Yetzin Rodríguez Mejía, Fernando Romero Romero, Murali Venkata Basavanag Unnamatla, Maria Fernanda Ballesteros Rivas, Victor Varela Guerrero
Abstract As biodiesel (BD)/Fatty Acid Alkyl Esters (FAAE) is derived from vegetable oils and animal fats, it is a cost-effective alternative fuel that could complement diesel. The BD is processed from different catalytic routes of esterification and transesterification through homogeneous (alkaline and acid), heterogeneous and enzymatic catalysis. However, heterogeneous catalysts and biocatalysts play an essential role towards a sustainable alternative to homogeneous catalysts applied in biodiesel production. The main drawback is the supporting material. To overcome this, currently, Metal-Organic Frameworks (MOFs) have gained significant interest as supports for catalysts due to their extremely high surface area and numerous binding sites. This review focuses on the advantages of using various MOFs structures as supports for heterogeneous catalysts and biocatalysts for the eco-friendly biodiesel production process. The characteristics of these materials and their fabrication synthesis are briefly discussed. Moreover, we address in a general way basic items ranging from biodiesel synthesis to applied catalysts, giving great importance to the enzymatic part, mainly to the catalytic mechanism in esterification/transesterification reactions. We provide a summary with recommendations based on the limiting factors.
{"title":"Metal-Organic Frameworks as bio- and heterogeneous catalyst supports for biodiesel production","authors":"Yetzin Rodríguez Mejía, Fernando Romero Romero, Murali Venkata Basavanag Unnamatla, Maria Fernanda Ballesteros Rivas, Victor Varela Guerrero","doi":"10.1515/revic-2022-0014","DOIUrl":"https://doi.org/10.1515/revic-2022-0014","url":null,"abstract":"Abstract As biodiesel (BD)/Fatty Acid Alkyl Esters (FAAE) is derived from vegetable oils and animal fats, it is a cost-effective alternative fuel that could complement diesel. The BD is processed from different catalytic routes of esterification and transesterification through homogeneous (alkaline and acid), heterogeneous and enzymatic catalysis. However, heterogeneous catalysts and biocatalysts play an essential role towards a sustainable alternative to homogeneous catalysts applied in biodiesel production. The main drawback is the supporting material. To overcome this, currently, Metal-Organic Frameworks (MOFs) have gained significant interest as supports for catalysts due to their extremely high surface area and numerous binding sites. This review focuses on the advantages of using various MOFs structures as supports for heterogeneous catalysts and biocatalysts for the eco-friendly biodiesel production process. The characteristics of these materials and their fabrication synthesis are briefly discussed. Moreover, we address in a general way basic items ranging from biodiesel synthesis to applied catalysts, giving great importance to the enzymatic part, mainly to the catalytic mechanism in esterification/transesterification reactions. We provide a summary with recommendations based on the limiting factors.","PeriodicalId":21162,"journal":{"name":"Reviews in Inorganic Chemistry","volume":"43 1","pages":"323 - 355"},"PeriodicalIF":4.1,"publicationDate":"2022-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45547198","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract Numerous platinum group metals (PGMs) complexes contain azo-azomethine-based ligands. Azo-azomethine ligands are N-donor ligands that have extended conjugated π-bonded systems and both azo (–N=N–) and aldimine (–C=N–) functions in their structure. Plenty of platinum (Pt) complexes with azo-imine ligands have been prepared and characterized. Various multidentate azo-imine ligands coordinated with different platinum metal substrates afforded structurally diverse platinum chelates. Nonetheless, many azo-imine-based platinum complexes demonstrated a wide range of biological activities, photo-switchable properties, and redox activities. The review encompasses a general overview of platinum complexes with versatile azo-azomethine ligands, their synthetic protocol, spectroscopic and structural features, chemical reactivity, and multipurpose applications in different areas.
