首页 > 最新文献

Reviews in Inorganic Chemistry最新文献

英文 中文
Inorganic-polymer composite electrolytes: basics, fabrications, challenges and future perspectives 无机聚合物复合电解质:基础知识、制造、挑战和未来展望
IF 4.1 3区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2024-02-19 DOI: 10.1515/revic-2023-0030
Shahab Khan, Ishfaq Ullah, Mudassir Ur Rahman, Hamayun Khan, Abdul Bari Shah, Raed H. Althomali, Mohammed M. Rahman
This review covers the basics of, inorganic-polymer composite electrolyte materials that combine inorganic components with polymer matrices to enhance the ionic conductivity and mechanical properties of the electrolyte. These composite electrolytes are commonly employed in solid-state batteries, fuel cells, supercapacitors, and other electrochemical devices. The incorporation of inorganic components, such as ceramic nanoparticles or metal oxides, into a polymer matrix provides several advantages. The inorganic components can improve the overall ionic conductivity by providing pathways for ion transport, reducing the tortuosity of the polymer matrix, and facilitating ion hopping between polymer chains. Additionally, inorganic materials often exhibit higher thermal and chemical stability compared to pure polymers, which can enhance the safety and durability of composite electrolytes. Polymer matrices used in inorganic-polymer composite electrolytes can vary, but common choices include polyethylene oxide (PEO), polyvinylidene fluoride (PVDF), polyacrylonitrile (PAN), and polyethylene oxide/polypropylene oxide (PEO/PPO) blends. These polymers offer good mechanical flexibility and processability, allowing for the fabrication of thin films or membranes. The fabrication methods for inorganic-polymer composite electrolytes depend on the specific application and desired properties. Common approaches include solution casting, in situ polymerization, melt blending, and electrospinning. During the fabrication process, the inorganic components are typically dispersed or mixed with the polymer matrix, and the resulting composite is processed into the desired form, such as films, membranes, or coatings. The performance of inorganic-polymer composite electrolytes is evaluated based on their ionic conductivity, mechanical strength, electrochemical stability, and compatibility with the electrode materials. Researchers continue to explore various combinations of inorganic and polymer components, as well as optimization strategies, to further improve the overall performance of these composite electrolytes for advanced energy storage and conversion applications.
本综述涵盖无机聚合物复合电解质材料的基础知识,这些材料将无机成分与聚合物基质相结合,以增强电解质的离子导电性和机械性能。这些复合电解质通常用于固态电池、燃料电池、超级电容器和其他电化学装置。在聚合物基质中加入无机成分(如陶瓷纳米颗粒或金属氧化物)具有多种优势。无机成分可提供离子传输通道、降低聚合物基体的迂回度并促进聚合物链之间的离子跳跃,从而提高整体离子传导性。此外,与纯聚合物相比,无机材料通常具有更高的热稳定性和化学稳定性,可提高复合电解质的安全性和耐用性。无机聚合物复合电解质中使用的聚合物基质可能各不相同,但常见的选择包括聚氧化乙烯(PEO)、聚偏二氟乙烯(PVDF)、聚丙烯腈(PAN)和聚氧化乙烯/聚氧化丙烯(PEO/PPO)混合物。这些聚合物具有良好的机械柔韧性和可加工性,可用于制造薄膜或膜。无机聚合物复合电解质的制造方法取决于具体应用和所需性能。常见的方法包括溶液浇铸、原位聚合、熔融混合和电纺丝。在制造过程中,无机成分通常会与聚合物基质分散或混合,然后将得到的复合材料加工成所需的形式,如薄膜、膜或涂层。无机聚合物复合电解质的性能评估基于其离子导电性、机械强度、电化学稳定性以及与电极材料的兼容性。研究人员继续探索无机和聚合物成分的各种组合以及优化策略,以进一步提高这些复合电解质的整体性能,用于先进的能量存储和转换应用。
{"title":"Inorganic-polymer composite electrolytes: basics, fabrications, challenges and future perspectives","authors":"Shahab Khan, Ishfaq Ullah, Mudassir Ur Rahman, Hamayun Khan, Abdul Bari Shah, Raed H. Althomali, Mohammed M. Rahman","doi":"10.1515/revic-2023-0030","DOIUrl":"https://doi.org/10.1515/revic-2023-0030","url":null,"abstract":"This review covers the basics of, inorganic-polymer composite electrolyte materials that combine inorganic components with polymer matrices to enhance the ionic conductivity and mechanical properties of the electrolyte. These composite electrolytes are commonly employed in solid-state batteries, fuel cells, supercapacitors, and other electrochemical devices. The incorporation of inorganic components, such as ceramic nanoparticles or metal oxides, into a polymer matrix provides several advantages. The inorganic components can improve the overall ionic conductivity by providing pathways for ion transport, reducing the tortuosity of the polymer matrix, and facilitating ion hopping between polymer chains. Additionally, inorganic materials often exhibit higher thermal and chemical stability compared to pure polymers, which can enhance the safety and durability of composite electrolytes. Polymer matrices used in inorganic-polymer composite electrolytes can vary, but common choices include polyethylene oxide (PEO), polyvinylidene fluoride (PVDF), polyacrylonitrile (PAN), and polyethylene oxide/polypropylene oxide (PEO/PPO) blends. These polymers offer good mechanical flexibility and processability, allowing for the fabrication of thin films or membranes. The fabrication methods for inorganic-polymer composite electrolytes depend on the specific application and desired properties. Common approaches include solution casting, <jats:italic>in situ</jats:italic> polymerization, melt blending, and electrospinning. During the fabrication process, the inorganic components are typically dispersed or mixed with the polymer matrix, and the resulting composite is processed into the desired form, such as films, membranes, or coatings. The performance of inorganic-polymer composite electrolytes is evaluated based on their ionic conductivity, mechanical strength, electrochemical stability, and compatibility with the electrode materials. Researchers continue to explore various combinations of inorganic and polymer components, as well as optimization strategies, to further improve the overall performance of these composite electrolytes for advanced energy storage and conversion applications.","PeriodicalId":21162,"journal":{"name":"Reviews in Inorganic Chemistry","volume":"157 1","pages":""},"PeriodicalIF":4.1,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139909777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Photochemical synthesis in inorganic chemistry 无机化学中的光化学合成
IF 4.1 3区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2024-02-16 DOI: 10.1515/revic-2023-0023
Rimsha Kanwal, Riyadh R. Al-Araji, Ahmad H. Ibrahim, Muhammad Adnan Iqbal, Shamsa Bibi, Adina Zafar, Muhammad Yaseen, Umar Sohail Shoukat, Faisal Jamil
In the last few decades, photochemistry has great influence on all type of synthetic processes. While photochemical synthesis is emerging field in inorganic chemistry as it impart various magnificent properties to materials that are used for synthesis of nano-sized materials to giant supramolecular structures. There are many photochemical based synthetic approaches like electron, atom, energy transfer depending upon the need of product where one can switch the pathway. A variety of inorganic compounds have been synthesized like dienes, nitrides, indoles, gold nano-particles and supramolecular structures using photochemical route. Photochemical synthesis has various applications like artificial photosynthesis and fluorophores.
