首页 > 最新文献

New Phytologist最新文献

英文 中文
Effect of temperature on circadian clock functioning of trees in the context of global warming 全球变暖背景下温度对树木生物钟功能的影响
IF 9.4 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2025-01-08 DOI: 10.1111/nph.20342
Maximiliano Estravis-Barcala, Sofía Gaischuk, Marina Gonzalez-Polo, Alejandro Martinez-Meier, Rodrigo A. Gutiérrez, Marcelo J. Yanovsky, Nicolás Bellora, María Verónica Arana

  • Plant survival in a warmer world requires the timely adjustment of biological processes to cyclical changes in the new environment. Circadian oscillators have been proposed to contribute to thermal adaptation and plasticity. However, the influence of temperature on circadian clock performance and its impact on plant behaviour in natural ecosystems are not well-understood.
  • We combined bioinformatics, molecular biology and ecophysiology to investigate the effects of increasing temperatures on the functioning of the circadian clock in two closely related tree species from Patagonian forests that constitute examples of adaptation to different thermal environments based on their altitudinal profiles.
  • Nothofagus pumilio, the species from colder environments, showed a major rearrangement of its transcriptome and reduced ability to maintain rhythmicity at high temperatures compared with Nothofagus obliqua, which inhabits warmer zones. In altitude-swap experiments, N. pumilio, but not N. obliqua, showed limited oscillator function in warmer zones of the forest, and reduced survival and growth.
  • Our findings show that interspecific differences in the influence of temperature on circadian clock performance are associated with preferred thermal niches, and to thermal plasticity of seedlings in natural environments, highlighting the potential role of a resonating oscillator in ecological adaptation to a warming environment.

植物在变暖的世界中生存需要及时调整生物过程以适应新环境的周期性变化。昼夜节律振荡器被认为有助于热适应和可塑性。然而,在自然生态系统中,温度对生物钟性能的影响及其对植物行为的影响尚不清楚。我们将生物信息学、分子生物学和生态生理学相结合,研究了温度升高对巴塔哥尼亚森林中两种密切相关的树种生物钟功能的影响,这两种树种是基于海拔剖面适应不同热环境的例子。与生活在温暖地区的Nothofagus obliqua相比,来自较冷环境的Nothofagus pumilio的转录组重排和在高温下维持节律的能力降低。在高差交换试验中,在较温暖的森林地区,矮圆木(N. pumilio)表现出有限的振荡功能,而斜圆木(N. obliqua)则没有。我们的研究结果表明,温度对生物钟性能影响的种间差异与自然环境中幼苗的首选热生态位和热可塑性有关,突出了共振振荡器在生态适应变暖环境中的潜在作用。
{"title":"Effect of temperature on circadian clock functioning of trees in the context of global warming","authors":"Maximiliano Estravis-Barcala, Sofía Gaischuk, Marina Gonzalez-Polo, Alejandro Martinez-Meier, Rodrigo A. Gutiérrez, Marcelo J. Yanovsky, Nicolás Bellora, María Verónica Arana","doi":"10.1111/nph.20342","DOIUrl":"https://doi.org/10.1111/nph.20342","url":null,"abstract":"<p>\u0000</p><ul>\u0000<li>Plant survival in a warmer world requires the timely adjustment of biological processes to cyclical changes in the new environment. Circadian oscillators have been proposed to contribute to thermal adaptation and plasticity. However, the influence of temperature on circadian clock performance and its impact on plant behaviour in natural ecosystems are not well-understood.</li>\u0000<li>We combined bioinformatics, molecular biology and ecophysiology to investigate the effects of increasing temperatures on the functioning of the circadian clock in two closely related tree species from Patagonian forests that constitute examples of adaptation to different thermal environments based on their altitudinal profiles.</li>\u0000<li><i>Nothofagus pumilio</i>, the species from colder environments, showed a major rearrangement of its transcriptome and reduced ability to maintain rhythmicity at high temperatures compared with <i>Nothofagus obliqua</i>, which inhabits warmer zones. In altitude-swap experiments, <i>N. pumilio</i>, but not <i>N. obliqua</i>, showed limited oscillator function in warmer zones of the forest, and reduced survival and growth.</li>\u0000<li>Our findings show that interspecific differences in the influence of temperature on circadian clock performance are associated with preferred thermal niches, and to thermal plasticity of seedlings in natural environments, highlighting the potential role of a resonating oscillator in ecological adaptation to a warming environment.</li>\u0000</ul><p></p>","PeriodicalId":214,"journal":{"name":"New Phytologist","volume":"30 1","pages":""},"PeriodicalIF":9.4,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142936533","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Soil microbes influence the ecology and evolution of plant plasticity 土壤微生物影响植物可塑性的生态学和进化
IF 9.4 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2025-01-08 DOI: 10.1111/nph.20383
Lana G. Bolin

  • Stress often induces plant trait plasticity, and microbial communities also alter plant traits. Therefore, it is unclear how much plasticity results from direct plant responses to stress vs indirect responses due to stress-induced changes in soil microbial communities.
  • To test how microbes and microbial community responses to stress affect the ecology and potentially the evolution of plant plasticity, I grew plants in four stress environments (salt, herbicide, herbivory, and no stress) with microbes that had responded to these same environments or with sterile inoculant.
  • Plants delayed flowering under stress only when inoculated with live microbial communities, and this plasticity was maladaptive. However, microbial communities responded to stress in ways that accelerated flowering across all environments. Microbes also affected the expression of genetic variation for plant flowering time and specific leaf area, as well as genetic variation for plasticity of both traits, and disrupted a positive genetic correlation for plasticity in response to herbicide and herbivory stress, suggesting that microbes may affect the pace of plant evolution.
  • Together, these results highlight an important role for soil microbes in plant plastic responses to stress and suggest that microbes may alter the evolution of plant plasticity.

胁迫往往导致植物性状的可塑性,微生物群落也会改变植物的性状。因此,目前尚不清楚植物对胁迫的直接响应与胁迫引起的土壤微生物群落变化的间接响应有多少可塑性。为了测试微生物和微生物群落对胁迫的反应如何影响生态和植物可塑性的潜在进化,我在四种胁迫环境(盐、除草剂、草食和无胁迫)中种植了对这些环境有反应的微生物或无菌接种剂的植物。植物只有在接种活菌群时才会在胁迫下延迟开花,这种可塑性是不适应的。然而,微生物群落对压力的反应方式加速了所有环境中的开花。微生物还影响了植物开花时间和比叶面积遗传变异的表达,以及这两种性状可塑性遗传变异的表达,并破坏了植物可塑性响应除草剂和草食胁迫的正相关遗传,表明微生物可能影响植物的进化速度。总之,这些结果突出了土壤微生物在植物对胁迫的可塑性反应中的重要作用,并表明微生物可能改变植物可塑性的进化。
{"title":"Soil microbes influence the ecology and evolution of plant plasticity","authors":"Lana G. Bolin","doi":"10.1111/nph.20383","DOIUrl":"https://doi.org/10.1111/nph.20383","url":null,"abstract":"<p>\u0000</p><ul>\u0000<li>Stress often induces plant trait plasticity, and microbial communities also alter plant traits. Therefore, it is unclear how much plasticity results from direct plant responses to stress vs indirect responses due to stress-induced changes in soil microbial communities.</li>\u0000<li>To test how microbes and microbial community responses to stress affect the ecology and potentially the evolution of plant plasticity, I grew plants in four stress environments (salt, herbicide, herbivory, and no stress) with microbes that had responded to these same environments or with sterile inoculant.</li>\u0000<li>Plants delayed flowering under stress only when inoculated with live microbial communities, and this plasticity was maladaptive. However, microbial communities responded to stress in ways that accelerated flowering across all environments. Microbes also affected the expression of genetic variation for plant flowering time and specific leaf area, as well as genetic variation for plasticity of both traits, and disrupted a positive genetic correlation for plasticity in response to herbicide and herbivory stress, suggesting that microbes may affect the pace of plant evolution.</li>\u0000<li>Together, these results highlight an important role for soil microbes in plant plastic responses to stress and suggest that microbes may alter the evolution of plant plasticity.</li>\u0000</ul><p></p>","PeriodicalId":214,"journal":{"name":"New Phytologist","volume":"67 1","pages":""},"PeriodicalIF":9.4,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142936524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A 2OGD multi-gene cluster encompasses functional and tissue specificity that direct furanocoumarin and pyranocoumarin biosynthesis in citrus 一个2OGD多基因簇包含功能和组织特异性,指导呋喃香豆素和吡喃香豆素在柑橘中的生物合成
IF 9.4 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2025-01-08 DOI: 10.1111/nph.20322
Livnat Goldenberg, Sandip Annasaheb Ghuge, Adi Doron-Faigenboim, Mira Carmeli-Weissberg, Felix Shaya, Ada Rozen, Yardena Dahan, Elena Plesser, Gilor Kelly, Yossi Yaniv, Tal Arad, Ron Ophir, Amir Sherman, Nir Carmi, Yoram Eyal

  • Furanocoumarins (FCs) are plant defence compounds derived from the phenylpropanoid pathway via the coumarin umbelliferone that harbour some therapeutic benefits yet are the underlying cause of ‘grapefruit–drug interactions’ in humans. Most of the pathway genes have not been identified in citrus.