{"title":"A review on the chemistry of novel platinum chelates based on azo-azomethine ligands","authors":"Paritosh Mandal, J. L. Pratihar","doi":"10.1515/revic-2022-0027","DOIUrl":"https://doi.org/10.1515/revic-2022-0027","url":null,"abstract":"Abstract Numerous platinum group metals (PGMs) complexes contain azo-azomethine-based ligands. Azo-azomethine ligands are N-donor ligands that have extended conjugated π-bonded systems and both azo (–N=N–) and aldimine (–C=N–) functions in their structure. Plenty of platinum (Pt) complexes with azo-imine ligands have been prepared and characterized. Various multidentate azo-imine ligands coordinated with different platinum metal substrates afforded structurally diverse platinum chelates. Nonetheless, many azo-imine-based platinum complexes demonstrated a wide range of biological activities, photo-switchable properties, and redox activities. The review encompasses a general overview of platinum complexes with versatile azo-azomethine ligands, their synthetic protocol, spectroscopic and structural features, chemical reactivity, and multipurpose applications in different areas.","PeriodicalId":21162,"journal":{"name":"Reviews in Inorganic Chemistry","volume":" ","pages":""},"PeriodicalIF":4.1,"publicationDate":"2022-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48083635","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract Coordination polymers (CP) and metal-organic frameworks (MOF) have become a topic of immense interest in this century primarily because of the structural diversity that they offer. This structural diversity results in their multifaceted utility in various fields of science and technology such as catalysis, medicine, gas storage or separation, conductivity and magnetism. Their utility inspires a large variety of scientists to engage with them in their scientific pursuit thus creating a buzz around them in the scientific community. Metals capable of forming CPs and MOFs are primarily transition metals. Among them vanadium-based CPs and MOFs demand detailed discussion because of the unique nature of vanadium which makes it stable in many oxidation states and coordination number. Vanadium’s versatility imparts additional structural marvel and usefulness to these CPs and MOFs.
{"title":"Recent reports on vanadium based coordination polymers and MOFs","authors":"Samik Gupta","doi":"10.1515/revic-2022-0021","DOIUrl":"https://doi.org/10.1515/revic-2022-0021","url":null,"abstract":"Abstract Coordination polymers (CP) and metal-organic frameworks (MOF) have become a topic of immense interest in this century primarily because of the structural diversity that they offer. This structural diversity results in their multifaceted utility in various fields of science and technology such as catalysis, medicine, gas storage or separation, conductivity and magnetism. Their utility inspires a large variety of scientists to engage with them in their scientific pursuit thus creating a buzz around them in the scientific community. Metals capable of forming CPs and MOFs are primarily transition metals. Among them vanadium-based CPs and MOFs demand detailed discussion because of the unique nature of vanadium which makes it stable in many oxidation states and coordination number. Vanadium’s versatility imparts additional structural marvel and usefulness to these CPs and MOFs.","PeriodicalId":21162,"journal":{"name":"Reviews in Inorganic Chemistry","volume":" ","pages":""},"PeriodicalIF":4.1,"publicationDate":"2022-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45207630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract Iron is essential to human survival. The biological role and trafficking of this trace essential inorganic element which is also a potential toxin is constantly being researched and unfolded. Vital for oxygen transport, DNA synthesis, electron transport, neurotransmitter biosynthesis and present in numerous other heme and non-heme enzymes the physiological roles are immense. Understanding the molecules and pathways that regulate this essential element at systemic and cellular levels are of importance in improving therapeutic strategies for iron related disorders. This review highlights the progress in understanding the metabolism and trafficking of iron along with the pathophysiology of iron related disorders.
{"title":"Iron metabolism: pathways and proteins in homeostasis","authors":"E. Arora, Vibha Sharma","doi":"10.1515/revic-2022-0031","DOIUrl":"https://doi.org/10.1515/revic-2022-0031","url":null,"abstract":"Abstract Iron is essential to human survival. The biological role and trafficking of this trace essential inorganic element which is also a potential toxin is constantly being researched and unfolded. Vital for oxygen transport, DNA synthesis, electron transport, neurotransmitter biosynthesis and present in numerous other heme and non-heme enzymes the physiological roles are immense. Understanding the molecules and pathways that regulate this essential element at systemic and cellular levels are of importance in improving therapeutic strategies for iron related disorders. This review highlights the progress in understanding the metabolism and trafficking of iron along with the pathophysiology of iron related disorders.","PeriodicalId":21162,"journal":{"name":"Reviews in Inorganic Chemistry","volume":" ","pages":""},"PeriodicalIF":4.1,"publicationDate":"2022-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47662796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract This paper provides a general overview of palladium complexes incorporating numerous multidentate azo-imine ligands, their structural diversity, synthetic protocol, interesting properties such as redox properties, biological activity and their further application on C – N coupling reactions, C – C cross-coupling reactions (e.g., Suzuki and Heck) and catalytic activity on different organic transformations. A detailed literature survey revealed that no brief review has yet been published on the azo-azomethine-based palladium complex. Therefore, the present review incorporates the research undertaken on the synthetic strategies and coordinating behaviour of various azo-imine ligands with palladium metal centre and a few important properties of metal complexes.