在过去几十年里,光化学对所有类型的合成过程都产生了巨大影响。光化学合成是无机化学的新兴领域,因为它赋予材料各种华丽的特性,可用于合成从纳米级材料到巨型超分子结构的材料。有许多基于光化学的合成方法,如电子、原子、能量转移,这取决于产品的需要,人们可以在其中切换途径。利用光化学途径合成了多种无机化合物,如二烯、氮化物、吲哚、金纳米粒子和超分子结构。光化学合成有多种应用,如人工光合作用和荧光体。
{"title":"Photochemical synthesis in inorganic chemistry","authors":"Rimsha Kanwal, Riyadh R. Al-Araji, Ahmad H. Ibrahim, Muhammad Adnan Iqbal, Shamsa Bibi, Adina Zafar, Muhammad Yaseen, Umar Sohail Shoukat, Faisal Jamil","doi":"10.1515/revic-2023-0023","DOIUrl":"https://doi.org/10.1515/revic-2023-0023","url":null,"abstract":"In the last few decades, photochemistry has great influence on all type of synthetic processes. While photochemical synthesis is emerging field in inorganic chemistry as it impart various magnificent properties to materials that are used for synthesis of nano-sized materials to giant supramolecular structures. There are many photochemical based synthetic approaches like electron, atom, energy transfer depending upon the need of product where one can switch the pathway. A variety of inorganic compounds have been synthesized like dienes, nitrides, indoles, gold nano-particles and supramolecular structures using photochemical route. Photochemical synthesis has various applications like artificial photosynthesis and fluorophores.","PeriodicalId":21162,"journal":{"name":"Reviews in Inorganic Chemistry","volume":"50 1","pages":""},"PeriodicalIF":4.1,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139769472","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Graphene-based nanocomposites for gas sensors: challenges and opportunities 用于气体传感器的石墨烯基纳米复合材料:挑战与机遇
IF 4.1 3区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2024-02-15 DOI: 10.1515/revic-2023-0033
Talib Hussain Banglani, Imamdin Chandio, Meher-Un-Nisa Khilji, Aliya Ibrar, Ayaz Ali Memon, Ayaz Ali, Bader S. Al-Anzi, Khalid Hussain Thebo
Exposure to toxic gases resulting from rapid industrialization poses significant health risks living organisms including human. Consequently, researchers in this modern scientific era have shown keen interest in the selective detection of these toxic gases. The development of fast, economical, selective, and highly sensitive gas sensors has become a crucial pursuit to accurately detect toxic gases and mitigate their adverse effects on the natural environment. Graphene-based nanocomposites have emerged as promising candidates for selectively detecting toxic gases due to their extensive surface area. This review paper provides a comprehensive summary of recent advancements in graphene-based gas sensors. The paper also offers an overview of various synthetic strategies for graphene and its hybrid architectures. Additionally, it delves into the detailed sensing applications of these materials. Challenges and limitations in this field have been critically evaluated and highlighted, along with potential future solutions.