  • We employed a genetic/Omics approach on citrus ancestral species and F1 populations of mandarin × grapefruit and mandarin × pummelo. Enzyme specificity was characterized by In vivo 2-oxoglutarate-dependent dioxygenase family (2OGD) activity assays.
  • We identified a 2OGD multi-gene cluster involved in coumarin/FC/pyranocoumarin biosynthesis; Species lacking FCs in leaves/fruit were homozygous for a 655-base solo-LTR frame-disrupting insertion within one dual specificity C2′H/F6′H encoding 2OGD gene, demonstrating that integrity of this gene is fully correlated with the capacity to biosynthesize metabolites of the extended FC pathway in leaves/fruit. A second 2OGD is the prominent gene expressed in citrus roots, which contain a unique pattern of extended FC pathway metabolites, including the predominant pyranocoumarins. A third 2OGD gene encodes a single activity F6′H, which appears to be induced at the transcript level by citrus pathogens.
  • The results provide insights into the genetic basis underlying the difference between citrus fruit FC producers (grapefruit and pummelo) and nonproducers (mandarin and orange) and provide a gene target to breed for FC-free varieties by marker-assisted breeding or genome editing.

呋喃香豆素(FCs)是一种植物防御化合物,通过香豆素伞形酮从苯丙素途径中提取,具有一些治疗效果,但也是人类“葡萄柚-药物相互作用”的潜在原因。大多数途径基因尚未在柑橘中被鉴定。采用遗传/组学方法对柑桔祖先种和柑桔×柚子和柑桔×柚的F1群体进行了研究。酶的特异性通过体内2-氧戊二酸依赖性双加氧酶家族(2OGD)活性测定来表征。我们发现了一个参与香豆素/FC/吡喃香豆素生物合成的2OGD多基因簇;叶片/果实中缺乏FC的物种在编码2OGD基因的双特异性C2'H / F6'H中插入了655个碱基的单ltr断框,这表明该基因的完整性与叶片/果实中扩展FC通路的代谢产物的生物合成能力完全相关。第二个2OGD是柑橘根中表达的突出基因,它包含一种独特的扩展FC途径代谢物模式,包括主要的吡喃香豆素。第三个2OGD基因编码单一活性F6'H,似乎在转录水平上被柑橘病原体诱导。这些结果提供了对柑橘类水果FC生产者(葡萄柚和柚)和非生产者(柑橘和橙子)之间差异的遗传基础的见解,并通过标记辅助育种或基因组编辑为培育不含FC的品种提供了基因靶点。
{"title":"A 2OGD multi-gene cluster encompasses functional and tissue specificity that direct furanocoumarin and pyranocoumarin biosynthesis in citrus","authors":"Livnat Goldenberg, Sandip Annasaheb Ghuge, Adi Doron-Faigenboim, Mira Carmeli-Weissberg, Felix Shaya, Ada Rozen, Yardena Dahan, Elena Plesser, Gilor Kelly, Yossi Yaniv, Tal Arad, Ron Ophir, Amir Sherman, Nir Carmi, Yoram Eyal","doi":"10.1111/nph.20322","DOIUrl":"https://doi.org/10.1111/nph.20322","url":null,"abstract":"<p>\u0000</p><ul>\u0000<li>Furanocoumarins (FCs) are plant defence compounds derived from the phenylpropanoid pathway via the coumarin umbelliferone that harbour some therapeutic benefits yet are the underlying cause of ‘grapefruit–drug interactions’ in humans. Most of the pathway genes have not been identified in citrus.</li>\u0000<li>We employed a genetic/Omics approach on citrus ancestral species and F1 populations of mandarin × grapefruit and mandarin × pummelo. Enzyme specificity was characterized by <i>In vivo</i> 2-oxoglutarate-dependent dioxygenase family (2OGD) activity assays.</li>\u0000<li>We identified a 2OGD multi-gene cluster involved in coumarin/FC/pyranocoumarin biosynthesis; Species lacking FCs in leaves/fruit were homozygous for a 655-base solo-LTR frame-disrupting insertion within one dual specificity C2′H/F6′H encoding 2OGD gene, demonstrating that integrity of this gene is fully correlated with the capacity to biosynthesize metabolites of the extended FC pathway in leaves/fruit. A second 2OGD is the prominent gene expressed in citrus roots, which contain a unique pattern of extended FC pathway metabolites, including the predominant pyranocoumarins. A third 2OGD gene encodes a single activity F6′H, which appears to be induced at the transcript level by citrus pathogens.</li>\u0000<li>The results provide insights into the genetic basis underlying the difference between citrus fruit FC producers (grapefruit and pummelo) and nonproducers (mandarin and orange) and provide a gene target to breed for FC-free varieties by marker-assisted breeding or genome editing.</li>\u0000</ul><p></p>","PeriodicalId":214,"journal":{"name":"New Phytologist","volume":"132 1","pages":""},"PeriodicalIF":9.4,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142936522","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cell wall composition in relation to photosynthesis across land plants' phylogeny: crops as outliers 陆地植物系统发育中与光合作用相关的细胞壁组成:作物是异常值
IF 9.4 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2025-01-06 DOI: 10.1111/nph.20385
Margalida Roig-Oliver, Jaume Flexas, María José Clemente-Moreno, Marc Carriquí

Introduction and context

The role of cell wall composition in photosynthesis has only recently been proposed. Apparently contradictory results have been reported, but previous studies were often limited to single or closely related species. The aim of the present letter is to combine published and novel data on cell wall composition and photosynthesis limitations, including data for all the major land plant's phylogenetic groups (Supporting Information Methods S1; Dataset S1), to provide novel evidence on the importance of cell wall composition in determining mesophyll conductance to CO2 diffusion (gm) across land plants' phylogeny. We address the hypothesis that the pectin fraction of total major cell wall compounds is positively related to gm and, consequently, to photosynthesis, when pooling species from across the entire phylogeny.