{"title":"Chemistry of azo-imine based palladium complexes: a brief review","authors":"Paritosh Mandal, J. L. Pratihar","doi":"10.1515/revic-2022-0017","DOIUrl":"https://doi.org/10.1515/revic-2022-0017","url":null,"abstract":"Abstract This paper provides a general overview of palladium complexes incorporating numerous multidentate azo-imine ligands, their structural diversity, synthetic protocol, interesting properties such as redox properties, biological activity and their further application on C – N coupling reactions, C – C cross-coupling reactions (e.g., Suzuki and Heck) and catalytic activity on different organic transformations. A detailed literature survey revealed that no brief review has yet been published on the azo-azomethine-based palladium complex. Therefore, the present review incorporates the research undertaken on the synthetic strategies and coordinating behaviour of various azo-imine ligands with palladium metal centre and a few important properties of metal complexes.","PeriodicalId":21162,"journal":{"name":"Reviews in Inorganic Chemistry","volume":"0 1","pages":""},"PeriodicalIF":4.1,"publicationDate":"2022-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42901608","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract Homoleptic cyanide compounds exist of almost all main group elements. While the alkali metals and alkaline earth metals form cyanide salts, the cyanides of the lighter main group elements occur mainly as covalent compounds. This review gives an overview of the status quo of main group element cyanides and cyanido complexes. Information about syntheses are included as well as applications, special substance properties, bond lengths, spectroscopic characteristics and computations. Cyanide chemistry is presented mainly from the field of inorganic chemistry, but aspects of chemical biology and astrophysics are also discussed in relation to cyano compounds.
{"title":"Main group cyanides: from hydrogen cyanide to cyanido-complexes","authors":"A. Schulz, Jonas Surkau","doi":"10.1515/revic-2021-0044","DOIUrl":"https://doi.org/10.1515/revic-2021-0044","url":null,"abstract":"Abstract Homoleptic cyanide compounds exist of almost all main group elements. While the alkali metals and alkaline earth metals form cyanide salts, the cyanides of the lighter main group elements occur mainly as covalent compounds. This review gives an overview of the status quo of main group element cyanides and cyanido complexes. Information about syntheses are included as well as applications, special substance properties, bond lengths, spectroscopic characteristics and computations. Cyanide chemistry is presented mainly from the field of inorganic chemistry, but aspects of chemical biology and astrophysics are also discussed in relation to cyano compounds.","PeriodicalId":21162,"journal":{"name":"Reviews in Inorganic Chemistry","volume":"43 1","pages":"49 - 188"},"PeriodicalIF":4.1,"publicationDate":"2022-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41697142","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract Metal ions from natural and anthropogenic sources cause pollution to society and the environment is major concern in the present scenario. The deposition and contamination of metal ions in soil and water affect the biogeochemical cycles. Thus, it threatens the everyday life of living and non-living organisms. Reviews on the detection of metal ions through several techniques (Analytical methods, electrochemical techniques, and sensors) and materials (Nanoparticles, carbon dots (quantum dots), polymers, chiral molecules, metal-organic framework, carbon nanotubes, etc.) are addressed separately in the present literature. This review reveals the advantages and disadvantages of the techniques and materials for metal ion sensing with crucial factors. Furthermore, it focus on the capability of conjugated polymers (CPs) as metal ion sensors able to detect/sense hazardous metal ions from environmental samples. Six different routes can synthesize this type of CPs to get specific properties and better metal ion detecting capability in vast research areas. The metal ion detection by CP is time-independent, simple, and low cost compared to other materials/techniques. This review outlines recent literature on the conjugated polymer for cation, anion, and dual ion sensors. Over the last half decades published articles on the conjugated polymer are discussed and compared.
