首页 > 最新文献

New Phytologist最新文献

英文 中文
Homoeologous crossovers are distally biased and underlie genomic instability in first-generation neo-allopolyploid Arabidopsis suecica 同源交叉具有远端偏向性,是拟南芥第一代新全多倍体基因组不稳定的基础。
IF 8.3 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-09-06 DOI: 10.1111/nph.20095
Candida Nibau, Aled Evans, Holly King, Dylan Wyn Phillips, Andrew Lloyd

与成熟的野生多倍体相比,第一代多倍体往往存在更多的减数分裂错误,生育率也更低。约 16000 代前起源的拟南芥(Arabidopsis suecica)全多倍体模式种就是这样一个例子。我们在此结合细胞学和基因组学方法,对自然进化的拟南芥和第一代 "合成 "拟南芥的减数分裂及其结果进行了比较。我们发现,自然品系的减数分裂在很大程度上类似于二倍体,而合成品系的减数分裂错误率很高,包括不完全合成和非同源交叉的形成。对后代的全基因组重测序显示,合成亲本的同源交换水平高出 20 倍,非整倍体水平高出 8 倍。同源交换显示出强烈的远端偏向,主要发生在基因中,经常产生新的蛋白质变体。我们还观察到,当同源交换发生在倒置同源区时,会产生兆位级的 INDEL。最后,我们观察到在适应多倍体方面存在性别特异性差异的证据,当合成植物作为雌性亲本时,与天然品系的互交成功率更高。我们的研究结果将A. suecica的细胞学表型与其基因组结果直接联系起来,证明同源杂交是新多倍体基因组不稳定的原因,而且比同源杂交更具远端偏向性。
{"title":"Homoeologous crossovers are distally biased and underlie genomic instability in first-generation neo-allopolyploid Arabidopsis suecica","authors":"Candida Nibau,&nbsp;Aled Evans,&nbsp;Holly King,&nbsp;Dylan Wyn Phillips,&nbsp;Andrew Lloyd","doi":"10.1111/nph.20095","DOIUrl":"10.1111/nph.20095","url":null,"abstract":"<p>\u0000 \u0000 </p>","PeriodicalId":214,"journal":{"name":"New Phytologist","volume":null,"pages":null},"PeriodicalIF":8.3,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/nph.20095","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142141554","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
H218O vapour labelling reveals evidence of radial Péclet effects, but in not all leaves H2 18O 蒸汽标记显示了径向贝克莱特效应,但并非所有叶片都有这种效应。
IF 8.3 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-09-05 DOI: 10.1111/nph.20087
Margaret M. Barbour, Melissa A. White, Lulu Liu

关于叶片水同位素贝氏梯度的相关性,存在着相互矛盾的证据,因此很难准确预测同位素组成的变化。在这里,我们使用 H2 18O 蒸汽标记法直接测试叶片水同位素是否会向木质部后向扩散,从而被带到更远的叶片部分。由于观察到一些叶片的叶尖和外缘富集程度越来越高,因此我们假定叶片的水同位素会向后扩散。一些叶片(而非所有叶片)的大量叶水显示出径向贝克莱特效应,而叶片的水力设计可能会影响叶片中同位素梯度的发展,这使叶水同位素模型的选择变得更加复杂。在所评估的两个单子叶植物物种(燕麦和玉米)中检测到了 H2 18O 蒸汽标签的前传,但在两个双子叶植物物种(凤仙花和向日葵)中没有检测到。此外,不同蒸腾速率下的叶片体积水测量结果表明,只有狐尾草的叶片体积水具有贝克莱效应。我们的结论是,叶片水力设计和水在运输途径中的相对速度都会影响叶片水的同位素组成,从而调和了以前关于贝克莱特效应与叶片水同位素相关性的看似矛盾的结果。
{"title":"H218O vapour labelling reveals evidence of radial Péclet effects, but in not all leaves","authors":"Margaret M. Barbour,&nbsp;Melissa A. White,&nbsp;Lulu Liu","doi":"10.1111/nph.20087","DOIUrl":"10.1111/nph.20087","url":null,"abstract":"<p>\u0000 \u0000 </p>","PeriodicalId":214,"journal":{"name":"New Phytologist","volume":null,"pages":null},"PeriodicalIF":8.3,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/nph.20087","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142141553","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
AtALMT5 mediates vacuolar fumarate import and regulates the malate/fumarate balance in Arabidopsis AtALMT5 在拟南芥中介导液泡富马酸的输入并调节苹果酸/富马酸的平衡。
IF 8.3 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-09-05 DOI: 10.1111/nph.20077