细胞壁组成在光合作用中的作用直到最近才被提出。虽然有明显矛盾的研究结果,但以往的研究往往局限于单一或密切相关的物种。本信的目的是结合已发表的和新的关于细胞壁组成和光合作用限制的数据,包括所有主要陆地植物系统发育类群的数据(支持信息方法S1;数据集S1),以提供新的证据,证明细胞壁组成在陆地植物系统发育中决定叶肉对CO2扩散(gm)的传导能力的重要性。当汇集整个系统发育的物种时,我们解决了总主要细胞壁化合物的果胶分数与转基因正相关的假设,因此与光合作用正相关。
{"title":"Cell wall composition in relation to photosynthesis across land plants' phylogeny: crops as outliers","authors":"Margalida Roig-Oliver, Jaume Flexas, María José Clemente-Moreno, Marc Carriquí","doi":"10.1111/nph.20385","DOIUrl":"https://doi.org/10.1111/nph.20385","url":null,"abstract":"<h2> Introduction and context</h2>\u0000<p>The role of cell wall composition in photosynthesis has only recently been proposed. Apparently contradictory results have been reported, but previous studies were often limited to single or closely related species. The aim of the present letter is to combine published and novel data on cell wall composition and photosynthesis limitations, including data for all the major land plant's phylogenetic groups (Supporting Information Methods S1; Dataset S1), to provide novel evidence on the importance of cell wall composition in determining mesophyll conductance to CO<sub>2</sub> diffusion (<i>g</i><sub>m</sub>) across land plants' phylogeny. We address the hypothesis that the pectin fraction of total major cell wall compounds is positively related to <i>g</i><sub>m</sub> and, consequently, to photosynthesis, when pooling species from across the entire phylogeny.</p>","PeriodicalId":214,"journal":{"name":"New Phytologist","volume":"40 1","pages":""},"PeriodicalIF":9.4,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142935053","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bamboo mosaic virus-mediated transgene-free genome editing in bamboo 竹花叶病毒介导的竹子无转基因基因组编辑
IF 9.4 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2025-01-06 DOI: 10.1111/nph.20386
Lin Wu, Jun Yang, Yuying Gu, Qianyi Wang, Zeyu Zhang, Hongjue Guo, Liangzhen Zhao, Hangxiao Zhang, Lianfeng Gu

Introduction

The common method of delivering CRISPR/Cas reagents for genome editing in plants involves Agrobacterium-mediated transformation or preassembled CRISPR/Cas9 ribonucleoprotein complex delivery (Woo et al., 2015; Toda et al., 2019; Ye et al., 2020). These methods require labor-intensive and time-consuming plant tissue culture processes (Huang et al., 2022). Unfortunately, most plants exhibit extremely low efficiency in callus induction and regeneration; these technical challenges greatly hinder the application of genome editing. Recent developments in plant RNA virus-based expression vectors (Ma et al., 2020; Chen et al., 2022) provide a convenient, efficient, and cost-effective way for DNA-free genome editing in plants, leveraging the fact that virus RNA does not integrate into the genome. However, the stability of virus vectors is negatively correlated with the size of the inserted foreign genes. Consequently, achieving efficient expression of Streptococcus pyogenes Cas9 (SpCas9, c. 4.2 kb) by virus-based vectors remains challenging. Most reported viruses capable of delivering Cas9 proteins are negative-strand RNA viruses (Ma et al., 2020; Liu et al., 2023; Zhao et al., 2024), with only a few positive-strand RNA viruses identified (Uranga et al., 2021; Lee et al., 2024). Thus, delivering virus-based sgRNA vectors to plants overexpressing Cas9 is the most commonly used strategy (Ali et al., 2015; Jiang et al., 2019; Li et al., 2021). However, it is difficult to use this method to generate a Cas9-free mutant by crossing with wild-type (WT) plants with long flowering cycles, such as bamboo (Ye et al., 2017). Bamboo mosaic virus (BaMV) has a typical flexible filamentous virion structure with the positive-sense single-stranded RNA genome (Hsu et al., 2018). The BaMV-mediated expression system can effectively drive the expression of large foreign gene fragments (Jin et al., 2023). For the first time, we developed a BAMV-mediated Cas protein and sgRNA delivery system in WT Nicotiana benthamiana and bamboo. This approach enables targeted gene editing in noninfected leaves or stems in bamboo without the need for Cas9-expressing transgenic lines, leveraging BaMV's large cargo ability to transport Cas9 proteins.

用于植物基因组编辑的CRISPR/Cas试剂的常见递送方法包括农杆菌介导的转化或预组装的CRISPR/Cas9核糖核蛋白复合物递送(Woo et al., 2015;Toda等人,2019;Ye et al., 2020)。这些方法需要劳动密集型和耗时的植物组织培养过程(Huang et al., 2022)。然而,大多数植物的愈伤组织诱导和再生效率极低;这些技术挑战极大地阻碍了基因组编辑的应用。植物RNA病毒表达载体的最新进展(Ma et al., 2020;Chen et al., 2022)利用病毒RNA不整合到基因组的事实,为植物的无dna基因组编辑提供了一种方便、高效、经济的方法。然而,病毒载体的稳定性与插入的外源基因的大小呈负相关。因此,通过基于病毒的载体实现化脓性链球菌Cas9 (SpCas9,约4.2 kb)的高效表达仍然具有挑战性。大多数报道的能够传递Cas9蛋白的病毒是负链RNA病毒(Ma et al., 2020;Liu et al., 2023;Zhao et al., 2024),仅鉴定出少数正链RNA病毒(Uranga et al., 2021;Lee et al., 2024)。因此,将基于病毒的sgRNA载体传递给过表达Cas9的植物是最常用的策略(Ali et al., 2015;Jiang et al., 2019;Li等人,2021)。然而,这种方法很难通过与长开花周期的野生型(WT)植物(如竹子)杂交来产生无cas9突变体(Ye et al., 2017)。竹花叶病毒(BaMV)具有典型的柔性丝状病毒粒子结构,具有正义单链RNA基因组(Hsu et al., 2018)。bamv介导的表达系统可以有效地驱动外源大片段基因的表达(Jin et al., 2023)。本研究首次在野生型烟叶和竹子中建立了bamv介导的Cas蛋白和sgRNA传递系统。这种方法能够在未感染的竹子叶片或茎中进行靶向基因编辑,而不需要表达Cas9的转基因品系,利用BaMV运输Cas9蛋白的大货物能力。
{"title":"Bamboo mosaic virus-mediated transgene-free genome editing in bamboo","authors":"Lin Wu, Jun Yang, Yuying Gu, Qianyi Wang, Zeyu Zhang, Hongjue Guo, Liangzhen Zhao, Hangxiao Zhang, Lianfeng Gu","doi":"10.1111/nph.20386","DOIUrl":"https://doi.org/10.1111/nph.20386","url":null,"abstract":"<h2> Introduction</h2>\u0000<p>The common method of delivering CRISPR/Cas reagents for genome editing in plants involves <i>Agrobacterium</i>-mediated transformation or preassembled CRISPR/Cas9 ribonucleoprotein complex delivery (Woo <i>et al</i>., <span>2015</span>; Toda <i>et al</i>., <span>2019</span>; Ye <i>et al</i>., <span>2020</span>). These methods require labor-intensive and time-consuming plant tissue culture processes (Huang <i>et al</i>., <span>2022</span>). Unfortunately, most plants exhibit extremely low efficiency in callus induction and regeneration; these technical challenges greatly hinder the application of genome editing. Recent developments in plant RNA virus-based expression vectors (Ma <i>et al</i>., <span>2020</span>; Chen <i>et al</i>., <span>2022</span>) provide a convenient, efficient, and cost-effective way for DNA-free genome editing in plants, leveraging the fact that virus RNA does not integrate into the genome. However, the stability of virus vectors is negatively correlated with the size of the inserted foreign genes. Consequently, achieving efficient expression of <i>Streptococcus pyogenes</i> Cas9 (<i>SpCas9</i>, <i>c</i>. 4.2 kb) by virus-based vectors remains challenging. Most reported viruses capable of delivering Cas9 proteins are negative-strand RNA viruses (Ma <i>et al</i>., <span>2020</span>; Liu <i>et al</i>., <span>2023</span>; Zhao <i>et al</i>., <span>2024</span>), with only a few positive-strand RNA viruses identified (Uranga <i>et al</i>., <span>2021</span>; Lee <i>et al</i>., <span>2024</span>). Thus, delivering virus-based sgRNA vectors to plants overexpressing Cas9 is the most commonly used strategy (Ali <i>et al</i>., <span>2015</span>; Jiang <i>et al</i>., <span>2019</span>; Li <i>et al</i>., <span>2021</span>). However, it is difficult to use this method to generate a Cas9-free mutant by crossing with wild-type (WT) plants with long flowering cycles, such as bamboo (Ye <i>et al</i>., <span>2017</span>). <i>Bamboo mosaic virus</i> (BaMV) has a typical flexible filamentous virion structure with the positive-sense single-stranded RNA genome (Hsu <i>et al</i>., <span>2018</span>). The BaMV-mediated expression system can effectively drive the expression of large foreign gene fragments (Jin <i>et al</i>., <span>2023</span>). For the first time, we developed a BAMV-mediated Cas protein and sgRNA delivery system in WT <i>Nicotiana benthamiana</i> and bamboo. This approach enables targeted gene editing in noninfected leaves or stems in bamboo without the need for Cas9-expressing transgenic lines, leveraging BaMV's large cargo ability to transport Cas9 proteins.</p>","PeriodicalId":214,"journal":{"name":"New Phytologist","volume":"14 1","pages":""},"PeriodicalIF":9.4,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142935057","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Centromere diversity and its evolutionary impacts on plant karyotypes and plant reproduction 着丝粒多样性及其对植物核型和生殖的进化影响
IF 9.4 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2025-01-06 DOI: 10.1111/nph.20376
Stefan Steckenborn, André Marques
Karyotype changes are a formidable evolutionary force by directly impacting cross-incompatibility, gene dosage, genetic linkage, chromosome segregation, and meiotic recombination landscape. These changes often arise spontaneously and are commonly detected within plant lineages, even between closely related accessions. One element that can influence drastic karyotype changes after only one (or few) plant generations is the alteration of the centromere position, number, distribution, or even its strength. Here, we briefly explore how these different centromere configurations can directly result in karyotype rearrangements, impacting plant reproduction and meiotic recombination.