快速工业化带来的有毒气体暴露对包括人类在内的生物体的健康构成了重大威胁。因此,现代科学时代的研究人员对这些有毒气体的选择性检测表现出了浓厚的兴趣。开发快速、经济、选择性强且灵敏度高的气体传感器已成为准确检测有毒气体并减轻其对自然环境不利影响的重要手段。石墨烯基纳米复合材料因其广泛的比表面积而成为有希望选择性检测有毒气体的候选材料。本综述论文全面总结了石墨烯基气体传感器的最新进展。本文还概述了石墨烯及其混合架构的各种合成策略。此外,论文还深入探讨了这些材料的详细传感应用。论文对这一领域的挑战和局限性进行了批判性评估和强调,并提出了潜在的未来解决方案。
{"title":"Graphene-based nanocomposites for gas sensors: challenges and opportunities","authors":"Talib Hussain Banglani, Imamdin Chandio, Meher-Un-Nisa Khilji, Aliya Ibrar, Ayaz Ali Memon, Ayaz Ali, Bader S. Al-Anzi, Khalid Hussain Thebo","doi":"10.1515/revic-2023-0033","DOIUrl":"https://doi.org/10.1515/revic-2023-0033","url":null,"abstract":"Exposure to toxic gases resulting from rapid industrialization poses significant health risks living organisms including human. Consequently, researchers in this modern scientific era have shown keen interest in the selective detection of these toxic gases. The development of fast, economical, selective, and highly sensitive gas sensors has become a crucial pursuit to accurately detect toxic gases and mitigate their adverse effects on the natural environment. Graphene-based nanocomposites have emerged as promising candidates for selectively detecting toxic gases due to their extensive surface area. This review paper provides a comprehensive summary of recent advancements in graphene-based gas sensors. The paper also offers an overview of various synthetic strategies for graphene and its hybrid architectures. Additionally, it delves into the detailed sensing applications of these materials. Challenges and limitations in this field have been critically evaluated and highlighted, along with potential future solutions.","PeriodicalId":21162,"journal":{"name":"Reviews in Inorganic Chemistry","volume":"6 1","pages":""},"PeriodicalIF":4.1,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139769473","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unveiling the multifaceted roles of protonated 1,2-bis(4-pyridyl)ethylene (HBpe+) ligand in metal-driven supramolecular assembly: a comprehensive structural review 揭示质子化 1,2-双(4-吡啶基)乙烯 (HBpe+) 配体在金属驱动的超分子组装中的多方面作用:结构综述
IF 4.1 3区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2024-02-15 DOI: 10.1515/revic-2023-0025
Debabrata Singha, Pritha Datta, Sasthi Charan Halder, Atish Dipankar Jana, Nilasish Pal
A protonated form of 1,2-bis(4-pyridyl)ethylene (HBpe+), produced through proton transfer or pH adjustments, plays a significant role in forming unique supramolecular structures. In contrast, non-protonated forms of the molecule (Bpe) are extensively studied in metal-organic complexes. In this review, we examine the fascinating world of HBpe+ as a monodentate ligand in the realm of coordination chemistry. It discusses how protonated ligands influence the assembly of supramolecular structures, as well as their properties and functions. Structures such as 1:1 adduct, coordination polymers, and metal clusters are often formed as a result. In these assemblies, HBpe+ engages in a variety of interactions that influence its supramolecular behavior. The interactions include coordination complexes with metal ions, hydrogen bonds, aromatic ring stacking, and double bond stacking (ππ stacking). The flexibility and conformation of the ligand have a significant impact on the overall structure and stability of complexes. It opens the door to developing functional materials by unraveling the unique attributes and role of HBpe+ in supramolecular assembly. With these insights, it is possible to explore the functional properties of HBpe+ through controlled assembly processes in order to create innovative and functional materials.
通过质子转移或 pH 值调节产生的质子化形式的 1,2-双(4-吡啶基)乙烯(HBpe+)在形成独特的超分子结构方面发挥着重要作用。相比之下,该分子的非质子化形式(Bpe)在金属有机络合物中得到了广泛研究。在这篇综述中,我们将探讨 HBpe+ 作为配位化学领域中的单价配体的迷人世界。文章讨论了质子配体如何影响超分子结构的组装及其性质和功能。结果往往会形成 1:1 加合物、配位聚合物和金属簇等结构。在这些组装体中,HBpe+ 会发生各种相互作用,从而影响其超分子行为。这些相互作用包括与金属离子的配位复合物、氢键、芳香环堆积和双键堆积(π⋯π 堆积)。配体的柔性和构象对配合物的整体结构和稳定性有重大影响。通过揭示 HBpe+ 在超分子组装中的独特属性和作用,为开发功能材料打开了大门。有了这些见解,就有可能通过受控组装过程探索 HBpe+ 的功能特性,从而创造出创新的功能材料。
{"title":"Unveiling the multifaceted roles of protonated 1,2-bis(4-pyridyl)ethylene (HBpe+) ligand in metal-driven supramolecular assembly: a comprehensive structural review","authors":"Debabrata Singha, Pritha Datta, Sasthi Charan Halder, Atish Dipankar Jana, Nilasish Pal","doi":"10.1515/revic-2023-0025","DOIUrl":"https://doi.org/10.1515/revic-2023-0025","url":null,"abstract":"A protonated form of 1,2-bis(4-pyridyl)ethylene (HBpe<jats:sup>+</jats:sup>), produced through proton transfer or pH adjustments, plays a significant role in forming unique supramolecular structures. In contrast, non-protonated forms of the molecule (Bpe) are extensively studied in metal-organic complexes. In this review, we examine the fascinating world of HBpe<jats:sup>+</jats:sup> as a monodentate ligand in the realm of coordination chemistry. It discusses how protonated ligands influence the assembly of supramolecular structures, as well as their properties and functions. Structures such as 1:1 adduct, coordination polymers, and metal clusters are often formed as a result. In these assemblies, HBpe<jats:sup>+</jats:sup> engages in a variety of interactions that influence its supramolecular behavior. The interactions include coordination complexes with