{"title":"Real scenario of metal ion sensor: is conjugated polymer helpful to detect hazardous metal ion","authors":"Pushparani Selvakumar Umabharathi, S. Karpagam","doi":"10.1515/revic-2022-0006","DOIUrl":"https://doi.org/10.1515/revic-2022-0006","url":null,"abstract":"Abstract Metal ions from natural and anthropogenic sources cause pollution to society and the environment is major concern in the present scenario. The deposition and contamination of metal ions in soil and water affect the biogeochemical cycles. Thus, it threatens the everyday life of living and non-living organisms. Reviews on the detection of metal ions through several techniques (Analytical methods, electrochemical techniques, and sensors) and materials (Nanoparticles, carbon dots (quantum dots), polymers, chiral molecules, metal-organic framework, carbon nanotubes, etc.) are addressed separately in the present literature. This review reveals the advantages and disadvantages of the techniques and materials for metal ion sensing with crucial factors. Furthermore, it focus on the capability of conjugated polymers (CPs) as metal ion sensors able to detect/sense hazardous metal ions from environmental samples. Six different routes can synthesize this type of CPs to get specific properties and better metal ion detecting capability in vast research areas. The metal ion detection by CP is time-independent, simple, and low cost compared to other materials/techniques. This review outlines recent literature on the conjugated polymer for cation, anion, and dual ion sensors. Over the last half decades published articles on the conjugated polymer are discussed and compared.","PeriodicalId":21162,"journal":{"name":"Reviews in Inorganic Chemistry","volume":" ","pages":""},"PeriodicalIF":4.1,"publicationDate":"2022-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49169013","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
V. Larina, O. Babich, Anastasia Zhikhreva, S. Ivanova, Eugene Chupakhin
Abstract This article presents an overview of some of the available research studies of MOFs as catalysts. Catalytic studies of magnetic iron oxide nanoparticles with modified surfaces, MOFs with precious metals such as palladium, platinum, and silver, with zirconium, hafnium, copper, alkaline earth metals, lanthanides are generalized. The studies of the catalytic activity of micro- and mesoporous MOF structures are described.
{"title":"The use of metal-organic frameworks as heterogeneous catalysts","authors":"V. Larina, O. Babich, Anastasia Zhikhreva, S. Ivanova, Eugene Chupakhin","doi":"10.1515/revic-2022-0020","DOIUrl":"https://doi.org/10.1515/revic-2022-0020","url":null,"abstract":"Abstract This article presents an overview of some of the available research studies of MOFs as catalysts. Catalytic studies of magnetic iron oxide nanoparticles with modified surfaces, MOFs with precious metals such as palladium, platinum, and silver, with zirconium, hafnium, copper, alkaline earth metals, lanthanides are generalized. The studies of the catalytic activity of micro- and mesoporous MOF structures are described.","PeriodicalId":21162,"journal":{"name":"Reviews in Inorganic Chemistry","volume":" ","pages":""},"PeriodicalIF":4.1,"publicationDate":"2022-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45736540","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
H. Su, Lai Hu, Senqiang Zhu, Jiapeng Lu, Jinyang Hu, Rui Liu, Hongjun Zhu
Abstract Transition metal complexes (TMCs) with strong and long-lived excited state absorption (ESA) usually exhibit high-performance optical power limiting (OPL) response. Several techniques, such as transmission vs. incident fluence curves and Z-scan have been widely used to assess the OPL performance of typical TMCs. The OPL performance of TMCs is highly molecular structure-dependent. Special emphasis is placed on the structure-OPL response relationships of Pt(II), Ir(III), Ru(II), and other metal complexes. This review concludes with perspectives on the current status of OPL field, as well as opportunities that lie just beyond its frontier.
{"title":"Transition metal complexes with strong and long-lived excited state absorption: from molecular design to optical power limiting behavior","authors":"H. Su, Lai Hu, Senqiang Zhu, Jiapeng Lu, Jinyang Hu, Rui Liu, Hongjun Zhu","doi":"10.1515/revic-2022-0013","DOIUrl":"https://doi.org/10.1515/revic-2022-0013","url":null,"abstract":"Abstract Transition metal complexes (TMCs) with strong and long-lived excited state absorption (ESA) usually exhibit high-performance optical power limiting (OPL) response. Several techniques, such as transmission vs. incident fluence curves and Z-scan have been widely used to assess the OPL performance of typical TMCs. The OPL performance of TMCs is highly molecular structure-dependent. Special emphasis is placed on the structure-OPL response relationships of Pt(II), Ir(III), Ru(II), and