核型变化是一种强大的进化力量,它直接影响着杂交不亲和性、基因剂量、遗传连锁、染色体分离和减数分裂重组格局。这些变化通常是自发发生的,通常在植物谱系中发现,甚至在密切相关的材料之间。一个可以在仅仅一代(或几代)植物之后影响剧烈核型变化的因素是着丝粒位置、数量、分布甚至强度的改变。在这里,我们简要探讨这些不同的着丝粒结构如何直接导致核型重排,影响植物繁殖和减数分裂重组。
{"title":"Centromere diversity and its evolutionary impacts on plant karyotypes and plant reproduction","authors":"Stefan Steckenborn, André Marques","doi":"10.1111/nph.20376","DOIUrl":"https://doi.org/10.1111/nph.20376","url":null,"abstract":"Karyotype changes are a formidable evolutionary force by directly impacting cross-incompatibility, gene dosage, genetic linkage, chromosome segregation, and meiotic recombination landscape. These changes often arise spontaneously and are commonly detected within plant lineages, even between closely related accessions. One element that can influence drastic karyotype changes after only one (or few) plant generations is the alteration of the centromere position, number, distribution, or even its strength. Here, we briefly explore how these different centromere configurations can directly result in karyotype rearrangements, impacting plant reproduction and meiotic recombination.","PeriodicalId":214,"journal":{"name":"New Phytologist","volume":"9 1","pages":""},"PeriodicalIF":9.4,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142935056","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Resolving the contrasting leaf hydraulic adaptation of C3 and C4 grasses 解决C3和C4禾草叶片水力适应性的差异
IF 9.4 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2025-01-05 DOI: 10.1111/nph.20341
Alec S. Baird, Samuel H. Taylor, Jessica Pasquet-Kok, Christine Vuong, Yu Zhang, Teera Watcharamongkol, Hervé Cochard, Christine Scoffoni, Erika J. Edwards, Colin P. Osborne, Lawren Sack
<h2> Introduction</h2><p>The grass family (Poaceae) dominates > 40% of the Earth's terrestrial surface with 12 000 species from 800 genera, including the bulk of all crops (Beer <i>et al</i>., <span>2010</span>; McSteen & Kellogg, <span>2022</span>). The photosynthetic diversity of grasses is a major factor in their dominance and in their resilience to climate change (Higgins & Scheiter, <span>2012</span>). More than 40% of extant grass species have C<sub>4</sub> photosynthesis, which evolved > 20 times in grasses (of the > 60 times across angiosperms) and is a model for the repeated emergence of a key innovation (Gowik & Westhoff, <span>2011</span>; Sage <i>et al</i>., <span>2011</span>; Grass Phylogeny Working Group II, <span>2012</span>; Marazzi <i>et al</i>., <span>2012</span>), and the source of high yield in many crops and for novel varieties in development (Gowik & Westhoff, <span>2011</span>; Langdale, <span>2011</span>). C<sub>4</sub> photosynthesis maximizes carbon fixation, particularly under hotter, drier conditions or low CO<sub>2</sub>, by concentrating CO<sub>2</sub> at Rubisco in the sheath around the leaf veins, minimizing photorespiratory losses, and enabling reduced stomatal conductance per leaf area (<i>g</i><sub>s</sub>) and higher light-saturated photosynthetic rate per leaf area (<i>A</i><sub>area</sub>) relative to <i>g</i><sub>s</sub>, resulting in higher intrinsic water use efficiency (WUE<sub>i</sub>, that is <i>A</i><sub>area</sub> : <i>g</i><sub>s</sub>) (Supporting Information Table S1) (Sage, <span>2004</span>). Yet, there has been only a fragmentary understanding of the potential contrasts in leaf hydraulic design underlying the photosynthetic and climate adaptation of C<sub>3</sub> and C<sub>4</sub> grasses, though previous work on grass leaf hydraulic design has indicated its importance in C<sub>3</sub> and C<sub>4</sub> grass performance (Ocheltree <i>et al</i>., <span>2014</span>; Baird <i>et al</i>., <span>2021</span>; Zhou <i>et al</i>., <span>2021</span>).</p><p>Generally, across plants, the leaves are bottlenecks in water transport and impose a major limitation on photosynthetic productivity (Meinzer <i>et al</i>., <span>1992</span>; Martre <i>et al</i>., <span>2000</span>; Sack & Holbrook, <span>2006</span>). We extended the theory for the dependence of leaf gas exchange on leaf hydraulic anatomy and physiology established across diverse C<sub>3</sub> angiosperms (Sack & Holbrook, <span>2006</span>; Brodribb <i>et al</i>., <span>2007</span>) by hypothesizing a novel general framework for the contrasting adaptation of C<sub>3</sub> and C<sub>4</sub> grasses (Fig. 1; Table 1). The premise of this theory is that water supply through the integrated leaf system needs to match evaporative demand for leaf water potential (Ψ<sub>leaf</sub>) to be maintained high enough for stomata to open for photosynthetic CO<sub>2</sub> assimilation (Sack & Holbrook, <span>2006</span>). Dur
禾本科(禾科)占地球陆地面积的40%,有来自800属的12000种植物,包括大部分农作物(Beer等人,2010;McSteen,凯洛格,2022)。禾草的光合作用多样性是其优势地位和适应气候变化的主要因素(Higgins &amp;Scheiter, 2012)。超过40%的现存禾本科植物具有C4光合作用,它在禾本科植物中进化了20次(在被子植物中进化了60次),并且是一个关键创新重复出现的模型(Gowik &amp;Westhoff, 2011;Sage et al., 2011;草地系统发育第二工作组,2012;Marazzi等人,2012),以及许多作物和正在开发的新品种的高产来源(Gowik &amp;Westhoff, 2011;Langdale, 2011)。C4光合作用最大限度地固定碳,特别是在更热、更干燥或低二氧化碳的条件下,通过将CO2集中在叶脉周围鞘中的Rubisco,最大限度地减少光呼吸损失,使每叶面积气孔导度(gs)降低,每叶面积光饱和光合速率(Aarea)相对于gs更高,从而提高内在水分利用效率(WUEi,即面积:gs) (Sage, 2004)。然而,对C3和C4草的光合作用和气候适应背后的叶片水力设计的潜在差异,人们只有一个不完整的理解,尽管先前关于草叶水力设计的研究表明,它对C3和C4草的性能很重要(Ocheltree等人,2014;Baird et al., 2021;周等人,2021)。一般来说,在整个植物中,叶片是水运的瓶颈,对光合生产力造成重大限制(Meinzer et al., 1992;马特等人,2000;袋,霍尔布鲁克,2006)。我们扩展了在不同C3被子植物中建立的叶片气体交换依赖于叶片水力解剖和生理的理论(Sack &amp;霍尔布鲁克,2006;Brodribb et al., 2007),通过假设C3和C4草的适应对比的一个新的一般框架(图1;表1)。该理论的前提是,通过综合叶片系统提供的水分需要与叶片水势(Ψleaf)的蒸发需求相匹配,以保持足够高的水分,使气孔打开进行光合作用CO2同化(Sack &amp;霍尔布鲁克,2006)。