Ran Liu, G. Shen, Peng-fei Zhang, Sa Yang, Wei Zhou, Chaolin Ye, Qing Li
Abstract Understanding the influence of delamination defects on the damage evolution behavior of carbon-fiber-reinforced polymers (CFRPs) is crucial to improve their engineering applications. This study examined the flexural damage behaviors of CFRP composites by using a combination of acoustic emission (AE) and X-ray micro-computed tomography (micro-CT). Four specimens with different delamination defects and 0.1 wt% cellulose nanofibers (CNFs) were subjected to three-point bending tests. AE was employed to monitor the loading process, and then, micro-CT was utilized to detect the internal damage. The results showed that for the specimens with preset delamination defects near the surface, CNF-reinforced specimen exhibited no obvious enhancement effect on bending strength, and its cumulative acoustic energy decreased by 28% compared with that of CFRP specimens. For the specimen with preset delamination damage in the middle position, CNFs had an obvious enhancement effect on mechanical behavior, and the cumulative acoustic energy decreased by 43%. No obvious kink band was observed in the CNF-reinforced specimens, and during crack propagation, causing cracking and delamination damage was difficult. The results of micro-CT are consistent with those of AE. The results combined the combination of AE and micro-CT reflect the superiority of the hybrid detection system.
{"title":"Effects of cellulose nanofibers on flexural behavior of carbon-fiber-reinforced polymer composites with delamination","authors":"Ran Liu, G. Shen, Peng-fei Zhang, Sa Yang, Wei Zhou, Chaolin Ye, Qing Li","doi":"10.1515/secm-2022-0180","DOIUrl":"https://doi.org/10.1515/secm-2022-0180","url":null,"abstract":"Abstract Understanding the influence of delamination defects on the damage evolution behavior of carbon-fiber-reinforced polymers (CFRPs) is crucial to improve their engineering applications. This study examined the flexural damage behaviors of CFRP composites by using a combination of acoustic emission (AE) and X-ray micro-computed tomography (micro-CT). Four specimens with different delamination defects and 0.1 wt% cellulose nanofibers (CNFs) were subjected to three-point bending tests. AE was employed to monitor the loading process, and then, micro-CT was utilized to detect the internal damage. The results showed that for the specimens with preset delamination defects near the surface, CNF-reinforced specimen exhibited no obvious enhancement effect on bending strength, and its cumulative acoustic energy decreased by 28% compared with that of CFRP specimens. For the specimen with preset delamination damage in the middle position, CNFs had an obvious enhancement effect on mechanical behavior, and the cumulative acoustic energy decreased by 43%. No obvious kink band was observed in the CNF-reinforced specimens, and during crack propagation, causing cracking and delamination damage was difficult. The results of micro-CT are consistent with those of AE. The results combined the combination of AE and micro-CT reflect the superiority of the hybrid detection system.","PeriodicalId":21480,"journal":{"name":"Science and Engineering of Composite Materials","volume":" ","pages":""},"PeriodicalIF":1.9,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42367051","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lei Fan, Chun Hu, Neng Yang, Xingshuai Fan, Jie Cheng, Xiangming Li
Abstract In this article, gradient-distributed VCp-ZTAp/Fe45 composites were prepared by vacuum sintering, and three-body abrasive wear experiments were carried out to investigate its anti-wear performance. The composite casting of VCp-ZTAp/Fe45 was investigated by using the finite element method and experiments, and the bonding between the Fe45 substrate and 35SiMnCrMoNi steel was fully investigated. Results show the in situ formation of VCp in the VCp-ZTAp/Fe45 composite matrix during vacuum sintering. The anti-wear property of the VCp-ZTAp/Fe45 composite is ca. 7 times that of Hardox450 and NM450 and ca. 8 times of 30SiMn. There forms a solid metallurgical bonding between the Fe45 matrix of VCp-ZTAp/Fe45 and 35SiMnCrMoNi steel, with a ca. 80 μm thickness of the bonding area during the composite casting.