Roxane Doireau, Justyna Jaślan, Paloma Cubero-Font, Elsa Demes-Causse, Karen Bertaux, Cédric Cassan, Pierre Pétriacq, Alexis De Angeli

苹果酸盐和富马酸盐占光合作用固定碳的很大一部分,它们处于中央代谢途径的十字路口。在拟南芥中,它们被暂时储存在液泡中,以保持细胞平衡。液泡膜上的苹果酸和富马酸转运系统是控制细胞代谢的关键角色。值得注意的是,这些转运系统的分子特性大部分仍未得到解决。我们将成像、电生理学和分子生理学结合起来,确定了二羧酸跨滋养层转运的一个重要分子角色。在此,我们报告了大连蛛铝激活的苹果酸转运体 5(AtALMT5)的功能。我们研究了它在体内的离子转运特性、表达模式、定位和功能。我们的研究表明,AtALMT5 在光合作用活跃的组织中表达,并定位在调质体中。膜片钳和植物体分析表明,AtALMT5 是一种离子通道,介导液泡中富马酸盐的负载。我们发现在 almt5 植物中,叶片中富马酸的积累减少,与此同时苹果酸的浓度增加。这些结果确定了 AtALMT5 是一种离子通道,它介导叶肉细胞液泡中的富马酸盐运输,并调节拟南芥中苹果酸盐/富马酸盐的平衡。
{"title":"AtALMT5 mediates vacuolar fumarate import and regulates the malate/fumarate balance in Arabidopsis","authors":"Roxane Doireau,&nbsp;Justyna Jaślan,&nbsp;Paloma Cubero-Font,&nbsp;Elsa Demes-Causse,&nbsp;Karen Bertaux,&nbsp;Cédric Cassan,&nbsp;Pierre Pétriacq,&nbsp;Alexis De Angeli","doi":"10.1111/nph.20077","DOIUrl":"10.1111/nph.20077","url":null,"abstract":"<p>\u0000 \u0000 </p>","PeriodicalId":214,"journal":{"name":"New Phytologist","volume":null,"pages":null},"PeriodicalIF":8.3,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/nph.20077","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142141549","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Progressing beyond colonization strategies to understand arbuscular mycorrhizal fungal life history 超越定殖策略,了解丛枝菌根真菌的生活史。
IF 8.3 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-09-04 DOI: 10.1111/nph.20090
Tessa Camenzind, Carlos A. Aguilar-Trigueros, Meike K. Heuck, Solomon Maerowitz-McMahan, Matthias C. Rillig, Will K. Cornwell, Jeff R. Powell

Knowledge of differential life-history strategies in arbuscular mycorrhizal (AM) fungi is relevant for understanding the ecology of this group and its potential role in sustainable agriculture and carbon sequestration. At present, AM fungal life-history theories often focus on differential investment into intra- vs extraradical structures among AM fungal taxa, and its implications for plant benefits. With this Viewpoint we aim to expand these theories by integrating a mycocentric economics- and resource-based life-history framework. As in plants, AM fungal carbon and nutrient demands are stoichiometrically coupled, though uptake of these elements is spatially decoupled. Consequently, investment in morphological structures for carbon vs nutrient uptake is not in competition. We argue that understanding the ecology and evolution of AM fungal life-history trade-offs requires increased focus on variation among structures foraging for the same element, that is within intra- or extraradical structures (in our view a ‘horizontal’ axis), not just between them (‘vertical’ axis). Here, we elaborate on this argument and propose a range of plausible life-history trade-offs that could lead to the evolution of strategies in AM fungi, providing testable hypotheses and creating opportunities to explain AM fungal co-existence, and the context-dependent effects of AM fungi on plant growth and soil carbon dynamics.