在蒸腾过程中,液态水通过具有高密度(即每叶面积长度Dv)的叶脉网络,然后穿过叶脉鞘,通过叶肉到达蒸发部位,然后从气孔扩散(Sack &amp;Scoffoni, 2013),通过该系统的输水能力被量化为叶片水力导度(Kleaf),即蒸腾速率与水势驱动力之比。因此,在植物生命形式和密切相关的C3被子植物中,水力和气体交换特性如Dv、Kleaf、gs和Aarea是积极协调的(Brodribb et al., 2007;Scoffoni et al., 2016)。链接叶片解剖、水力和气体交换特性及其对气候干旱适应的协调影响的概念框架,在一个包括27个C3和C4物种的普通园林试验中得到支持。灰色和粉色节点分别代表有助于抗旱能力的解剖和生理特征(橙色节点)。箭头表示水力理论所期望的关系(表1),并得到我们实验数据的支持。根据假设1:C4禾草叶片水力导度与气孔导度之比较高(无论是由高叶片还是低叶片驱动),在较低的土壤水势和/或较高的蒸汽压亏缺下,都能保持较高的叶片水势和gs,从而实现C4的生化优势,即较高的每叶面积光饱和光合速率(Aarea)。根据假设2-3:在C3禾草中,在给定蒸腾速率和蒸汽压亏缺的情况下,高叶势可以通过保持高叶水势来实现更高的gs,从而实现更高的面积。在C4禾本科植物中,不成比例的高叶片效应导致叶片效应与叶片效应脱钩。根据假设4-8:在所有物种中,较高的叶脉导管平均直径(CD)、导管数量(CN)和/或静脉密度(Dv)会导致较高的木质部静脉导管水力导度(Kxc),较高的叶脉导管Dv和/或叶脉鞘周长(Ps)会导致较高的木质部外导管水力导度(Koxc);更高的Kxc或Koxc会导致更高的Kleaf。此外,较高的Dv可能提供更大的糖运输能力,从而与更高的面积有关。 根据假设9-10:多种性状对抗旱性有贡献,即通过抗旱性(干旱期间保持有效功能的能力),包括C4草较高的Kleaf: gs、Kleaf: Aarea和Aarea: gs;以及抗旱(在有水分条件下以高性能缓解干旱影响的能力),包括C3中较高的叶面积、叶面积和叶面积,C4中较高的叶面积和叶面积,C3和C4中较高的叶面积和叶面积,从而适应干旱气候。常见园林植物中的重要关系用实线箭头表示,黑色表示C3和C4物种共同显著,红色表示仅C3显著,蓝色表示仅C4显著;虚线表示,理论上(在其他条件相同的情况下),这些性状会对其他性状产生机制上的影响,但在这项研究中,这些性状在被研究物种之间的统计上是分离的。在我们的研究中,C3和C4物种的蓝边特征平均存在差异,这将有助于C4优势;红色或蓝色星号分别表示C3或C4物种的值更高。这个框架是严格概念性的,基于表1中假设的机制。表1。C3和C4禾本科植物水力适应性对比的假设框架,以及前人研究的推理和综合。假设:C3和C4禾本科植物光合多样性及C4水力高效的前期工作与理性对比基础1。C3禾草的高光合能力依赖于叶片的高水力导度(Kleaf), C4禾草由于叶片相对于气孔导度(gs)较高,即叶片导度(Kleaf: gs),使其具有较高的光合速率(面积)和面积:gs(即较高的内在水分利用效率,WUEi)。C3禾草的高叶利叶值可以实现高谷草速率,从而实现更高的面积,而C4禾草的高叶利叶速率(即水力超效率)可以实现更高的叶片水势(Ψleaf),这对于实现更高的气体交换率至关重要,特别是考虑到C4生物化学对下降的强烈敏感性Ψleaf (Ghannoum等人,2003;奥斯本和袋,2012;Taylor et al., 2014;Bellasio et al., 2023)。在之前的6项关于C3和C4禾草或菊科植物水力容量的研究中,报告了对比结果。在三项研究中,C3和C4禾本科的Kleaf相似,即温带禾本科(Ocheltree et al., 2014)、亚热带多年生禾本科(Liu et al., 2019)和用作作物或其近亲的一年生禾本科(Taylor et al., 2018)。在两项研究中,C4禾本科的Kleaf高于C3禾本科,即亚热带一年生禾本科(Liu et al., 2019)、温带和热带禾本科、一年生禾本科和多年生禾本科(Zhou et al., 2021)。在一项研究中,相对于其C3姊妹分类群P. bisulcatum, Kleaf的C4 Panicum解毒剂含量较低(Sonawane et al., 2021)。在C3和C4菊科植物的研究中,温带草本C4物种的茎部水力导度较低(Kocacinar &amp;Sage, 2003),温带木质C4物种(Kocacinar &amp;圣人,2004)。在一项研究中,温带C3草种的Kleaf高于热带C4草种(Jacob et al., 2022)。高Kleaf: gs使温带和热带树种(Brodribb &amp;乔丹,2008;Scoffoni et al., 2016)。据推测,在低二氧化碳过去的干燥条
{"title":"Resolving the contrasting leaf hydraulic adaptation of C3 and C4 grasses","authors":"Alec S. Baird, Samuel H. Taylor, Jessica Pasquet-Kok, Christine Vuong, Yu Zhang, Teera Watcharamongkol, Hervé Cochard, Christine Scoffoni, Erika J. Edwards, Colin P. Osborne, Lawren Sack","doi":"10.1111/nph.20341","DOIUrl":"https://doi.org/10.1111/nph.20341","url":null,"abstract":"&lt;h2&gt; Introduction&lt;/h2&gt;\u0000&lt;p&gt;The grass family (Poaceae) dominates &gt; 40% of the Earth's terrestrial surface with 12 000 species from 800 genera, including the bulk of all crops (Beer &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2010&lt;/span&gt;; McSteen &amp; Kellogg, &lt;span&gt;2022&lt;/span&gt;). The photosynthetic diversity of grasses is a major factor in their dominance and in their resilience to climate change (Higgins &amp; Scheiter, &lt;span&gt;2012&lt;/span&gt;). More than 40% of extant grass species have C&lt;sub&gt;4&lt;/sub&gt; photosynthesis, which evolved &gt; 20 times in grasses (of the &gt; 60 times across angiosperms) and is a model for the repeated emergence of a key innovation (Gowik &amp; Westhoff, &lt;span&gt;2011&lt;/span&gt;; Sage &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2011&lt;/span&gt;; Grass Phylogeny Working Group II, &lt;span&gt;2012&lt;/span&gt;; Marazzi &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2012&lt;/span&gt;), and the source of high yield in many crops and for novel varieties in development (Gowik &amp; Westhoff, &lt;span&gt;2011&lt;/span&gt;; Langdale, &lt;span&gt;2011&lt;/span&gt;). C&lt;sub&gt;4&lt;/sub&gt; photosynthesis maximizes carbon fixation, particularly under hotter, drier conditions or low CO&lt;sub&gt;2&lt;/sub&gt;, by concentrating CO&lt;sub&gt;2&lt;/sub&gt; at Rubisco in the sheath around the leaf veins, minimizing photorespiratory losses, and enabling reduced stomatal conductance per leaf area (&lt;i&gt;g&lt;/i&gt;&lt;sub&gt;s&lt;/sub&gt;) and higher light-saturated photosynthetic rate per leaf area (&lt;i&gt;A&lt;/i&gt;&lt;sub&gt;area&lt;/sub&gt;) relative to &lt;i&gt;g&lt;/i&gt;&lt;sub&gt;s&lt;/sub&gt;, resulting in higher intrinsic water use efficiency (WUE&lt;sub&gt;i&lt;/sub&gt;, that is &lt;i&gt;A&lt;/i&gt;&lt;sub&gt;area&lt;/sub&gt; : &lt;i&gt;g&lt;/i&gt;&lt;sub&gt;s&lt;/sub&gt;) (Supporting Information Table S1) (Sage, &lt;span&gt;2004&lt;/span&gt;). Yet, there has been only a fragmentary understanding of the potential contrasts in leaf hydraulic design underlying the photosynthetic and climate adaptation of C&lt;sub&gt;3&lt;/sub&gt; and C&lt;sub&gt;4&lt;/sub&gt; grasses, though previous work on grass leaf hydraulic design has indicated its importance in C&lt;sub&gt;3&lt;/sub&gt; and C&lt;sub&gt;4&lt;/sub&gt; grass performance (Ocheltree &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2014&lt;/span&gt;; Baird &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2021&lt;/span&gt;; Zhou &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2021&lt;/span&gt;).&lt;/p&gt;\u0000&lt;p&gt;Generally, across plants, the leaves are bottlenecks in water transport and impose a major limitation on photosynthetic productivity (Meinzer &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;1992&lt;/span&gt;; Martre &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2000&lt;/span&gt;; Sack &amp; Holbrook, &lt;span&gt;2006&lt;/span&gt;). We extended the theory for the dependence of leaf gas exchange on leaf hydraulic anatomy and physiology established across diverse C&lt;sub&gt;3&lt;/sub&gt; angiosperms (Sack &amp; Holbrook, &lt;span&gt;2006&lt;/span&gt;; Brodribb &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2007&lt;/span&gt;) by hypothesizing a novel general framework for the contrasting adaptation of C&lt;sub&gt;3&lt;/sub&gt; and C&lt;sub&gt;4&lt;/sub&gt; grasses (Fig. 1; Table 1). The premise of this theory is that water supply through the integrated leaf system needs to match evaporative demand for leaf water potential (Ψ&lt;sub&gt;leaf&lt;/sub&gt;) to be maintained high enough for stomata to open for photosynthetic CO&lt;sub&gt;2&lt;/sub&gt; assimilation (Sack &amp; Holbrook, &lt;span&gt;2006&lt;/span&gt;). Dur","PeriodicalId":214,"journal":{"name":"New Phytologist","volume":"78 1","pages":""},"PeriodicalIF":9.4,"publicationDate":"2025-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142929420","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