{"title":"Gradient-distributed ZTAp-VCp/Fe45 as new anti-wear composite material and its bonding properties during composite casting","authors":"Lei Fan, Chun Hu, Neng Yang, Xingshuai Fan, Jie Cheng, Xiangming Li","doi":"10.1515/secm-2022-0200","DOIUrl":"https://doi.org/10.1515/secm-2022-0200","url":null,"abstract":"Abstract In this article, gradient-distributed VCp-ZTAp/Fe45 composites were prepared by vacuum sintering, and three-body abrasive wear experiments were carried out to investigate its anti-wear performance. The composite casting of VCp-ZTAp/Fe45 was investigated by using the finite element method and experiments, and the bonding between the Fe45 substrate and 35SiMnCrMoNi steel was fully investigated. Results show the in situ formation of VCp in the VCp-ZTAp/Fe45 composite matrix during vacuum sintering. The anti-wear property of the VCp-ZTAp/Fe45 composite is ca. 7 times that of Hardox450 and NM450 and ca. 8 times of 30SiMn. There forms a solid metallurgical bonding between the Fe45 matrix of VCp-ZTAp/Fe45 and 35SiMnCrMoNi steel, with a ca. 80 μm thickness of the bonding area during the composite casting.","PeriodicalId":21480,"journal":{"name":"Science and Engineering of Composite Materials","volume":" ","pages":""},"PeriodicalIF":1.9,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44628516","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J. Ahmad, Fadi Althoey, M. Abuhussain, A. Deifalla, Y. Özkılıç, C. Rahmawati
Abstract Concrete is the most frequently employed man-made material in modern building construction. Nevertheless, the serviceability of concrete structures has been significantly reduced owing to a variety of durability issues, especially when serving in a non-ideal environment and exposed to internal/external attacks such as chloride penetration, carbonation, sulfate, and so on. Several scholars have performed numerous studies on the strength and microstructure features of volcanic ash (VA) concrete and have discovered encouraging findings. However, since the information is spread, readers find it difficult to evaluate the benefits of VA-based concrete, limiting its applicability. As a result, a detailed study is required that offers the reader an easy approach and highlights all essential facts. The goal of this article (Part Ц) is to conduct a compressive review of the physical and chemical aspects of VA and its impact on concrete durability and microstructure properties. The findings demonstrate that VA considerably improves concrete durability owing to pozzolanic reaction and micro-filling voids in concrete materials. Cost–benefit analysis shows that 10% utilization of VA as cement decreased the overall cost by 30%. The assessment also notes a research gap that must be filled before VA may be utilized in practice.
{"title":"Durability and microstructure analysis of concrete made with volcanic ash: A review (Part II)","authors":"J. Ahmad, Fadi Althoey, M. Abuhussain, A. Deifalla, Y. Özkılıç, C. Rahmawati","doi":"10.1515/secm-2022-0211","DOIUrl":"https://doi.org/10.1515/secm-2022-0211","url":null,"abstract":"Abstract Concrete is the most frequently employed man-made material in modern building construction. Nevertheless, the serviceability of concrete structures has been significantly reduced owing to a variety of durability issues, especially when serving in a non-ideal environment and exposed to internal/external attacks such as chloride penetration, carbonation, sulfate, and so on. Several scholars have performed numerous studies on the strength and microstructure features of volcanic ash (VA) concrete and have discovered encouraging findings. However, since the information is spread, readers find it difficult to evaluate the benefits of VA-based concrete, limiting its applicability. As a result, a detailed study is required that offers the reader an easy approach and highlights all essential facts. The goal of this article (Part Ц) is to conduct a compressive review of the physical and chemical aspects of VA and its impact on concrete durability and microstructure properties. The findings demonstrate that VA considerably improves concrete durability owing to pozzolanic reaction and micro-filling voids in concrete materials. Cost–benefit analysis shows that 10% utilization of VA as cement decreased the overall cost by 30%. The assessment also notes a research gap that must be filled before VA may be utilized in practice.","PeriodicalId":21480,"journal":{"name":"Science and Engineering of Composite Materials","volume":" ","pages":""},"PeriodicalIF":1.9,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43088736","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract A new type of foam ceramics was prepared with fly ash (CFA). Before sintering, the CFA underwent alkali activation, resulting in an even layer of hydroxy sodalite crystals covering the CFA particles. The pre-treatment of the CFA-alkali-activated material caused it to exhibit a reaction in sintering. The foamed ceramics had the best qualities when sintered at 1,300°C; the leaching toxicity studies of a material used in interior design revealed that during sintering.