了解丛枝菌根(AM)真菌的不同生活史策略,对于了解该真菌群的生态学及其在可持续农业和碳封存中的潜在作用具有重要意义。目前,AM真菌的生命史理论通常侧重于AM真菌类群对体内与体外结构的不同投资及其对植物效益的影响。本视点旨在通过整合以真菌为中心的经济学和基于资源的生命史框架来扩展这些理论。与植物一样,AM 真菌对碳和养分的需求也是按化学计量耦合的,但对这些元素的吸收在空间上是分离的。因此,为吸收碳和养分而对形态结构进行的投资并不是竞争性的。我们认为,要了解调控真菌生命史权衡的生态学和进化,就必须更加关注觅食相同元素的结构之间的变化,即在支链内或支链外结构(我们认为是 "水平 "轴)中的变化,而不仅仅是它们之间的变化("垂直 "轴)。在此,我们详细阐述了这一论点,并提出了一系列可能导致AM真菌策略进化的可信的生命史权衡,为解释AM真菌的共存以及AM真菌对植物生长和土壤碳动态的环境影响提供了可检验的假设和机会。
{"title":"Progressing beyond colonization strategies to understand arbuscular mycorrhizal fungal life history","authors":"Tessa Camenzind,&nbsp;Carlos A. Aguilar-Trigueros,&nbsp;Meike K. Heuck,&nbsp;Solomon Maerowitz-McMahan,&nbsp;Matthias C. Rillig,&nbsp;Will K. Cornwell,&nbsp;Jeff R. Powell","doi":"10.1111/nph.20090","DOIUrl":"10.1111/nph.20090","url":null,"abstract":"<p>Knowledge of differential life-history strategies in arbuscular mycorrhizal (AM) fungi is relevant for understanding the ecology of this group and its potential role in sustainable agriculture and carbon sequestration. At present, AM fungal life-history theories often focus on differential investment into intra- vs extraradical structures among AM fungal taxa, and its implications for plant benefits. With this Viewpoint we aim to expand these theories by integrating a mycocentric economics- and resource-based life-history framework. As in plants, AM fungal carbon and nutrient demands are stoichiometrically coupled, though uptake of these elements is spatially decoupled. Consequently, investment in morphological structures for carbon vs nutrient uptake is not in competition. We argue that understanding the ecology and evolution of AM fungal life-history trade-offs requires increased focus on variation among structures foraging for the same element, that is within intra- or extraradical structures (in our view a ‘horizontal’ axis), not just between them (‘vertical’ axis). Here, we elaborate on this argument and propose a range of plausible life-history trade-offs that could lead to the evolution of strategies in AM fungi, providing testable hypotheses and creating opportunities to explain AM fungal co-existence, and the context-dependent effects of AM fungi on plant growth and soil carbon dynamics.</p>","PeriodicalId":214,"journal":{"name":"New Phytologist","volume":null,"pages":null},"PeriodicalIF":8.3,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/nph.20090","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142127080","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impaired Brown midrib12 function orchestrates sorghum resistance to aphids via an auxin conjugate indole-3-acetic acid–aspartic acid 布朗中肋12功能受损,通过吲哚-3-乙酸-天冬氨酸共轭辅酶协调高粱对蚜虫的抗性。
IF 8.3 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-09-04 DOI: 10.1111/nph.20091
Sajjan Grover, De-Fen Mou, Kumar Shrestha, Heena Puri, Lise Pingault, Scott E. Sattler, Joe Louis

木质素是一种复杂的异源聚合物,几乎存在于所有植物的细胞壁中,在保护植物免受各种胁迫方面起着至关重要的作用。然而,人们对高粱中的木质素修饰将如何影响植物抵御高粱的主要害虫甘蔗蚜虫(SCA)知之甚少。我们利用单木质素合成障碍的高粱棕色中脉(bmr)突变体来了解高粱对 SCA 的防御机制。我们发现,与野生型(WT;RTx430)植株相比,Bmr12 功能缺失和 Bmr12 的过表达(OE)分别增强了对 SCA 的抗性和易感性。对蚜虫取食行为的监测表明,与 RTx430 和 Bmr12-OE 植株相比,Bmr12 植株上的 SCA 花更多时间到达第一个筛元阶段。结合转录组学和代谢组学分析发现,bmr12 植株在受到 SCA 侵染时显示出辅助素代谢的改变,特别是与 RTx430 和 Bmr12-OE 植株相比,在 bmr12 植株中观察到辅助素共轭物吲哚-3-乙酸-天冬氨酸(IAA-Asp)水平的升高。此外,外源施用 IAA-Asp 可恢复 Bmr12-OE 植株的抗性,而人工喂养蚜虫试验生物测定表明,IAA-Asp 与 SCA 抗性增强有关。我们的研究结果凸显了高粱 bmr12 介导的 SCA 抗性的分子基础。
{"title":"Impaired Brown midrib12 function orchestrates sorghum resistance to aphids via an auxin conjugate indole-3-acetic acid–aspartic acid","authors":"Sajjan Grover,&nbsp;De-Fen Mou,&nbsp;Kumar Shrestha,&nbsp;Heena Puri,&nbsp;Lise Pingault,&nbsp;Scott E. Sattler,&nbsp;Joe Louis","doi":"10.1111/nph.20091","DOIUrl":"10.1111/nph.20091","url":null,"abstract":"<p>\u0000 \u0000 </p>","PeriodicalId":214,"journal":{"name":"New Phytologist","volume":null,"pages":null},"PeriodicalIF":8.3,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/nph.20091","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142134268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PRL1 interacts with and stabilizes RPA2A to regulate carbon deprivation-induced senescence in Arabidopsis PRL1 与 RPA2A 相互作用并稳定 RPA2A,以调节拟南芥中碳剥夺诱导的衰老。
IF 8.3 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-09-04 DOI: 10.1111/nph.20082
Jingjing Meng, Wenhui Zhou, Xinhao Mao, Pei Lei, Xue An, Hui Xue, Yafei Qi, Fei Yu, Xiayan Liu

  • Leaf senescence is a developmental program regulated by both endogenous and environmental cues. Abiotic stresses such as nutrient deprivation can induce premature leaf senescence, which profoundly impacts plant growth and crop yield. However, the molecular mechanisms underlying stress-induced senescence are not fully understood.