other metal complexes. This review concludes with perspectives on the current status of OPL field, as well as opportunities that lie just beyond its frontier.","PeriodicalId":21162,"journal":{"name":"Reviews in Inorganic Chemistry","volume":"43 1","pages":"281 - 321"},"PeriodicalIF":4.1,"publicationDate":"2022-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44597203","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract This paper aims to review recent advances on synthesis, crystal structures, thermal, spectroscopic, phase transitions, optical, dielectric, and catalysis properties of hydrate and anhydrous alkylenediammonium halogenometallates materials (Metal: Bi, Sb, Halogen: Cl, Br, I). These hybrid materials present rich structural diversities based on octahedra forming infinite zero dimensional, 1-dimensional chains, 2-dimensional layers, discrete bioctahedra, and discrete tetramer units. The effect, contribution and importance of hydrogen bonding N–H … X (X: Cl, Br, I) are reviewed in terms of solid state relationship. Particularly, a comparative study is made on hydrate and anyhdrous aliphatic chlorobismuthates with alkylenediammonium +NH3(CH2) n NH3+ based on structural data and V/Z variation with (CH2) n chains (n = 2–8, 12), and variation of BiCl63− Raman frequencies modes versus (CH2) n chains (n = 3–8). Hydrate salts with (n = 3, 12) consist of isolated BiCl63− anions and two water molecules, against others ones with isolated anionic chains [BiCl52−] n or Bi2Cl104− dimers, formed by distorted octahedra BiCl63− sharing corners, vices or edges. The reviewed optical and electronic band gaps suggested interesting compounds with band gaps (1.85–2.4 eV), as suitable materials in optoelectronic properties, photoactive layer in solution-processed photovoltaics, and bio-imaging or photovoltaic applications. It was concluded that iodobismuthate salts have generally the lowest bands gap, compared to that of bromo and chlorobismuthate slats. Catalysis proprieties are reviewed n fast (RhB) degradation under dark conditions for (C4N2H7)4Bi2Cl10, (C5H9N2)BiI4, and {(H-BPA)4·[(BiI6)I13]·2I3} n , and in organic salts synthesis under solvent-free conditions. Herein NH3(CH2) n NH3BiCl5 (n = 5–7) salts were used as highly efficient catalysts, which is a novel tendency in chlorobismuthate researchs in the green chemistry field.
{"title":"Recent advances on structural, thermal, vibrational, optical, phase transitions, and catalysis properties of alkylenediammonium halogenometallate materials (Metal: Bi, Sb, Halogen: Cl, Br, I)","authors":"A. Ouasri","doi":"10.1515/revic-2022-0012","DOIUrl":"https://doi.org/10.1515/revic-2022-0012","url":null,"abstract":"Abstract This paper aims to review recent advances on synthesis, crystal structures, thermal, spectroscopic, phase transitions, optical, dielectric, and catalysis properties of hydrate and anhydrous alkylenediammonium halogenometallates materials (Metal: Bi, Sb, Halogen: Cl, Br, I). These hybrid materials present rich structural diversities based on octahedra forming infinite zero dimensional, 1-dimensional chains, 2-dimensional layers, discrete bioctahedra, and discrete tetramer units. The effect, contribution and importance of hydrogen bonding N–H … X (X: Cl, Br, I) are reviewed in terms of solid state relationship. Particularly, a comparative study is made on hydrate and anyhdrous aliphatic chlorobismuthates with alkylenediammonium +NH3(CH2) n NH3+ based on structural data and V/Z variation with (CH2) n chains (n = 2–8, 12), and variation of BiCl63− Raman frequencies modes versus (CH2) n chains (n = 3–8). Hydrate salts with (n = 3, 12) consist of isolated BiCl63− anions and two water molecules, against others ones with isolated anionic chains [BiCl52−] n or Bi2Cl104− dimers, formed by distorted octahedra BiCl63− sharing corners, vices or edges. The reviewed optical and electronic band gaps suggested interesting compounds with band gaps (1.85–2.4 eV), as suitable materials in optoelectronic properties, photoactive layer in solution-processed photovoltaics, and bio-imaging or photovoltaic applications. It was concluded that iodobismuthate salts have generally the lowest bands gap, compared to that of bromo and chlorobismuthate slats. Catalysis proprieties are reviewed n fast (RhB) degradation under dark conditions for (C4N2H7)4Bi2Cl10, (C5H9N2)BiI4, and {(H-BPA)4·[(BiI6)I13]·2I3} n , and in organic salts synthesis under solvent-free conditions. Herein NH3(CH2) n NH3BiCl5 (n = 5–7) salts were used as highly efficient catalysts, which is a novel tendency in chlorobismuthate researchs in the green chemistry field.","PeriodicalId":21162,"journal":{"name":"Reviews in Inorganic Chemistry","volume":"43 1","pages":"247 - 280"},"PeriodicalIF":4.1,"publicationDate":"2022-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43272099","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}