{"title":"Preparation and application of foamed ceramic panels in interior design","authors":"B. Wang","doi":"10.1515/secm-2022-0217","DOIUrl":"https://doi.org/10.1515/secm-2022-0217","url":null,"abstract":"Abstract A new type of foam ceramics was prepared with fly ash (CFA). Before sintering, the CFA underwent alkali activation, resulting in an even layer of hydroxy sodalite crystals covering the CFA particles. The pre-treatment of the CFA-alkali-activated material caused it to exhibit a reaction in sintering. The foamed ceramics had the best qualities when sintered at 1,300°C; the leaching toxicity studies of a material used in interior design revealed that during sintering.","PeriodicalId":21480,"journal":{"name":"Science and Engineering of Composite Materials","volume":" ","pages":""},"PeriodicalIF":1.9,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42658749","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract The micro-cracks in a material lead to a reduction in its overall strength and service life. The emerging capsule-based self-healing system provides a new strategy for repairing the cracks, effectively delaying the potential damage of the matrix, and prolonging the service life of composite materials. Determining the optimal size and dosage of microcapsules required to repair cracks in the matrix is essential for the development and design of capsule-based self-healing materials. This paper presents a novel two-dimensional capsule-based self-healing model composite material whose surface is paved by reproducible and random cells and some microcapsules are randomly dispersed in those cells to investigate the rupture behavior of microcapsules forced by growing cracks. An analytical model is proposed from the viewpoint of geometrical probability to express the probability characteristics of the embedded microcapsules stimulated by linear cracks in a two-dimensional capsule-based self-healing model composite. Additionally, the effect of the size and dosage of the embedded microcapsules on the intersection probability is analyzed, and the maximal probability is also found to improve the self-healing efficiency. Finally, the accuracies of these probability values and theoretical solutions are verified via computer simulation, and the results show that the developed model of the geometrical probability of the crack intersection with microcapsules randomly distributed in the cells of the matrix will help to provide a theoretical basis for the quantitative design of capsule-based self-healing materials.
{"title":"A probability characteristic of crack intersecting with embedded microcapsules in capsule-based self-healing materials","authors":"Z. Lv, Mengyan Shi, Jing Yuan, Depeng Chen, Minglei Guo, Tengfei Xiang, Huisu Chen","doi":"10.1515/secm-2022-0207","DOIUrl":"https://doi.org/10.1515/secm-2022-0207","url":null,"abstract":"Abstract The micro-cracks in a material lead to a reduction in its overall strength and service life. The emerging capsule-based self-healing system provides a new strategy for repairing the cracks, effectively delaying the potential damage of the matrix, and prolonging the service life of composite materials. Determining the optimal size and dosage of microcapsules required to repair cracks in the matrix is essential for the development and design of capsule-based self-healing materials. This paper presents a novel two-dimensional capsule-based self-healing model composite material whose surface is paved by reproducible and random cells and some microcapsules are randomly dispersed in those cells to investigate the rupture behavior of microcapsules forced by growing cracks. An analytical model is proposed from the viewpoint of geometrical probability to express the probability characteristics of the embedded microcapsules stimulated by linear cracks in a two-dimensional capsule-based self-healing model composite. Additionally, the effect of the size and dosage of the embedded microcapsules on the intersection probability is analyzed, and the maximal probability is also found to improve the self-healing efficiency. Finally, the accuracies of these probability values and theoretical solutions are verified via computer simulation, and the results show that the developed model of the geometrical probability of the crack intersection with microcapsules randomly distributed in the cells of the matrix will help to provide a theoretical basis for the quantitative design of capsule-based self-healing materials.","PeriodicalId":21480,"journal":{"name":"Science and Engineering of Composite Materials","volume":"30 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67051194","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract Two-dimensional (2D) braided composites have excellent structural integrity and damage tolerance. Currently, there are few researches focused on the effect of temperature on tensile failure behaviors of 2D braided composites. In this study, 2D biaxial braided composites with different fiber materials were prepared, and the tensile properties and failure mechanisms of these braided composites at different temperatures were studied by means of the tensile test and the high-definition charge coupled device optical microscope. The results show that temperature has significant effects on the tensile properties and fracture damage of 2D braided composites. As the temperature increases, the tensile properties of the two braided composites decrease obviously, and their external fracture failure becomes subtle, while their internal deformation damage becomes significant. Moreover, the differences between the two fibers in tensile fracture behaviors of composites can be more conspicuously observed at higher temperatures.