  • In this work, employing a carbon deprivation (C-deprivation)-induced senescence assay in Arabidopsis seedlings, we identified PLEIOTROPIC REGULATORY LOCUS 1 (PRL1), a component of the NineTeen Complex, as a negative regulator of C-deprivation-induced senescence.
  • Furthermore, we demonstrated that PRL1 directly interacts with the RPA2A subunit of the single-stranded DNA-binding Replication Protein A (RPA) complex. Consistently, the loss of RPA2A leads to premature senescence, while increased expression of RPA2A inhibits senescence. Moreover, overexpression of RPA2A reverses the accelerated senescence in prl1 mutants, and the interaction with PRL1 stabilizes RPA2A under C-deprivation.
  • In summary, our findings reveal the involvement of the PRL1-RPA2A functional module in C-deprivation-induced plant senescence.
叶片衰老是一种受内源和环境因素调控的发育程序。养分匮乏等非生物胁迫可诱导叶片过早衰老,从而对植物生长和作物产量产生深远影响。然而,人们对胁迫诱导衰老的分子机制还不完全了解。在这项工作中,我们利用拟南芥幼苗碳剥夺(C-drivation)诱导衰老试验,确定了 NineTeen 复合体的一个组分 PLEIOTROPIC REGULATORY LOCUS 1(PRL1)是 C-drivation诱导衰老的负调控因子。此外,我们还证明了 PRL1 直接与单链 DNA 结合复制蛋白 A(RPA)复合物的 RPA2A 亚基相互作用。一致的是,RPA2A的缺失会导致过早衰老,而增加RPA2A的表达则会抑制衰老。此外,过量表达 RPA2A 可逆转 prl1 突变体中的加速衰老,与 PRL1 的相互作用可稳定 C 缺失下的 RPA2A。总之,我们的发现揭示了 PRL1-RPA2A 功能模块参与了 C 缺失诱导的植物衰老。
{"title":"PRL1 interacts with and stabilizes RPA2A to regulate carbon deprivation-induced senescence in Arabidopsis","authors":"Jingjing Meng,&nbsp;Wenhui Zhou,&nbsp;Xinhao Mao,&nbsp;Pei Lei,&nbsp;Xue An,&nbsp;Hui Xue,&nbsp;Yafei Qi,&nbsp;Fei Yu,&nbsp;Xiayan Liu","doi":"10.1111/nph.20082","DOIUrl":"10.1111/nph.20082","url":null,"abstract":"<div>\u0000 \u0000 <p>\u0000 \u0000 </p><ul>\u0000 \u0000 \u0000 <li>Leaf senescence is a developmental program regulated by both endogenous and environmental cues. Abiotic stresses such as nutrient deprivation can induce premature leaf senescence, which profoundly impacts plant growth and crop yield. However, the molecular mechanisms underlying stress-induced senescence are not fully understood.</li>\u0000 \u0000 \u0000 <li>In this work, employing a carbon deprivation (C-deprivation)-induced senescence assay in Arabidopsis seedlings, we identified PLEIOTROPIC REGULATORY LOCUS 1 (PRL1), a component of the NineTeen Complex, as a negative regulator of C-deprivation-induced senescence.</li>\u0000 \u0000 \u0000 <li>Furthermore, we demonstrated that PRL1 directly interacts with the RPA2A subunit of the single-stranded DNA-binding Replication Protein A (RPA) complex. Consistently, the loss of <i>RPA2A</i> leads to premature senescence, while increased expression of <i>RPA2A</i> inhibits senescence. Moreover, overexpression of <i>RPA2A</i> reverses the accelerated senescence in <i>prl1</i> mutants, and the interaction with PRL1 stabilizes RPA2A under C-deprivation.</li>\u0000 \u0000 \u0000 <li>In summary, our findings reveal the involvement of the PRL1-RPA2A functional module in C-deprivation-induced plant senescence.</li>\u0000 </ul>\u0000 \u0000 </div>","PeriodicalId":214,"journal":{"name":"New Phytologist","volume":null,"pages":null},"PeriodicalIF":8.3,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142127079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transcriptomics reveal a mechanism of niche defense: two beneficial root endophytes deploy an antimicrobial GH18-CBM5 chitinase to protect their hosts 转录组学揭示了一种生态位防御机制:两种有益的根内生菌利用抗菌素 GH18-CBM5 几丁质酶来保护宿主。
IF 8.3 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-09-03 DOI: 10.1111/nph.20080