metal ions, hydrogen bonds, aromatic ring stacking, and double bond stacking (<jats:italic>π</jats:italic>⋯<jats:italic>π</jats:italic> stacking). The flexibility and conformation of the ligand have a significant impact on the overall structure and stability of complexes. It opens the door to developing functional materials by unraveling the unique attributes and role of HBpe<jats:sup>+</jats:sup> in supramolecular assembly. With these insights, it is possible to explore the functional properties of HBpe<jats:sup>+</jats:sup> through controlled assembly processes in order to create innovative and functional materials.","PeriodicalId":21162,"journal":{"name":"Reviews in Inorganic Chemistry","volume":"217 1","pages":""},"PeriodicalIF":4.1,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139769592","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Variable heterotridentate ligands in Pt(ƞ3-X1C1X2)(PL) (X1,2 = N or S), Pt(ƞ3-X1N1Y1)(PL) (X, Y = O, C; C, S; or O, S) and Pt(ƞ3-S1B1S2)(PL), derivatives – structural aspects 铂(ƞ3-X1C1X2)(PL)(X1,2 = N 或 S)、铂(ƞ3-X1N1Y1)(PL)(X, Y = O, C; C, S; 或 O, S)和铂(ƞ3-S1B1S2)(PL)中的可变异戟配体,衍生物 - 结构方面的问题
IF 4.1 3区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2024-01-19 DOI: 10.1515/revic-2023-0029
Milan Melník, Dominika Žigrayová, Veronika Mikušová, Peter Mikuš
This review covers 17 Pt(II) complexes of the compositions: Pt(ƞ3-N1C1N2)(PL), Pt(ƞ3-S1C1S2)(PL), Pt(ƞ3-S1B1S2)(PL), Pt(ƞ3-S1S2O1)(PL), Pt(ƞ3-O1N1C1)(PL), Pt(ƞ3-O1N1S1)(PL) and Pt(ƞ3-C1N1S1)(PL). These complexes crystallized in three crystal classes: monoclinic (8 examples), triclinic (8 examples) and orthorhombic (1 example). The heterotridentate ligands creates 5 + 5-membered metallocyclic rings (most common) and 5 + 6-membered. The heterotridentate ligands with monodentate P ligands build up a distorted square-planar geometry about Pt(II) atoms. The Pt–L and L–Pt–L were analyzed. The τ 4 parameter which indicate a degree of distortion growing in the sentence: 0.057 Pt(ƞ3-O1N1S1)(PL) < 0.066 Pt(ƞ3-S1C1S2)(PL) < 0.149 Pt(ƞ3-S1S2O1)(PL) < 0.158 Pt(ƞ3-O1N1C1)(PL) < 0.160 Pt(ƞ3-C1N1S1)(PL) < 0.162 Pt(ƞ3-S1B1S2)(PL) < 0.165 Pt(ƞ3-N1C1N2)(PL).
本综述涉及 17 种铂(II)络合物的组成:Pt(ƞ3-N1C1N2)(PL)、Pt(ƞ3-S1C1S2)(PL)、Pt(ƞ3-S1B1S2)(PL)、Pt(ƞ3-S1S2O1)(PL)、Pt(ƞ3-O1N1C1)(PL)、Pt(ƞ3-O1N1S1)(PL) 和 Pt(ƞ3-C1N1S1)(PL)。这些配合物以三种晶体类别结晶:单斜(8 例)、三斜(8 例)和正交(1 例)。杂三齿配体形成了 5 + 5 元金属环(最常见)和 5 + 6 元金属环。带有单齿 P 配体的杂三叉配体会围绕铂(II)原子形成扭曲的方形平面几何。分析了 Pt-L 和 L-Pt-L。表示畸变程度的 τ 4 参数在句子中不断增加:0.057 Pt(ƞ3-O1N1S1)(PL) < 0.066 Pt(ƞ3-S1C1S2)(PL) < 0.149 Pt(ƞ3-S1S2O1)(PL) < 0.158 Pt(ƞ3-O1N1C1)(PL) < 0.160 Pt(ƞ3-C1N1S1)(PL) < 0.162 Pt(ƞ3-S1B1S2)(PL) < 0.165 Pt(ƞ3-N1C1N2)(PL).
{"title":"Variable heterotridentate ligands in Pt(ƞ3-X1C1X2)(PL) (X1,2 = N or S), Pt(ƞ3-X1N1Y1)(PL) (X, Y = O, C; C, S; or O, S) and Pt(ƞ3-S1B1S2)(PL), derivatives – structural aspects","authors":"Milan Melník, Dominika Žigrayová, Veronika Mikušová, Peter Mikuš","doi":"10.1515/revic-2023-0029","DOIUrl":"https://doi.org/10.1515/revic-2023-0029","url":null,"abstract":"This review covers 17 Pt(II) complexes of the compositions: Pt(ƞ<jats:sup>3</jats:sup>-N<jats:sup>1</jats:sup>C<jats:sup>1</jats:sup>N<jats:sup>2</jats:sup>)(PL), Pt(ƞ<jats:sup>3</jats:sup>-S<jats:sup>1</jats:sup>C<jats:sup>1</jats:sup>S<jats:sup>2</jats:sup>)(PL), Pt(ƞ<jats:sup>3</jats:sup>-S<jats:sup>1</jats:sup>B<jats:sup>1</jats:sup>S<jats:sup>2</jats:sup>)(PL), Pt(ƞ<jats:sup>3</jats:sup>-S<jats:sup>1</jats:sup>S<jats:sup>2</jats:sup>O<jats:sup>1</jats:sup>)(PL), Pt(ƞ<jats:sup>3</jats:sup>-O<jats:sup>1</jats:sup>N<jats:sup>1</jats:sup>C<jats:sup>1</jats:sup>)(PL), Pt(ƞ<jats:sup>3</jats:sup>-O<jats:sup>1</jats:sup>N<jats:sup>1</jats:sup>S<jats:sup>1</jats:sup>)(PL) and Pt(ƞ<jats:sup>3</jats:sup>-C<jats:sup>1</jats:sup>N<jats:sup>1</jats:sup>S<jats:sup>1</jats:sup>)(PL). These complexes crystallized in three crystal classes: monoclinic (8 examples), triclinic (8 examples) and orthorhombic (1 example). The heterotridentate ligands creates 5 + 5-membered metallocyclic rings (most common) and 5 + 6-membered. The heterotridentate ligands with monodentate P ligands build up a distorted square-planar geometry about Pt(II) atoms. The Pt–L and L–Pt–L were analyzed. The <jats:italic>τ</jats:italic> <jats:sub>4</jats:sub> parameter which indicate a degree of distortion growing in the sentence: 0.057 Pt(ƞ<jats:sup>3</jats:sup>-O<jats:sup>1</jats:sup>N<jats:sup>1</jats:sup>S<jats:sup>1</jats:sup>)(PL) &lt; 0.066 Pt(ƞ<jats:sup>3</jats:sup>-S<jats:sup>1</jats:sup>C<jats:sup>1</jats:sup>S<jats:sup>2</jats:sup>)(PL) &lt; 0.149 Pt(ƞ<jats:sup>3</jats:sup>-S<jats:sup>1</jats:sup>S<jats:sup>2</jats:sup>O<jats:sup>1</jats:sup>)(PL) &lt; 0.158 Pt(ƞ<jats:sup>3</jats:sup>-O<jats:sup>1</jats:sup>N<jats:sup>1</jats:sup>C<jats:sup>1</jats:sup>)(PL) &lt; 0.160 Pt(ƞ<jats:sup>3</jats:sup>-C<jats:sup>1</jats:sup>N<jats:sup>1</jats:sup>S<jats:sup>1</jats:sup>)(PL) &lt; 0.162 Pt(ƞ<jats:sup>3</jats:sup>-S<jats:sup>1</jats:sup>B<jats:sup>1</jats:sup>S<jats:sup>2</jats:sup>)(PL) &lt; 0.165 Pt(ƞ<jats:sup>3</jats:sup>-N<jats:sup>1</jats:sup>C<jats:sup>1</jats:sup>N<jats:sup>2</jats:sup>)(PL).","PeriodicalId":21162,"journal":{"name":"Reviews in Inorganic Chemistry","volume":"35 1","pages":""},"PeriodicalIF":4.1,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139510187","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation and optimisation of a lithium-drift silicon detector using Si–Li structure and bidirectional diffusion and drift techniques 利用硅-锂结构以及双向扩散和漂移技术研究和优化锂漂移硅探测器