{"title":"The effect of temperature on the tensile properties and failure mechanisms of two-dimensional braided composites","authors":"Qianhe Li, Yantao Gao, Fangtao Ruan","doi":"10.1515/secm-2022-0191","DOIUrl":"https://doi.org/10.1515/secm-2022-0191","url":null,"abstract":"Abstract Two-dimensional (2D) braided composites have excellent structural integrity and damage tolerance. Currently, there are few researches focused on the effect of temperature on tensile failure behaviors of 2D braided composites. In this study, 2D biaxial braided composites with different fiber materials were prepared, and the tensile properties and failure mechanisms of these braided composites at different temperatures were studied by means of the tensile test and the high-definition charge coupled device optical microscope. The results show that temperature has significant effects on the tensile properties and fracture damage of 2D braided composites. As the temperature increases, the tensile properties of the two braided composites decrease obviously, and their external fracture failure becomes subtle, while their internal deformation damage becomes significant. Moreover, the differences between the two fibers in tensile fracture behaviors of composites can be more conspicuously observed at higher temperatures.","PeriodicalId":21480,"journal":{"name":"Science and Engineering of Composite Materials","volume":" ","pages":""},"PeriodicalIF":1.9,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46170537","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract The objective of the study was to improve the stiffness and bending strength of laminated bamboo through confinement with softwood. A total of 144 beams were tested, divided into 6 groups of 24 specimens each. The tests were conducted on specimens of laminated bamboo, wood, and composite sections with different levels of confined bamboo laminate (20, 40, 60, and 80%). The results indicated that the composite exhibited optimal behavior when the ratio of bamboo to wood was between 46 and 54%. Furthermore, the composite demonstrated a bending modulus of elasticity that was 16.6% higher and a modulus of rupture that was 18.3% higher than the values predicted by the mixing rule. A mathematical model was developed to predict the design mechanical properties based on composite thickness. This model was validated through 18 additional bending tests. This new material is an environmentally sustainable alternative that has the potential to be used as beams in buildings, providing improved mechanical performance, reduced weight, and lower manufacturing cost compared to bamboo laminates.