Ruben Eichfeld, Lisa K. Mahdi, Concetta De Quattro, Laura Armbruster, Asmamaw B. Endeshaw, Shingo Miyauchi, Margareta J. Hellmann, Stefan Cord-Landwehr, Daniel Peterson, Vasanth Singan, Kathleen Lail, Emily Savage, Vivian Ng, Igor V. Grigoriev, Gregor Langen, Bruno M. Moerschbacher, Alga Zuccaro

效应物分泌对于根内生菌建立和保护其生态位至关重要。我们利用时间分辨转录组学监测了两种亲缘关系很近的Sebacinales--Serendipita indica和Serendipita vermifera--在与三种植物共生、与植物病原真菌Bipolaris sorokiniana竞争以及与根相关细菌合作过程中效应基因的表达动态。我们观察到效应基因在生物相互作用(尤其是与植物的相互作用)中的表达增加,这表明它们在宿主定殖中的重要性。一些效应基因对植物和微生物都有反应,这表明它们在微生物间竞争和植物与微生物相互作用中具有双重作用。包括 GH18-CBM5 几丁质酶在内的推定抗微生物效应子集只由微生物诱导。对这种几丁质酶的功能分析显示了其抗菌和保护植物的特性。我们的结论是,动态效应基因表达支持了丝囊菌在不同生态位中繁衍生息的能力,其中一种真菌几丁质酶对生态位防御做出了重大贡献。
{"title":"Transcriptomics reveal a mechanism of niche defense: two beneficial root endophytes deploy an antimicrobial GH18-CBM5 chitinase to protect their hosts","authors":"Ruben Eichfeld,&nbsp;Lisa K. Mahdi,&nbsp;Concetta De Quattro,&nbsp;Laura Armbruster,&nbsp;Asmamaw B. Endeshaw,&nbsp;Shingo Miyauchi,&nbsp;Margareta J. Hellmann,&nbsp;Stefan Cord-Landwehr,&nbsp;Daniel Peterson,&nbsp;Vasanth Singan,&nbsp;Kathleen Lail,&nbsp;Emily Savage,&nbsp;Vivian Ng,&nbsp;Igor V. Grigoriev,&nbsp;Gregor Langen,&nbsp;Bruno M. Moerschbacher,&nbsp;Alga Zuccaro","doi":"10.1111/nph.20080","DOIUrl":"10.1111/nph.20080","url":null,"abstract":"<p>\u0000 \u0000 </p>","PeriodicalId":214,"journal":{"name":"New Phytologist","volume":null,"pages":null},"PeriodicalIF":8.3,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/nph.20080","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142120913","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interorgan, intraorgan and interplant communication mediated by nitric oxide and related species 一氧化氮及相关物质介导的器官间、器官内和植物间通信
IF 8.3 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-09-02 DOI: 10.1111/nph.20085
Zsuzsanna Kolbert, Juan B. Barroso, Alexandre Boscari, Francisco J. Corpas, Kapuganti Jagadis Gupta, John T. Hancock, Christian Lindermayr, José Manuel Palma, Marek Petřivalský, David Wendehenne, Gary J. Loake

Plant survival to a potential plethora of diverse environmental insults is underpinned by coordinated communication amongst organs to help shape effective responses to these environmental challenges at the whole plant level. This interorgan communication is supported by a complex signal network that regulates growth, development and environmental responses. Nitric oxide (NO) has emerged as a key signalling molecule in plants. However, its potential role in interorgan communication has only recently started to come into view. Direct and indirect evidence has emerged supporting that NO and related species (S-nitrosoglutathione, nitro-linolenic acid) are mobile interorgan signals transmitting responses to stresses such as hypoxia and heat. Beyond their role as mobile signals, NO and related species are involved in mediating xylem development, thus contributing to efficient root–shoot communication. Moreover, NO and related species are regulators in intraorgan systemic defence responses aiming an effective, coordinated defence against pathogens. Beyond its in planta signalling role, NO and related species may act as ex planta signals coordinating external leaf-to-leaf, root-to-leaf but also plant-to-plant communication. Here, we discuss these exciting developments and emphasise how their manipulation may provide novel strategies for crop improvement.