IF 4.1 3区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2024-01-15 DOI: 10.1515/revic-2023-0034
Jing Zhang, Nursultan Japashov
Abstract The research relevance is predefined by the continuous development and improvement of radiation analysis methods and the need for more efficient and accurate detectors for various applications. This research may improve the sensitivity and resolution of Si(Li) detectors, which is important for scientific and industrial research as well as radiation safety monitoring. The research aims to analyse and improve the performance of a Si(Li) lithium-drift silicon detector. The methods used include an analytical method, classification method, functional method, statistical method, synthesis method and others. The results of the two-sided observation of lithium diffusion in silicon monocrystals provided valuable information about the characteristics of the process and its dependence on the method of silicon production. A large-diameter detector detection mode was found to be important for optimising the production of such detectors. The diffusion process in monocrystalline silicon produced by the shadowless zone melting method is relatively fast. This means that lithium ions penetrate the material rapidly and spread evenly throughout its volume. This fast diffusion process can be useful for detectors that need to respond quickly to incoming signals. It was found that in monocrystalline silicon produced by the Czochralski method, there is a delayed penetration of lithium ions.
摘要 辐射分析方法的不断发展和改进,以及各种应用对更高效、更精确探测器的需求,决定了研究的相关性。这项研究可以提高硅(锂)探测器的灵敏度和分辨率,这对于科学和工业研究以及辐射安全监测都非常重要。这项研究旨在分析和改进硅(锂)锂漂移探测器的性能。采用的方法包括分析法、分类法、函数法、统计法、综合法等。锂在硅单晶中扩散的双面观察结果为了解该过程的特点及其与硅生产方法的关系提供了宝贵的信息。研究发现,大直径探测器的探测模式对于优化此类探测器的生产非常重要。无影区熔炼法生产的单晶硅的扩散过程相对较快。这意味着锂离子会迅速渗透到材料中,并均匀地扩散到整个体积。这种快速扩散过程对于需要快速响应传入信号的探测器非常有用。研究发现,在用 Czochralski 方法生产的单晶硅中,锂离子的渗透会出现延迟。
{"title":"Investigation and optimisation of a lithium-drift silicon detector using Si–Li structure and bidirectional diffusion and drift techniques","authors":"Jing Zhang, Nursultan Japashov","doi":"10.1515/revic-2023-0034","DOIUrl":"https://doi.org/10.1515/revic-2023-0034","url":null,"abstract":"Abstract The research relevance is predefined by the continuous development and improvement of radiation analysis methods and the need for more efficient and accurate detectors for various applications. This research may improve the sensitivity and resolution of Si(Li) detectors, which is important for scientific and industrial research as well as radiation safety monitoring. The research aims to analyse and improve the performance of a Si(Li) lithium-drift silicon detector. The methods used include an analytical method, classification method, functional method, statistical method, synthesis method and others. The results of the two-sided observation of lithium diffusion in silicon monocrystals provided valuable information about the characteristics of the process and its dependence on the method of silicon production. A large-diameter detector detection mode was found to be important for optimising the production of such detectors. The diffusion process in monocrystalline silicon produced by the shadowless zone melting method is relatively fast. This means that lithium ions penetrate the material rapidly and spread evenly throughout its volume. This fast diffusion process can be useful for detectors that need to respond quickly to incoming signals. It was found that in monocrystalline silicon produced by the Czochralski method, there is a delayed penetration of lithium ions.","PeriodicalId":21162,"journal":{"name":"Reviews in Inorganic Chemistry","volume":"41 4","pages":""},"PeriodicalIF":4.1,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139437191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A review on biogenic synthesized zinc oxide nanoparticles: synthesis, characterization, and its applications 生物合成氧化锌纳米颗粒综述:合成、表征及其应用
IF 4.1 3区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2024-01-01 DOI: 10.1515/revic-2023-0022
Aklilu Melese, Walelign Wubet, Abdu Hussen, Kenaegzer Mulate, Afework Hailekiros
Nanotechnology is the most innovative field of the twenty-first century. Worldwide, intensive research is being done to commercialize nano products. Due to their unique or improved physical and chemical properties relative to bulk material, nanomaterials, especially nanoparticles have seen an enormous interest over the past few decades. As environmentally benign alternative nanoparticles are currently being produced “biologically” by means of plant or microorganism-mediated synthesis. Due to its outstanding biocompatibility, affordability, and low toxicity, and cost-effectiveness, ZnO NPs have emerged as one of the most widely used metal oxide nanoparticles in various applications. Interestingly, due to its multiple medical, health, environmental, and economic advantages, the green technique of synthesis employing plant materials has been discovered to be suitable for the production of ZnO