Zoe Amie Pierrat, Troy S. Magney, Will P. Richardson, Benjamin R. K. Runkle, Jen L. Diehl, Xi Yang, William Woodgate, William K. Smith, Miriam R. Johnston, Yohanes R. S. Ginting, Gerbrand Koren, Loren P. Albert, Christopher L. Kibler, Bryn E. Morgan, Mallory Barnes, Adriana Uscanga, Charles Devine, Mostafa Javadian, Karem Meza, Tommaso Julitta, Giulia Tagliabue, Matthew P. Dannenberg, Michal Antala, Christopher Y. S. Wong, Andre L. D. Santos, Koen Hufkens, Julia K. Marrs, Atticus E. L. Stovall, Yujie Liu, Joshua B. Fisher, John A. Gamon, Kerry Cawse-Nicholson
A new proliferation of optical instruments that can be attached to towers over or within ecosystems, or ‘proximal’ remote sensing, enables a comprehensive characterization of terrestrial ecosystem structure, function, and fluxes of energy, water, and carbon. Proximal remote sensing can bridge the gap between individual plants, site-level eddy-covariance fluxes, and airborne and spaceborne remote sensing by providing continuous data at a high-spatiotemporal resolution. Here, we review recent advances in proximal remote sensing for improving our mechanistic understanding of plant and ecosystem processes, model development, and validation of current and upcoming satellite missions. We provide current best practices for data availability and metadata for proximal remote sensing: spectral reflectance, solar-induced fluorescence, thermal infrared radiation, microwave backscatter, and LiDAR. Our paper outlines the steps necessary for making these data streams more widespread, accessible, interoperable, and information-rich, enabling us to address key ecological questions unanswerable from space-based observations alone and, ultimately, to demonstrate the feasibility of these technologies to address critical questions in local and global ecology.
{"title":"Proximal remote sensing: an essential tool for bridging the gap between high-resolution ecosystem monitoring and global ecology","authors":"Zoe Amie Pierrat, Troy S. Magney, Will P. Richardson, Benjamin R. K. Runkle, Jen L. Diehl, Xi Yang, William Woodgate, William K. Smith, Miriam R. Johnston, Yohanes R. S. Ginting, Gerbrand Koren, Loren P. Albert, Christopher L. Kibler, Bryn E. Morgan, Mallory Barnes, Adriana Uscanga, Charles Devine, Mostafa Javadian, Karem Meza, Tommaso Julitta, Giulia Tagliabue, Matthew P. Dannenberg, Michal Antala, Christopher Y. S. Wong, Andre L. D. Santos, Koen Hufkens, Julia K. Marrs, Atticus E. L. Stovall, Yujie Liu, Joshua B. Fisher, John A. Gamon, Kerry Cawse-Nicholson","doi":"10.1111/nph.20405","DOIUrl":"https://doi.org/10.1111/nph.20405","url":null,"abstract":"A new proliferation of optical instruments that can be attached to towers over or within ecosystems, or ‘proximal’ remote sensing, enables a comprehensive characterization of terrestrial ecosystem structure, function, and fluxes of energy, water, and carbon. Proximal remote sensing can bridge the gap between individual plants, site-level eddy-covariance fluxes, and airborne and spaceborne remote sensing by providing continuous data at a high-spatiotemporal resolution. Here, we review recent advances in proximal remote sensing for improving our mechanistic understanding of plant and ecosystem processes, model development, and validation of current and upcoming satellite missions. We provide current best practices for data availability and metadata for proximal remote sensing: spectral reflectance, solar-induced fluorescence, thermal infrared radiation, microwave backscatter, and LiDAR. Our paper outlines the steps necessary for making these data streams more widespread, accessible, interoperable, and information-rich, enabling us to address key ecological questions unanswerable from space-based observations alone and, ultimately, to demonstrate the feasibility of these technologies to address critical questions in local and global ecology.","PeriodicalId":214,"journal":{"name":"New Phytologist","volume":"6 1","pages":""},"PeriodicalIF":9.4,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143020977","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Heat stress (HS) poses a major challenge to plants and agriculture, especially during climate change-induced heatwaves. Plants have evolved mechanisms to combat HS and remember past stress. This memory involves lasting changes in specific stress responses, enabling plants to better anticipate and react to future heat events. HS memory is a multi-layered cellular phenomenon that, in addition to epigenetic modifications, involves changes in protein quality control, metabolic pathways and broader physiological adjustments. An essential aspect of modulating stress memory is timely resetting, which restores defense responses to baseline levels and optimizes resource allocation for growth. Balancing stress memory with resetting enables plants to withstand stress while maintaining growth and reproductive capacity. In this review, we discuss mechanisms and regulatory layers of HS memory and resetting, highlighting their critical balance for enhancing stress resilience and plant fitness. We primarily focus on the model plant Arabidopsis thaliana due to the limited research on other species and outline key areas for future study.
{"title":"Stress resilience in plants: the complex interplay between heat stress memory and resetting","authors":"Tobias Staacke, Bernd Mueller-Roeber, Salma Balazadeh","doi":"10.1111/nph.20377","DOIUrl":"https://doi.org/10.1111/nph.20377","url":null,"abstract":"Heat stress (HS) poses a major challenge to plants and agriculture, especially during climate change-induced heatwaves. Plants have evolved mechanisms to combat HS and remember past stress. This memory involves lasting changes in specific stress responses, enabling plants to better anticipate and react to future heat events. HS memory is a multi-layered cellular phenomenon that, in addition to epigenetic modifications, involves changes in protein quality control, metabolic pathways and broader physiological adjustments. An essential aspect of modulating stress memory is timely resetting, which restores defense responses to baseline levels and optimizes resource allocation for growth. Balancing stress memory with resetting enables plants to withstand stress while maintaining growth and reproductive capacity. In this review, we discuss mechanisms and regulatory layers of HS memory and resetting, highlighting their critical balance for enhancing stress resilience and plant fitness. We primarily focus on the model plant <i>Arabidopsis thaliana</i> due to the limited research on other species and outline key areas for future study.","PeriodicalId":214,"journal":{"name":"New Phytologist","volume":"4 1","pages":""},"PeriodicalIF":9.4,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143021102","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}