植物之所以能够在潜在的大量不同环境伤害中存活下来,是因为各器官之间的协调交流有助于在整个植物水平上形成对这些环境挑战的有效反应。这种器官间的交流得到了调节生长、发育和环境反应的复杂信号网络的支持。一氧化氮(NO)已成为植物体内的一种关键信号分子。然而,它在器官间通讯中的潜在作用直到最近才开始受到关注。已有直接和间接证据表明,一氧化氮和相关物质(S-亚硝基谷胱甘肽、亚硝基亚麻酸)是器官间的移动信号,可传递对缺氧和高温等胁迫的反应。除了作为移动信号外,氮氧化物和相关物质还参与木质部的发育,从而促进根与根之间的有效沟通。此外,NO 和相关物质还是器官内系统防御反应的调节剂,旨在对病原体进行有效、协调的防御。除了植物体内的信号作用外,NO 和相关物种还可能作为植物体外的信号,协调外部叶与叶、根与根以及植物与植物之间的交流。在此,我们将讨论这些令人兴奋的发展,并强调操纵它们可如何为作物改良提供新的策略。
{"title":"Interorgan, intraorgan and interplant communication mediated by nitric oxide and related species","authors":"Zsuzsanna Kolbert,&nbsp;Juan B. Barroso,&nbsp;Alexandre Boscari,&nbsp;Francisco J. Corpas,&nbsp;Kapuganti Jagadis Gupta,&nbsp;John T. Hancock,&nbsp;Christian Lindermayr,&nbsp;José Manuel Palma,&nbsp;Marek Petřivalský,&nbsp;David Wendehenne,&nbsp;Gary J. Loake","doi":"10.1111/nph.20085","DOIUrl":"10.1111/nph.20085","url":null,"abstract":"<p>Plant survival to a potential plethora of diverse environmental insults is underpinned by coordinated communication amongst organs to help shape effective responses to these environmental challenges at the whole plant level. This interorgan communication is supported by a complex signal network that regulates growth, development and environmental responses. Nitric oxide (NO) has emerged as a key signalling molecule in plants. However, its potential role in interorgan communication has only recently started to come into view. Direct and indirect evidence has emerged supporting that NO and related species (<i>S</i>-nitrosoglutathione, nitro-linolenic acid) are mobile interorgan signals transmitting responses to stresses such as hypoxia and heat. Beyond their role as mobile signals, NO and related species are involved in mediating xylem development, thus contributing to efficient root–shoot communication. Moreover, NO and related species are regulators in intraorgan systemic defence responses aiming an effective, coordinated defence against pathogens. Beyond its <i>in planta</i> signalling role, NO and related species may act as <i>ex planta</i> signals coordinating external leaf-to-leaf, root-to-leaf but also plant-to-plant communication. Here, we discuss these exciting developments and emphasise how their manipulation may provide novel strategies for crop improvement.</p>","PeriodicalId":214,"journal":{"name":"New Phytologist","volume":null,"pages":null},"PeriodicalIF":8.3,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/nph.20085","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142120910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Leaf stomatal configuration and photosynthetic traits jointly affect leaf water use efficiency in forests along climate gradients 叶片气孔构造和光合作用特征共同影响气候梯度森林的叶片水分利用效率。
IF 8.3 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-09-02 DOI: 10.1111/nph.20100
Shengnan Pan, Xin Wang, Zhengbing Yan, Jin Wu, Lulu Guo, Ziyang Peng, Yuntao Wu, Jing Li, Bin Wang, Yanjun Su, Lingli Liu

  • Water use efficiency (WUE) represents the trade-off between carbon assimilation and water loss in plants. It remains unclear how leaf stomatal and photosynthetic traits regulate the spatial variation of leaf WUE in different natural forest ecosystems.
  • We investigated 43 broad-leaf tree species spanning from cold-temperate to tropical forests in China. We quantified leaf WUE using leaf δ13C and measured stomatal traits, photosynthetic traits as well as maximum stomatal conductance (Gwmax) and maximum carboxylation capacity (Vcmax).
  • We found that leaves in cold-temperate forests displayed ‘fast’ carbon economics, characterized by higher leaf nitrogen, Chl, specific leaf area, and Vcmax, as an adaptation to the shorter growing season. However, these leaves exhibited ‘slow’ hydraulic traits, with larger but fewer stomata and similar Gwmax, resulting in higher leaf WUE. By contrast, leaves in tropical forests had smaller and denser stomata, enabling swift response to heterogeneous light conditions. However, this stomatal configuration increased potential water loss, and coupled with their low photosynthetic capacity, led to lower WUE.
  • Our findings contribute to understanding how plant photosynthetic and stomatal traits regulate carbon–water trade-offs across climatic gradients, advancing our ability to predict the impacts of climate changes on forest carbon and water cycles.