nanoparticles. A variety of characterization methods have been used to assess the characteristics of ZnO NPs produced with green strategies, including X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR), and UV–Vis spectroscopy and others. The value of these techniques reveals important information about the structural, morphological, and optical characteristics of ZnO NPs. In order to support future biomedical and other research, this review provides an overview of recent developments in the green synthesis of ZnO NPs with a focus on natural sources such as plants, bacteria, fungi, and algae as well as their characterizations, and various applications, including, antimicrobial, anticancer, antioxidant, photocatalytic, anti-inflammatory, anti-diabetics, and anti-aging applications.
纳米技术是二十一世纪最具创新性的领域。全世界都在为纳米产品的商业化进行深入研究。在过去的几十年里,纳米材料,尤其是纳米颗粒,因其相对于大块材料的独特或改进的物理和化学性质,受到了人们的极大关注。作为对环境无害的替代品,纳米粒子目前正通过植物或微生物介导的合成方法进行 "生物 "生产。由于 ZnO NPs 具有出色的生物相容性、经济性、低毒性和成本效益,它已成为各种应用中最广泛使用的金属氧化物纳米粒子之一。有趣的是,由于其在医疗、健康、环境和经济方面的多重优势,人们发现利用植物材料进行合成的绿色技术非常适合生产氧化锌纳米粒子。人们采用了多种表征方法来评估采用绿色策略生产的氧化锌纳米粒子的特性,包括 X 射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、傅立叶变换红外光谱(FTIR)和紫外可见光谱等。这些技术的价值在于揭示 ZnO NPs 结构、形态和光学特性的重要信息。为了支持未来的生物医学和其他研究,本综述概述了氧化锌氮氧化物绿色合成的最新进展,重点介绍了植物、细菌、真菌和藻类等天然来源的氧化锌氮氧化物及其表征和各种应用,包括抗菌、抗癌、抗氧化、光催化、抗炎、抗糖尿病和抗衰老等应用。
{"title":"A review on biogenic synthesized zinc oxide nanoparticles: synthesis, characterization, and its applications","authors":"Aklilu Melese, Walelign Wubet, Abdu Hussen, Kenaegzer Mulate, Afework Hailekiros","doi":"10.1515/revic-2023-0022","DOIUrl":"https://doi.org/10.1515/revic-2023-0022","url":null,"abstract":"Nanotechnology is the most innovative field of the twenty-first century. Worldwide, intensive research is being done to commercialize nano products. Due to their unique or improved physical and chemical properties relative to bulk material, nanomaterials, especially nanoparticles have seen an enormous interest over the past few decades. As environmentally benign alternative nanoparticles are currently being produced “biologically” by means of plant or microorganism-mediated synthesis. Due to its outstanding biocompatibility, affordability, and low toxicity, and cost-effectiveness, ZnO NPs have emerged as one of the most widely used metal oxide nanoparticles in various applications. Interestingly, due to its multiple medical, health, environmental, and economic advantages, the green technique of synthesis employing plant materials has been discovered to be suitable for the production of ZnO nanoparticles. A variety of characterization methods have been used to assess the characteristics of ZnO NPs produced with green strategies, including X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR), and UV–Vis spectroscopy and others. The value of these techniques reveals important information about the structural, morphological, and optical characteristics of ZnO NPs. In order to support future biomedical and other research, this review provides an overview of recent developments in the green synthesis of ZnO NPs with a focus on natural sources such as plants, bacteria, fungi, and algae as well as their characterizations, and various applications, including, antimicrobial, anticancer, antioxidant, photocatalytic, anti-inflammatory, anti-diabetics, and anti-aging applications.","PeriodicalId":21162,"journal":{"name":"Reviews in Inorganic Chemistry","volume":"51 1","pages":""},"PeriodicalIF":4.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139080142","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Polyoxometalates as next-generation of theragnostic gadgets in cancer 多金属氧酸盐作为新一代癌症诊断工具
IF 4.1 3区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2023-12-04 DOI: 10.1515/revic-2023-0008
Fahimeh Aminolroayaei, Ali Mehri, Daryoush Shahbazi-Gahrouei, Mahboubeh Rostami
Polyoxometalates (POMS) are a class of mineral clusters of transition metals or rare-earth elements linked together by Oxo ligands. POMs have been identified as antibacterial, antiviral, and anticancer agents after decades of research since the onset of the 20th century. Furthermore, in recent years POMs have been studied for their applications in diagnosis, photodynamic therapy, photothermal therapy, and theragnostic. However, these last-mentioned POM applications have rarely been reviewed. Considering the potential characteristic features of POMs, comprising their easy, inexpensive, and scalable synthesis, and with special attention to the challenges of their application, POMs would be great alternatives to many conventional medical tools in the field of cancer treatment and diagnosis. In this review, we report recent updated research around utilizing POMs in cancer diagnosis and theragnostic. Publications are on basic topics including POMs in magnetic resonance imaging (MRI), POMs in computed tomography (CT), POMs in cancer photoluminescence (PL) imaging, POMs in multimodality, POMs in radiation therapy applications, POMs as radiosensitizer and promotor of drug release, and POMs in theragnostic applications. It is hoped that this review paper will be useful for those researchers who are interested in expanding the applications of polyoxometalates in the field of cancer treatment and diagnosis.