{"title":"Optimizing bending strength of laminated bamboo using confined bamboo with softwoods","authors":"A. Cruz, C. Takeuchi","doi":"10.1515/secm-2022-0215","DOIUrl":"https://doi.org/10.1515/secm-2022-0215","url":null,"abstract":"Abstract The objective of the study was to improve the stiffness and bending strength of laminated bamboo through confinement with softwood. A total of 144 beams were tested, divided into 6 groups of 24 specimens each. The tests were conducted on specimens of laminated bamboo, wood, and composite sections with different levels of confined bamboo laminate (20, 40, 60, and 80%). The results indicated that the composite exhibited optimal behavior when the ratio of bamboo to wood was between 46 and 54%. Furthermore, the composite demonstrated a bending modulus of elasticity that was 16.6% higher and a modulus of rupture that was 18.3% higher than the values predicted by the mixing rule. A mathematical model was developed to predict the design mechanical properties based on composite thickness. This model was validated through 18 additional bending tests. This new material is an environmentally sustainable alternative that has the potential to be used as beams in buildings, providing improved mechanical performance, reduced weight, and lower manufacturing cost compared to bamboo laminates.","PeriodicalId":21480,"journal":{"name":"Science and Engineering of Composite Materials","volume":" ","pages":""},"PeriodicalIF":1.9,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41495929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J. Ahmad, Mohamed Moafak Arbili, A. Deifalla, Abdeltif Salmi, A. Maglad, Fadi Althoey
Abstract The paper industry is one of the biggest sources of trash and stands out for its effects on both human health and ecological harmony. However, these waste could also help the building sector become more ecologically friendly. Beyond ecological considerations, modern construction often requires materials to make concrete durable, resisting heavy loads and less harmful environmental influences. This creates opportunities for waste management and practical application. This review provides a detail overview of eco-friendly construction ideas that deal with the practical use of materials that are often discarded (paper pulp ash). The impact they had on the characteristics of the construction material, the best mixture composition, and a discussion of the benefits and drawbacks of the “green” addition received the majority of the attention (paper pulp ash). The essential concrete properties such as consistency, setting time, flowability, compressive strength, flexural strength, tensile strength, and impact strength are reviewed. Furthermore, the cost benefits and environmental benefits of paper pulp ash as construction materials are also discussed. The study concludes by suggesting a line of inquiry for the creation of an environmentally friendly structural material for a sustainable future.
{"title":"Sustainable concrete with partial substitution of paper pulp ash: A review","authors":"J. Ahmad, Mohamed Moafak Arbili, A. Deifalla, Abdeltif Salmi, A. Maglad, Fadi Althoey","doi":"10.1515/secm-2022-0193","DOIUrl":"https://doi.org/10.1515/secm-2022-0193","url":null,"abstract":"Abstract The paper industry is one of the biggest sources of trash and stands out for its effects on both human health and ecological harmony. However, these waste could also help the building sector become more ecologically friendly. Beyond ecological considerations, modern construction often requires materials to make concrete durable, resisting heavy loads and less harmful environmental influences. This creates opportunities for waste management and practical application. This review provides a detail overview of eco-friendly construction ideas that deal with the practical use of materials that are often discarded (paper pulp ash). The impact they had on the characteristics of the construction material, the best mixture composition, and a discussion of the benefits and drawbacks of the “green” addition received the majority of the attention (paper pulp ash). The essential concrete properties such as consistency, setting time, flowability, compressive strength, flexural strength, tensile strength, and impact strength are reviewed. Furthermore, the cost benefits and environmental benefits of paper pulp ash as construction materials are also discussed. The study concludes by suggesting a line of inquiry for the creation of an environmentally friendly structural material for a sustainable future.","PeriodicalId":21480,"journal":{"name":"Science and Engineering of Composite Materials","volume":"6 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41276890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract The C/C–SiC composites were fabricated by the liquid silicon infiltration method. The mechanical and tribological properties of C/C–SiC composites were assessed and compared based on different C/C densities and the carbon fiber textile architecture. The results demonstrated that the bending and shear strengths of C/C–SiC were lower than those of C/C composites, which resulted from the carbon fibers being corroded during the process of infiltration of liquid silicon. In contrast to C/C composites, the compressive strength of C/C–SiC exhibited higher values due to the presence of SiC ceramics. Moreover, the mechanical strength of C/C composites increased gradually with the increase of the C/C preform density. The tribological properties of various C/C–SiC composites showed a stable friction phase at an intermediate braking stage. When the density of C/C preforms was around 1.78 g/cm3, the C/C–SiC composites exhibited excellent friction coefficients (0.438 and 0.465), and low wear rates (linear and weight wear rates were 0.450 µm/time and 0.123 g/cycle, respectively). Furthermore, the C/C–SiC composites fabricated with non-woven carbon fiber needling preforms showed relatively a higher friction value and wear rate than those of C/C–SiC with PANOF integral C/C preforms. Therefore, C/C–SiC composites have been considered promising friction materials for braking system applications.