水分利用效率(WUE)代表了植物在碳同化和水分损失之间的权衡。目前还不清楚在不同的自然森林生态系统中,叶片气孔和光合特性如何调节叶片水分利用效率的空间变化。我们研究了中国从寒温带森林到热带森林的 43 种阔叶树种。我们利用叶片δ13C对叶片WUE进行了量化,并测量了气孔性状、光合性状以及最大气孔导度( G w max $$ {G}_{{mathrm{w}}_{{mathrm{max}} $$ ) 和最大羧化能力( V c max $$ {V}_{{mathrm{c}}_{{mathrm{max}} $$ ) 。)我们发现,寒温带森林的叶片表现出 "快速 "碳经济性,其特点是叶氮、叶绿素、比叶面积和 V c max $$ {V}_{mathrm{c}}_{mathrm{max}} $$ 较高,以适应较短的生长季节。然而,这些叶片表现出 "缓慢 "的水力特征,气孔较大但较少,G w max $$ {G}_{mathrm{w}}_{mathrm{max}} $$ 相似,导致叶片 WUE 较高。相比之下,热带森林的叶片气孔更小、更密集,能够对不同的光照条件做出迅速反应。然而,这种气孔构造增加了潜在的水分损失,再加上光合作用能力较低,导致叶片WUE较低。我们的研究结果有助于理解植物光合作用和气孔特征如何调节不同气候梯度下的碳水权衡,从而提高我们预测气候变化对森林碳循环和水循环影响的能力。
{"title":"Leaf stomatal configuration and photosynthetic traits jointly affect leaf water use efficiency in forests along climate gradients","authors":"Shengnan Pan,&nbsp;Xin Wang,&nbsp;Zhengbing Yan,&nbsp;Jin Wu,&nbsp;Lulu Guo,&nbsp;Ziyang Peng,&nbsp;Yuntao Wu,&nbsp;Jing Li,&nbsp;Bin Wang,&nbsp;Yanjun Su,&nbsp;Lingli Liu","doi":"10.1111/nph.20100","DOIUrl":"10.1111/nph.20100","url":null,"abstract":"<div>\u0000 \u0000 <p>\u0000 \u0000 </p><ul>\u0000 \u0000 \u0000 <li>Water use efficiency (WUE) represents the trade-off between carbon assimilation and water loss in plants. It remains unclear how leaf stomatal and photosynthetic traits regulate the spatial variation of leaf WUE in different natural forest ecosystems.</li>\u0000 \u0000 \u0000 <li>We investigated 43 broad-leaf tree species spanning from cold-temperate to tropical forests in China. We quantified leaf WUE using leaf δ<sup>13</sup>C and measured stomatal traits, photosynthetic traits as well as maximum stomatal conductance (<span></span><math>\u0000 <mrow>\u0000 <msub>\u0000 <mi>G</mi>\u0000 <msub>\u0000 <mi>w</mi>\u0000 <mi>max</mi>\u0000 </msub>\u0000 </msub>\u0000 </mrow></math>) and maximum carboxylation capacity (<span></span><math>\u0000 <mrow>\u0000 <msub>\u0000 <mi>V</mi>\u0000 <msub>\u0000 <mi>c</mi>\u0000 <mi>max</mi>\u0000 </msub>\u0000 </msub>\u0000 </mrow></math>).</li>\u0000 \u0000 \u0000 <li>We found that leaves in cold-temperate forests displayed ‘fast’ carbon economics, characterized by higher leaf nitrogen, Chl, specific leaf area, and <span></span><math>\u0000 <mrow>\u0000 <msub>\u0000 <mi>V</mi>\u0000 <msub>\u0000 <mi>c</mi>\u0000 <mi>max</mi>\u0000 </msub>\u0000 </msub>\u0000 </mrow></math>, as an adaptation to the shorter growing season. However, these leaves exhibited ‘slow’ hydraulic traits, with larger but fewer stomata and similar <span></span><math>\u0000 <mrow>\u0000 <msub>\u0000 <mi>G</mi>\u0000 <msub>\u0000 <mi>w</mi>\u0000 <mi>max</mi>\u0000 </msub>\u0000 </msub>\u0000 </mrow></math>, resulting in higher leaf WUE. By contrast, leaves in tropical forests had smaller and denser stomata, enabling swift response to heterogeneous light conditions. However, this stomatal configuration increased potential water loss, and coupled with their low photosynthetic capacity, led to lower WUE.</li>\u0000 \u0000 \u0000 <li>Our findings contribute to understanding how plant photosynthetic and stomatal traits regulate carbon–water trade-offs across climatic gradients, advancing our ability to predict the impacts of climate changes on forest carbon and water cycles.</li>\u0000 </ul>\u0000 \u0000 </div>","PeriodicalId":214,"journal":{"name":"New Phytologist","volume":null,"pages":null},"PeriodicalIF":8.3,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142120911","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CmMYC2–CmMYBML1 module orchestrates the resistance to herbivory by synchronously regulating the trichome development and constitutive terpene biosynthesis in Chrysanthemum CmMYC2-CmMYBML1模块通过同步调控菊花毛状体的发育和组成型萜烯的生物合成来协调菊花对草食性植物的抗性。
IF 8.3 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-09-02 DOI: 10.1111/nph.20081
Yaqin Guan, Li Jiang, You Wang, Guanhua Liu, Jiayi Wu, Hong Luo, Sumei Chen, Fadi Chen, Ülo Niinemets, Feng Chen, Yifan Jiang

  • Trichomes are specialized epidermal outgrowths covering the aerial parts of most terrestrial plants. There is a large species variability in occurrence of different types of trichomes such that the molecular regulatory mechanism underlying the formation and the biological function of trichomes in most plant species remain unexplored.