C4 photosynthesis and hydraulics in grasses 草的C4光合作用和水力学
IF 9.4 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2025-01-03 DOI: 10.1111/nph.20284
Haoran Zhou, Erol Akçay, Erika J. Edwards, Che‐Ling Ho, Adam Abdullahi, Yunpu Zheng, Brent R. Helliker
Summary The anatomical reorganization required for C4 photosynthesis should also impact plant hydraulics. Most C4 plants possess large bundle sheath cells and high vein density, which should also lead to higher leaf capacitance and hydraulic conductance (Kleaf). Paradoxically, the C4 pathway reduces water demand and increases water use efficiency, creating a potential mismatch between supply capacity and demand in C4 plant water relations. Here, we use phylogenetic analyses, physiological measurements, and models to examine the reorganization of hydraulics in closely related C4 and C3 grasses. The evolution of C4 disrupts the expected positive correlation between maximal assimilation rate (Amax) and Kleaf, decoupling a canonical relationship between hydraulics and photosynthesis generally observed in vascular plants. Evolutionarily young C4 lineages have higher Kleaf, capacitance, turgor loss point, and lower stomatal conductance than their C3 relatives. By contrast, species from older C4 lineages show decreased Kleaf and capacitance. The decline of Kleaf through the evolution of C4 lineages was likely controlled by the reduction in outside‐xylem hydraulic conductance, for example the reorganization of leaf intercellular airspace. These results indicate that, over time, C4 plants have evolved to optimize hydraulic investments while maintaining the anatomical requirements for the C4 carbon‐concentrating mechanism.
C4光合作用所需的解剖重组也会影响植物的水力学。大多数C4植物具有较大的束鞘细胞和高脉密度,这也导致了较高的叶片电容和水力导度(Kleaf)。矛盾的是,C4途径减少了水的需求,提高了水的利用效率,在C4植物的水关系中造成了供应能力和需求之间的潜在不匹配。在这里,我们使用系统发育分析、生理测量和模型来研究密切相关的C4和C3草的水力学重组。C4的进化破坏了最大同化速率(Amax)与Kleaf之间预期的正相关关系,解耦了维管植物中通常观察到的水力学与光合作用之间的典型关系。在进化上,年轻的C4系比它们的C3亲缘系具有更高的叶片、电容、膨胀损失点和更低的气孔导度。相比之下,来自较老C4谱系的物种表现出Kleaf和电容的下降。在C4世系的进化过程中,叶片的减少可能是由木质部外水导的减少所控制的,例如叶片胞间空间的重组。这些结果表明,随着时间的推移,C4植物已经进化到优化水力投资,同时保持C4碳浓缩机制的解剖要求。
{"title":"C4 photosynthesis and hydraulics in grasses","authors":"Haoran Zhou, Erol Akçay, Erika J. Edwards, Che‐Ling Ho, Adam Abdullahi, Yunpu Zheng, Brent R. Helliker","doi":"10.1111/nph.20284","DOIUrl":"https://doi.org/10.1111/nph.20284","url":null,"abstract":"Summary<jats:list list-type=\"bullet\"> <jats:list-item>The anatomical reorganization required for C<jats:sub>4</jats:sub> photosynthesis should also impact plant hydraulics. Most C<jats:sub>4</jats:sub> plants possess large bundle sheath cells and high vein density, which should also lead to higher leaf capacitance and hydraulic conductance (<jats:italic>K</jats:italic><jats:sub>leaf</jats:sub>). Paradoxically, the C<jats:sub>4</jats:sub> pathway reduces water demand and increases water use efficiency, creating a potential mismatch between supply capacity and demand in C<jats:sub>4</jats:sub> plant water relations.</jats:list-item> <jats:list-item>Here, we use phylogenetic analyses, physiological measurements, and models to examine the reorganization of hydraulics in closely related C<jats:sub>4</jats:sub> and C<jats:sub>3</jats:sub> grasses.</jats:list-item> <jats:list-item>The evolution of C<jats:sub>4</jats:sub> disrupts the expected positive correlation between maximal assimilation rate (<jats:italic>A</jats:italic><jats:sub>max</jats:sub>) and <jats:italic>K</jats:italic><jats:sub>leaf</jats:sub>, decoupling a canonical relationship between hydraulics and photosynthesis generally observed in vascular plants. Evolutionarily young C<jats:sub>4</jats:sub> lineages have higher <jats:italic>K</jats:italic><jats:sub>leaf</jats:sub>, capacitance, turgor loss point, and lower stomatal conductance than their C<jats:sub>3</jats:sub> relatives. By contrast, species from older C<jats:sub>4</jats:sub> lineages show decreased <jats:italic>K</jats:italic><jats:sub>leaf</jats:sub> and capacitance. The decline of <jats:italic>K</jats:italic><jats:sub>leaf</jats:sub> through the evolution of C<jats:sub>4</jats:sub> lineages was likely controlled by the reduction in outside‐xylem hydraulic conductance, for example the reorganization of leaf intercellular airspace.</jats:list-item> <jats:list-item>These results indicate that, over time, C<jats:sub>4</jats:sub> plants have evolved to optimize hydraulic investments while maintaining the anatomical requirements for the C<jats:sub>4</jats:sub> carbon‐concentrating mechanism.</jats:list-item> </jats:list>","PeriodicalId":214,"journal":{"name":"New Phytologist","volume":"81 1","pages":""},"PeriodicalIF":9.4,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142917282","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Do pollinators play a role in shaping the essential amino acids found in nectar? 传粉者在形成花蜜中发现的必需氨基酸方面起作用吗?