{"title":"Mechanical and tribological properties of C/C–SiC ceramic composites with different preforms","authors":"Yuqing Peng, Zhiwei Li, Aijun Li, Qifan Wang, R. Bai, Fangzhou Zhang","doi":"10.1515/secm-2022-0205","DOIUrl":"https://doi.org/10.1515/secm-2022-0205","url":null,"abstract":"Abstract The C/C–SiC composites were fabricated by the liquid silicon infiltration method. The mechanical and tribological properties of C/C–SiC composites were assessed and compared based on different C/C densities and the carbon fiber textile architecture. The results demonstrated that the bending and shear strengths of C/C–SiC were lower than those of C/C composites, which resulted from the carbon fibers being corroded during the process of infiltration of liquid silicon. In contrast to C/C composites, the compressive strength of C/C–SiC exhibited higher values due to the presence of SiC ceramics. Moreover, the mechanical strength of C/C composites increased gradually with the increase of the C/C preform density. The tribological properties of various C/C–SiC composites showed a stable friction phase at an intermediate braking stage. When the density of C/C preforms was around 1.78 g/cm3, the C/C–SiC composites exhibited excellent friction coefficients (0.438 and 0.465), and low wear rates (linear and weight wear rates were 0.450 µm/time and 0.123 g/cycle, respectively). Furthermore, the C/C–SiC composites fabricated with non-woven carbon fiber needling preforms showed relatively a higher friction value and wear rate than those of C/C–SiC with PANOF integral C/C preforms. Therefore, C/C–SiC composites have been considered promising friction materials for braking system applications.","PeriodicalId":21480,"journal":{"name":"Science and Engineering of Composite Materials","volume":" ","pages":""},"PeriodicalIF":1.9,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49300174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J. Ahmad, M. Alqurashi, Hani Alanazi, A. Deifalla, A. Yosri
Abstract The quantity of carbon dioxide gas released during the manufacturing and acquisition of raw ingredients determines the sustainability of concrete. Industrial garbage dumping is a critical difficulty that humanity is experiencing because of globalization and the increasing population. Through the efficient use of industrial by products, efforts are being undertaken to lower carbon discharges in the concreting process. It has been recommended by sustainable development goals and standards to use byproducts that have lower embodied energy and carbon emissions. Ash from sewage sludge demonstrates its suitability for use in concrete. However, a compressive assessment is needed to determine the past, present, and future research aspects of using sewage sludge ash (SSA) as a construction material. Therefore, this research is carried out on using SSA as a construction material. All the essential properties such as the physical and chemical properties of SSA, its effect on durability properties, and morphology structure study are the main aspect of this review (Part II). The analysis also highlights the research gap for upcoming exploration which further improved its performance.
{"title":"Durability and microstructure study on concrete made with sewage sludge ash: A review (Part Ⅱ)","authors":"J. Ahmad, M. Alqurashi, Hani Alanazi, A. Deifalla, A. Yosri","doi":"10.1515/secm-2022-0202","DOIUrl":"https://doi.org/10.1515/secm-2022-0202","url":null,"abstract":"Abstract The quantity of carbon dioxide gas released during the manufacturing and acquisition of raw ingredients determines the sustainability of concrete. Industrial garbage dumping is a critical difficulty that humanity is experiencing because of globalization and the increasing population. Through the efficient use of industrial by products, efforts are being undertaken to lower carbon discharges in the concreting process. It has been recommended by sustainable development goals and standards to use byproducts that have lower embodied energy and carbon emissions. Ash from sewage sludge demonstrates its suitability for use in concrete. However, a compressive assessment is needed to determine the past, present, and future research aspects of using sewage sludge ash (SSA) as a construction material. Therefore, this research is carried out on using SSA as a construction material. All the essential properties such as the physical and chemical properties of SSA, its effect on durability properties, and morphology structure study are the main aspect of this review (Part II). The analysis also highlights the research gap for upcoming exploration which further improved its performance.","PeriodicalId":21480,"journal":{"name":"Science and Engineering of Composite Materials","volume":" ","pages":""},"PeriodicalIF":1.9,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44232562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}