  • Here, we used Chrysanthemum morifolium as a model plant to explore the regulatory network in trichome formation and terpenoid synthesis and unravel the physical and chemical roles of trichomes in constitutive defense against herbivore feeding.
  • By analyzing the trichome-related genes from transcriptome database of the trichomes-removed leaves and intact leaves, we identified CmMYC2 to positively regulate both development of T-shaped and glandular trichomes as well as the content of terpenoids stored in glandular trichomes. Furthermore, we found that the role of CmMYC2 in trichome formation and terpene synthesis was mediated by interaction with CmMYBML1. Our results reveal a sophisticated molecular mechanism wherein the CmMYC2–CmMYBML1 feedback inhibition loop regulates the formation of trichomes (non-glandular and glandular) and terpene biosynthesis, collectively contributing to the enhanced resistance to Spodoptera litura larvae feeding.
  • Our findings provide new insights into the novel regulatory network by which the plant synchronously regulates trichome density for the physical and chemical defense against herbivory.
毛状体是覆盖大多数陆生植物气生部分的特化表皮突起。不同类型的毛状体在物种间存在很大差异,因此大多数植物物种毛状体形成的分子调控机制及其生物学功能仍有待探索。在此,我们以菊花(Chrysanthemum morifolium)为模式植物,探讨了毛状体形成和萜类化合物合成的调控网络,并揭示了毛状体在构成性防御食草动物取食中的物理和化学作用。通过分析毛状体摘除叶片和完整叶片转录组数据库中的毛状体相关基因,我们发现CmMYC2对T形毛状体和腺毛状体的发育以及腺毛状体中萜类化合物的含量均有正向调控作用。此外,我们还发现,CmMYC2 在毛状体形成和萜烯合成中的作用是通过与 CmMYBML1 相互作用来介导的。我们的研究结果揭示了一种复杂的分子机制,即 CmMYC2-CmMYBML1 反馈抑制环调节毛状体(非腺体和腺体)的形成和萜烯的生物合成,从而共同增强了对 Spodoptera litura 幼虫取食的抵抗力。我们的研究结果为了解植物通过同步调节毛状体密度来物理和化学防御草食性害虫的新型调控网络提供了新的视角。
{"title":"CmMYC2–CmMYBML1 module orchestrates the resistance to herbivory by synchronously regulating the trichome development and constitutive terpene biosynthesis in Chrysanthemum","authors":"Yaqin Guan,&nbsp;Li Jiang,&nbsp;You Wang,&nbsp;Guanhua Liu,&nbsp;Jiayi Wu,&nbsp;Hong Luo,&nbsp;Sumei Chen,&nbsp;Fadi Chen,&nbsp;Ülo Niinemets,&nbsp;Feng Chen,&nbsp;Yifan Jiang","doi":"10.1111/nph.20081","DOIUrl":"10.1111/nph.20081","url":null,"abstract":"<div>\u0000 \u0000 <p>\u0000 \u0000 </p><ul>\u0000 \u0000 \u0000 <li>Trichomes are specialized epidermal outgrowths covering the aerial parts of most terrestrial plants. There is a large species variability in occurrence of different types of trichomes such that the molecular regulatory mechanism underlying the formation and the biological function of trichomes in most plant species remain unexplored.</li>\u0000 \u0000 \u0000 <li>Here, we used <i>Chrysanthemum morifolium</i> as a model plant to explore the regulatory network in trichome formation and terpenoid synthesis and unravel the physical and chemical roles of trichomes in constitutive defense against herbivore feeding.</li>\u0000 \u0000 \u0000 <li>By analyzing the trichome-related genes from transcriptome database of the trichomes-removed leaves and intact leaves, we identified <i>CmMYC2</i> to positively regulate both development of <i>T</i>-shaped and glandular trichomes as well as the content of terpenoids stored in glandular trichomes. Furthermore, we found that the role of CmMYC2 in trichome formation and terpene synthesis was mediated by interaction with CmMYBML1. Our results reveal a sophisticated molecular mechanism wherein the CmMYC2–CmMYBML1 feedback inhibition loop regulates the formation of trichomes (non-glandular and glandular) and terpene biosynthesis, collectively contributing to the enhanced resistance to <i>Spodoptera litura</i> larvae feeding.</li>\u0000 \u0000 \u0000 <li>Our findings provide new insights into the novel regulatory network by which the plant synchronously regulates trichome density for the physical and chemical defense against herbivory.</li>\u0000 </ul>\u0000 \u0000 </div>","PeriodicalId":214,"journal":{"name":"New Phytologist","volume":null,"pages":null},"PeriodicalIF":8.3,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142120900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
New Phytologist
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1