IF 9.4 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2025-01-02 DOI: 10.1111/nph.20356
Rachel H. Parkinson, Eileen F. Power, Kieran Walter, Alex E. McDermott-Roberts, Jonathan G. Pattrick, Geraldine A. Wright
<h2> Introduction</h2><p>Floral nectar is produced by plants to attract animals to flowers for pollination (Nicolson & Thornburg, <span>2007</span>). Most floral nectar is dominated by the presence of sugars (mainly sucrose, glucose, and fructose), but the second most abundant metabolites are free amino acids (AAs) (Nicolson & Thornburg, <span>2007</span>). Free AAs are ubiquitous in nectar, and although quantities can vary considerably (Baker & Baker, <span>1975</span>; Gottsberger <i>et al</i>., <span>1984</span>; Gardener & Gillman, <span>2001a</span>; Vandelook <i>et al</i>., <span>2019</span>), they are present at concentrations (micromolar to millimolar) that are substantially lower than the carbohydrates (Nicolson, <span>2022</span>).</p><p>Free AAs in nectar can come from the phloem but can also be produced by the nectary itself (reviewed in Göttlinger & Lohaus, <span>2024</span>). The concentrations of free AAs in nectar are typically lower than in other plant tissues and may be as much as 100-fold lower than in the nectaries and phloem (Lohaus & Schwerdtfeger, <span>2014</span>; Bertazzini & Forlani, <span>2016</span>; Göttlinger & Lohaus, <span>2024</span>). While the nectar AA profile (relative abundance of the different AAs) may resemble that in the nectaries (Göttlinger & Lohaus, <span>2022</span>), it often differs from nectary (Göttlinger & Lohaus, <span>2024</span>) and phloem (Lohaus & Schwerdtfeger, <span>2014</span>; Bertazzini & Forlani, <span>2016</span>) composition, suggesting that the nectar AA profile is more than just a simple filtering of phloem constituents. Some modification of nectar AAs can occur postsecretion through factors such as pollen contamination or microbial action (Peay <i>et al</i>., <span>2012</span>; Bogo <i>et al</i>., <span>2021</span>), though the nectar AA profile could also be under more direct control by plants and driven by pollinator selection (Tiedge & Lohaus, <span>2017</span>; Göttlinger <i>et al</i>., <span>2019</span>).</p><p>Several authors have shown associations between pollinator groups and nectar AA profile and concentration (Baker & Baker, <span>1975</span>; Petanidou <i>et al</i>., <span>2006</span>; Tiedge & Lohaus, <span>2017</span>; Göttlinger & Lohaus, <span>2024</span>); however, others have found that AAs are not as important as other nectar components (Göttlinger <i>et al</i>., <span>2019</span>; Vandelook <i>et al</i>., <span>2019</span>). One criticism of looking for correlations between nectar AAs and pollinator group is that AA concentrations can vary considerably among individuals within a plant species (Gardener & Gillman, <span>2001a</span>; Gijbels <i>et al</i>., <span>2014</span>). However, large-scale studies have found that while concentration varies, the relative abundance of individual AAs is much more consistent within species (Gardener & Gillman, <span>2001a</span>), suggesting AA profil
花蜜是植物为吸引动物到花上授粉而产生的(尼科尔森&;索恩伯格,2007)。大多数花蜜主要由糖(主要是蔗糖、葡萄糖和果糖)组成,但第二丰富的代谢物是游离氨基酸(AAs) (Nicolson &amp;索恩伯格,2007)。游离的AAs在花蜜中无处不在,尽管数量会有很大的变化(Baker &amp;贝克,1975;Gottsberger et al., 1984;园丁,吉尔曼,2001;Vandelook等人,2019),它们的浓度(微摩尔到毫摩尔)大大低于碳水化合物(Nicolson, 2022)。花蜜中的游离AAs可以来自韧皮部,但也可以由花蜜本身产生(参见Göttlinger &amp;Lohaus, 2024)。花蜜中游离活性氧的浓度通常低于其他植物组织,可能比蜜腺和韧皮部低100倍(Lohaus &amp;Schwerdtfeger, 2014;Bertazzini,馥兰妮,2016;Gottlinger,Lohaus, 2024)。而花蜜AA谱(不同AA的相对丰度)可能与蜜汁相似(Göttlinger &amp;Lohaus, 2022),它通常不同于蜜糖(Göttlinger &amp;Lohaus, 2024)和韧皮部(Lohaus &amp;Schwerdtfeger, 2014;Bertazzini,Forlani, 2016)组成,这表明花蜜AA谱不仅仅是韧皮部成分的简单过滤。花蜜AAs在分泌后可通过花粉污染或微生物作用等因素发生一些修饰(Peay et al., 2012;Bogo等人,2021),尽管花蜜AA谱也可能受到植物更直接的控制,并受到传粉者选择的驱动(Tiedge &amp;Lohaus, 2017;Göttlinger等人,2019)。一些作者已经证明了传粉者群体与花蜜AA谱和浓度之间的联系(Baker &amp;贝克,1975;Petanidou等,2006;Tiedge,Lohaus, 2017;Gottlinger,Lohaus, 2024);然而,其他人发现AAs不如其他花蜜成分重要(Göttlinger等人,2019;Vandelook et al., 2019)。对寻找花蜜AA和传粉者群体之间相关性的一个批评是,同一植物物种中AA的浓度在个体之间会有很大的差异(Gardener &amp;吉尔曼,2001;Gijbels et al., 2014)。然而,大规模研究发现,虽然浓度不同,但个体AAs的相对丰度在物种内更为一致(Gardener &amp;Gillman, 2001a),这表明AA特征可能是传粉媒介驱动选择的更好目标,而不是绝对浓度。基于AA组成的授粉者对花蜜的区分可以反映代谢需求(mevi - sch<e:1> tz &amp;Erhardt, 2005)或品味(Gardener &;吉尔曼,2002)。昆虫传粉者,如蜜蜂,依赖花粉作为其主要的蛋白质来源(Wright等人,2018),只有从免费果酸的花蜜来源中获得次要的好处(Nicolson, 2022)。然而,不消耗花粉的传粉媒介,如一些蝴蝶,可能更多地依赖于花蜜衍生的AAs (Erhardt &amp;Rusterholz, 1998;Mevi-Schutz,Erhardt, 2005;贝克,2007)。由于这个原因,有人可能会预测蜜蜂对含有游离aa的花蜜溶液没有表现出强烈的偏好。然而,比起含有非必需氨基酸(NEAAs)的溶液,蜜蜂更喜欢含有一种EAAs的糖溶液,其中对苯丙氨酸的偏好最强(Hendriksma &amp;Shafir, 2016),一种在高浓度花蜜中经常发现的化合物(Petanidou et al., 2006)。据报道,糖溶液中的其他游离氨基酸,如EAA蛋氨酸,可以抑制蜜蜂的摄食(Inouye &amp;沃勒,1984;Simcock et al., 2014)。NEAA脯氨酸引起了特别的研究关注,因为它被发现是许多花蜜中的主要AA (Kaczorowski et al., 2005;Carter et al., 2006;Terrab et al., 2007),也是两种蜜蜂血淋巴中的主要AA (Crailsheim &amp;Leonhard, 1997)和大黄蜂(Stabler et al., 2015)。脯氨酸也可以作为驱动昆虫飞行的基质(Bursell, 1975;Auerswald,Gäde, 1999),尽管在蜜蜂中这种作用的证据是模棱两可的。在蜜蜂中,血淋巴脯氨酸浓度在飞行后显著降低(Barker &amp;雷纳,1972;Micheu等人,2000),尽管与碳水化合物相比,碳水化合物的比例贡献很小(Barker &amp;雷纳,1972)。当暴露于脯氨酸时,从Bombus impatiens大黄蜂分离的飞行肌肉显示呼吸速率显著增加(Teulier等人,2016);然而,在雄性大黄蜂B. terrestris的线粒体中没有发现这种效应(Syromyatnikov et al., 2013)。