多金属氧酸盐(POMS)是一类由氧配体连接在一起的过渡金属或稀土元素的矿物簇。自20世纪初以来,经过几十年的研究,聚甲醛已被确定为抗菌、抗病毒和抗癌药物。此外,近年来pom在诊断、光动力治疗、光热治疗和诊断等方面的应用也得到了广泛的研究。然而,这些最后提到的POM应用程序很少被审查。考虑到POMs的潜在特征,包括其简单、廉价和可扩展的合成,并特别注意其应用中的挑战,POMs将成为癌症治疗和诊断领域许多传统医疗工具的重要替代品。在这篇综述中,我们报告了最近关于利用聚甲醛在癌症诊断和治疗中的最新研究。出版物的基本主题包括POMs在磁共振成像(MRI)中的应用,POMs在计算机断层扫描(CT)中的应用,POMs在癌症光致发光(PL)成像中的应用,POMs在多模态中的应用,POMs在放射治疗中的应用,POMs作为放射增敏剂和药物释放促进剂的应用,以及POMs在治疗中的应用。希望本文能对有意拓展多金属氧酸盐在癌症治疗和诊断领域应用的研究人员有所帮助。
{"title":"Polyoxometalates as next-generation of theragnostic gadgets in cancer","authors":"Fahimeh Aminolroayaei, Ali Mehri, Daryoush Shahbazi-Gahrouei, Mahboubeh Rostami","doi":"10.1515/revic-2023-0008","DOIUrl":"https://doi.org/10.1515/revic-2023-0008","url":null,"abstract":"Polyoxometalates (POMS) are a class of mineral clusters of transition metals or rare-earth elements linked together by Oxo ligands. POMs have been identified as antibacterial, antiviral, and anticancer agents after decades of research since the onset of the 20th century. Furthermore, in recent years POMs have been studied for their applications in diagnosis, photodynamic therapy, photothermal therapy, and theragnostic. However, these last-mentioned POM applications have rarely been reviewed. Considering the potential characteristic features of POMs, comprising their easy, inexpensive, and scalable synthesis, and with special attention to the challenges of their application, POMs would be great alternatives to many conventional medical tools in the field of cancer treatment and diagnosis. In this review, we report recent updated research around utilizing POMs in cancer diagnosis and theragnostic. Publications are on basic topics including POMs in magnetic resonance imaging (MRI), POMs in computed tomography (CT), POMs in cancer photoluminescence (PL) imaging, POMs in multimodality, POMs in radiation therapy applications, POMs as radiosensitizer and promotor of drug release, and POMs in theragnostic applications. It is hoped that this review paper will be useful for those researchers who are interested in expanding the applications of polyoxometalates in the field of cancer treatment and diagnosis.","PeriodicalId":21162,"journal":{"name":"Reviews in Inorganic Chemistry","volume":"55 1","pages":""},"PeriodicalIF":4.1,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138529332","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advances in the improvement of photocatalytic activity of BiOCl nanomaterials under visible light 提高BiOCl纳米材料可见光光催化活性的研究进展
IF 4.1 3区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2023-11-22 DOI: 10.1515/revic-2023-0013
Linjing Hao, Haoran Sang, Yuwei Hou, Peng Li, Jie Zhang, Jing-He Yang
Photocatalysis is an effective way to alleviate the energy crisis and environmental pollution. Bismuth Chloride Oxide (BiOCl) is one of the most widely studied metal oxides due to its unique surface and electronic structure. However, the wide band gap of BiOCl and the high complexation rate of photogenerated electron–hole pairs limit its photocatalytic efficiency. Increasingly, efforts are being made to improve the performance of this range of photocatalysts. The article reviews the progress of research to enhance the photocatalytic activity of BiOCl nanomaterials. Strategies to improve the photocatalytic performance of single-phase BiOCl include morphological control, component adjustment, crystal facet control, and defects construction. Strategies to improve the photocatalytic activity of BiOCl-based composites include surface modification, immobilization of photocatalysts, impurity doping, and the construction of heterojunctions. In addition, the challenges and trends of BiOCl photocatalysts are discussed and summarized. Hopefully, this review will be helpful for the research and application of BiOCl photocatalysts.
