied to treat water by adsorptive method are also discussed briefly.","PeriodicalId":21162,"journal":{"name":"Reviews in Inorganic Chemistry","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2021-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45221057","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract This review summarises the experimental and structural knowledge on polycyclic phosphanes, with a focus on bicyclic and tricyclic phosphanes, as they have not only been the most studied in the last 25 years, but also show the greatest diversity in terms of constitutional isomerism and structural motifs. Moreover, only polycyclic phosphanes that have p-block substituents at all free valences are discussed.
{"title":"Bicyclic and tricyclic phosphanes with p-block substituents","authors":"J. Bresien, K. Faust, A. Schulz","doi":"10.1515/revic-2020-0028","DOIUrl":"https://doi.org/10.1515/revic-2020-0028","url":null,"abstract":"Abstract This review summarises the experimental and structural knowledge on polycyclic phosphanes, with a focus on bicyclic and tricyclic phosphanes, as they have not only been the most studied in the last 25 years, but also show the greatest diversity in terms of constitutional isomerism and structural motifs. Moreover, only polycyclic phosphanes that have p-block substituents at all free valences are discussed.","PeriodicalId":21162,"journal":{"name":"Reviews in Inorganic Chemistry","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2021-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/revic-2020-0028","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49596491","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Meeshar Shahid, Mahvish Abbasi, Munazza Yaqoob, Rosenani A. Haque, M. Iqbal
Abstract Hafnium is a transition metal and it is the 45th most abundant transition element present on the earth. Hafnium has been successfully alloyed with several metals including titanium, iron, and niobium. Hafnium complexes are less active olefin polymerization catalysts. In the current review synthesis of hafnium complexes involving bonding through different linkages like “carbon, nitrogen, oxygen, carbon and oxygen, nitrogen and cobalt nitrogen and oxygen, nitrogen and phosphorus, nitrogen and sulfur, phosphorus and carbon, phosphorus and oxygen, sulfur carbon and oxygen, carbon–nitrogen and oxygen, carbon–nitrogen and phosphorus, carbon–nitrogen oxygen, sulfur and phosphorus, carbon–oxygen phosphorus and nitrogen”. The commonly used solvents for the synthesis of Hafnium complexes are tetrahydrofuran, n-hexane, and toluene, etc. These complexes were mostly reported at different temperatures ranges from −35 to 110 °C with continuous stirring, according to the nature of ligands. An overview of techniques in the synthesis of Hafnium complexes through various routes has been compiled.
{"title":"Techniques in the synthesis of organometallic compounds of Hafnium","authors":"Meeshar Shahid, Mahvish Abbasi, Munazza Yaqoob, Rosenani A. Haque, M. Iqbal","doi":"10.1515/revic-2020-0027","DOIUrl":"https://doi.org/10.1515/revic-2020-0027","url":null,"abstract":"Abstract Hafnium is a transition metal and it is the 45th most abundant transition element present on the earth. Hafnium has been successfully alloyed with several metals including titanium, iron, and niobium. Hafnium complexes are less active olefin polymerization catalysts. In the current review synthesis of hafnium complexes involving bonding through different linkages like “carbon, nitrogen, oxygen, carbon and oxygen, nitrogen and cobalt nitrogen and oxygen, nitrogen and phosphorus, nitrogen and sulfur, phosphorus and carbon, phosphorus and oxygen, sulfur carbon and oxygen, carbon–nitrogen and oxygen, carbon–nitrogen and phosphorus, carbon–nitrogen oxygen, sulfur and phosphorus, carbon–oxygen phosphorus and nitrogen”. The commonly used solvents for the synthesis of Hafnium complexes are tetrahydrofuran, n-hexane, and toluene, etc. These complexes were mostly reported at different temperatures ranges from −35 to 110 °C with continuous stirring, according to the nature of ligands. An overview of techniques in the synthesis of Hafnium complexes through various routes has been compiled.","PeriodicalId":21162,"journal":{"name":"Reviews in Inorganic Chemistry","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2021-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/revic-2020-0027","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47711702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}