{"title":"Do pollinators play a role in shaping the essential amino acids found in nectar?","authors":"Rachel H. Parkinson, Eileen F. Power, Kieran Walter, Alex E. McDermott-Roberts, Jonathan G. Pattrick, Geraldine A. Wright","doi":"10.1111/nph.20356","DOIUrl":"https://doi.org/10.1111/nph.20356","url":null,"abstract":"&lt;h2&gt; Introduction&lt;/h2&gt;\u0000&lt;p&gt;Floral nectar is produced by plants to attract animals to flowers for pollination (Nicolson &amp; Thornburg, &lt;span&gt;2007&lt;/span&gt;). Most floral nectar is dominated by the presence of sugars (mainly sucrose, glucose, and fructose), but the second most abundant metabolites are free amino acids (AAs) (Nicolson &amp; Thornburg, &lt;span&gt;2007&lt;/span&gt;). Free AAs are ubiquitous in nectar, and although quantities can vary considerably (Baker &amp; Baker, &lt;span&gt;1975&lt;/span&gt;; Gottsberger &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;1984&lt;/span&gt;; Gardener &amp; Gillman, &lt;span&gt;2001a&lt;/span&gt;; Vandelook &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2019&lt;/span&gt;), they are present at concentrations (micromolar to millimolar) that are substantially lower than the carbohydrates (Nicolson, &lt;span&gt;2022&lt;/span&gt;).&lt;/p&gt;\u0000&lt;p&gt;Free AAs in nectar can come from the phloem but can also be produced by the nectary itself (reviewed in Göttlinger &amp; Lohaus, &lt;span&gt;2024&lt;/span&gt;). The concentrations of free AAs in nectar are typically lower than in other plant tissues and may be as much as 100-fold lower than in the nectaries and phloem (Lohaus &amp; Schwerdtfeger, &lt;span&gt;2014&lt;/span&gt;; Bertazzini &amp; Forlani, &lt;span&gt;2016&lt;/span&gt;; Göttlinger &amp; Lohaus, &lt;span&gt;2024&lt;/span&gt;). While the nectar AA profile (relative abundance of the different AAs) may resemble that in the nectaries (Göttlinger &amp; Lohaus, &lt;span&gt;2022&lt;/span&gt;), it often differs from nectary (Göttlinger &amp; Lohaus, &lt;span&gt;2024&lt;/span&gt;) and phloem (Lohaus &amp; Schwerdtfeger, &lt;span&gt;2014&lt;/span&gt;; Bertazzini &amp; Forlani, &lt;span&gt;2016&lt;/span&gt;) composition, suggesting that the nectar AA profile is more than just a simple filtering of phloem constituents. Some modification of nectar AAs can occur postsecretion through factors such as pollen contamination or microbial action (Peay &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2012&lt;/span&gt;; Bogo &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2021&lt;/span&gt;), though the nectar AA profile could also be under more direct control by plants and driven by pollinator selection (Tiedge &amp; Lohaus, &lt;span&gt;2017&lt;/span&gt;; Göttlinger &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2019&lt;/span&gt;).&lt;/p&gt;\u0000&lt;p&gt;Several authors have shown associations between pollinator groups and nectar AA profile and concentration (Baker &amp; Baker, &lt;span&gt;1975&lt;/span&gt;; Petanidou &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2006&lt;/span&gt;; Tiedge &amp; Lohaus, &lt;span&gt;2017&lt;/span&gt;; Göttlinger &amp; Lohaus, &lt;span&gt;2024&lt;/span&gt;); however, others have found that AAs are not as important as other nectar components (Göttlinger &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2019&lt;/span&gt;; Vandelook &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2019&lt;/span&gt;). One criticism of looking for correlations between nectar AAs and pollinator group is that AA concentrations can vary considerably among individuals within a plant species (Gardener &amp; Gillman, &lt;span&gt;2001a&lt;/span&gt;; Gijbels &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2014&lt;/span&gt;). However, large-scale studies have found that while concentration varies, the relative abundance of individual AAs is much more consistent within species (Gardener &amp; Gillman, &lt;span&gt;2001a&lt;/span&gt;), suggesting AA profil","PeriodicalId":214,"journal":{"name":"New Phytologist","volume":"28 1","pages":""},"PeriodicalIF":9.4,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142917744","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Can a plant biologist fix a thermostat? 植物生物学家能修好恒温器吗?
IF 9.4 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2025-01-02 DOI: 10.1111/nph.20382
Todd P. Michael
The shift to reductionist biology at the dawn of the genome era yielded a ‘parts list’ of plant genes and a nascent understanding of complex biological processes. Today, with the genomics era in full swing, advances in high-definition genomics enabled precise temporal and spatial analyses of biological systems down to the single-cell level. These insights, coupled with artificial intelligence-driven in silico design, are propelling the development of the first synthetic plants. By integrating reductionist and systems approaches, researchers are not only reimagining plants as sources of food, fiber, and fuel but also as ‘environmental thermostats’ capable of mitigating the impacts of a changing climate.
在基因组时代之初,向还原论生物学的转变产生了植物基因的“部件列表”,并对复杂的生物过程有了初步的了解。今天,随着基因组学时代的全面展开,高清晰度基因组学的进步使生物系统精确的时间和空间分析达到单细胞水平。这些见解,加上人工智能驱动的硅片设计,正在推动第一批合成工厂的发展。通过整合还原论和系统方法,研究人员不仅将植物重新想象为食物、纤维和燃料的来源,而且还将其想象为能够减轻气候变化影响的“环境恒温器”。
{"title":"Can a plant biologist fix a thermostat?","authors":"Todd P. Michael","doi":"10.1111/nph.20382","DOIUrl":"https://doi.org/10.1111/nph.20382","url":null,"abstract":"The shift to reductionist biology at the dawn of the genome era yielded a ‘parts list’ of plant genes and a nascent understanding of complex biological processes. Today, with the genomics era in full swing, advances in high-definition genomics enabled precise temporal and spatial analyses of biological systems down to the single-cell level. These insights, coupled with artificial intelligence-driven <i>in silico</i> design, are propelling the development of the first synthetic plants. By integrating reductionist and systems approaches, researchers are not only reimagining plants as sources of food, fiber, and fuel but also as ‘environmental thermostats’ capable of mitigating the impacts of a changing climate.","PeriodicalId":214,"journal":{"name":"New Phytologist","volume":"82 1","pages":""},"PeriodicalIF":9.4,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142917745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
New Phytologist
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1