光催化是缓解能源危机和环境污染的有效途径。氯化铋氧化物(BiOCl)由于其独特的表面和电子结构而成为研究最广泛的金属氧化物之一。然而,BiOCl的宽带隙和光生电子-空穴对的高络合速率限制了其光催化效率。人们正越来越多地努力提高这一系列光催化剂的性能。本文综述了增强BiOCl纳米材料光催化活性的研究进展。提高单相BiOCl光催化性能的策略包括形态控制、组分调整、晶面控制和缺陷构建。提高biocl基复合材料光催化活性的策略包括表面改性、光催化剂固定化、杂质掺杂和异质结的构建。此外,对BiOCl光催化剂面临的挑战和发展趋势进行了讨论和总结。希望对BiOCl光催化剂的研究和应用有所帮助。
{"title":"Advances in the improvement of photocatalytic activity of BiOCl nanomaterials under visible light","authors":"Linjing Hao, Haoran Sang, Yuwei Hou, Peng Li, Jie Zhang, Jing-He Yang","doi":"10.1515/revic-2023-0013","DOIUrl":"https://doi.org/10.1515/revic-2023-0013","url":null,"abstract":"Photocatalysis is an effective way to alleviate the energy crisis and environmental pollution. Bismuth Chloride Oxide (BiOCl) is one of the most widely studied metal oxides due to its unique surface and electronic structure. However, the wide band gap of BiOCl and the high complexation rate of photogenerated electron–hole pairs limit its photocatalytic efficiency. Increasingly, efforts are being made to improve the performance of this range of photocatalysts. The article reviews the progress of research to enhance the photocatalytic activity of BiOCl nanomaterials. Strategies to improve the photocatalytic performance of single-phase BiOCl include morphological control, component adjustment, crystal facet control, and defects construction. Strategies to improve the photocatalytic activity of BiOCl-based composites include surface modification, immobilization of photocatalysts, impurity doping, and the construction of heterojunctions. In addition, the challenges and trends of BiOCl photocatalysts are discussed and summarized. Hopefully, this review will be helpful for the research and application of BiOCl photocatalysts.","PeriodicalId":21162,"journal":{"name":"Reviews in Inorganic Chemistry","volume":"67 1 1","pages":""},"PeriodicalIF":4.1,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138529312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Green synthesis of strontium oxide nanoparticles and strontium based nanocomposites prepared by plant extract: a critical review 绿色合成氧化锶纳米粒子和植物提取物制备的锶基纳米复合材料:综述
3区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2023-10-06 DOI: 10.1515/revic-2023-0011
Muhammad Imran Din, Sania Rehman, Zaib Hussain, Rida Khalid
Abstract Recently, strontium oxide nanoparticles (SrO NPs) have become the center of attention due to potential features and promising applications. The physicochemical approaches possess many limitations including extreme experimental conditions, highly complex instruments and use of hazardous chemicals. An eco-friendly and sustainable approach from biogenic sources for formation of SrO NPs is an emerging trend nowadays to effectively replace conventional approaches. This review study all those aspects that facilitate the reader for understanding all biogenic approaches of SrO NPs for their use in different applications with less toxicity issues. In this study, firstly we discuss in detail about plant and other biogenic assemblies based on the synthesis of SrO NPs after which parameters affecting the synthesis of SrO NPs are discussed and finally excellent biomedical applications of SrO NPs along with mechanism are summarized. The literature also showed that green synthesized SrO NPs are highly biocompatible in nature and showed excellent anti-bacterial, anti-oxidant and anti-fungal potential. Hence, this study will provide an understanding to researchers about recent trends for the formation of SrO NPs through different biogenic assemblies and their potential biomedical applications.
近年来,氧化锶纳米颗粒(SrO NPs)因其潜在的特性和广阔的应用前景而成为人们关注的焦点。物理化学方法具有许多局限性,包括极端的实验条件,高度复杂的仪器和使用危险化学品。利用生物源形成SrO NPs的生态友好和可持续的方法是当今有效取代传统方法的新兴趋势。这篇综述研究了所有有助于读者理解SrO NPs的所有生物源性方法,以及它们在不同应用中的低毒性问题。本文首先详细讨论了基于SrO NPs合成的植物和其他生物源组装体,然后讨论了影响SrO NPs合成的参数,最后总结了SrO NPs在生物医学上的良好应用及其机理。文献还表明,绿色合成的SrO NPs在自然界中具有高度的生物相容性,并具有良好的抗菌、抗氧化和抗真菌潜力。因此,本研究将有助于研究人员了解SrO NPs通过不同生物源组装形成的最新趋势及其潜在的生物医学应用。
{"title":"Green synthesis of strontium oxide nanoparticles and strontium based nanocomposites prepared by plant extract: a critical review","authors":"Muhammad Imran Din, Sania Rehman, Zaib Hussain, Rida Khalid","doi":"10.1515/revic-2023-0011","DOIUrl":"https://doi.org/10.1515/revic-2023-0011","url":null,"abstract":"Abstract Recently, strontium oxide nanoparticles (SrO NPs) have become the center of attention due to potential features and promising applications. The physicochemical approaches possess many limitations including extreme experimental conditions, highly complex instruments and use of hazardous chemicals. An eco-friendly and sustainable approach from biogenic sources for formation of SrO NPs is an emerging trend nowadays to effectively replace conventional approaches. This review study all those aspects that facilitate the reader for understanding all biogenic approaches of SrO NPs for their use in different applications with less toxicity issues. In this study, firstly we discuss in detail about plant and other biogenic assemblies based on the synthesis of SrO NPs after which parameters affecting the synthesis of SrO NPs are discussed and finally excellent biomedical applications of SrO NPs along with mechanism are summarized. The literature also showed that green synthesized SrO NPs are highly biocompatible in nature and showed excellent anti-bacterial, anti-oxidant and anti-fungal potential. Hence, this study will provide an understanding to researchers about recent trends for the formation of SrO NPs through different biogenic assemblies and their potential biomedical applications.","PeriodicalId":21162,"journal":{"name":"Reviews in Inorganic Chemistry","volume":"100 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135303315","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Reviews in Inorganic Chemistry
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1