首页 > 最新文献

New Phytologist最新文献

英文 中文
ChromEvol v.3: modeling rate heterogeneity in chromosome number evolution
IF 9.4 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-12-16 DOI: 10.1111/nph.20339
Anat Shafir, Keren Halabi, Ella Baumer, Itay Mayrose

  • Changes in chromosome numbers are a prominent driver of plant evolution, impacting ecological diversification, stress tolerance, and phenotypes. ChromEvol is a widely used software tool for deciphering patterns of chromosome-number change along a phylogeny of interest. It evaluates the fit of alternative models to the data, estimates transition rates of different types of events, and infers the expected number of events along each branch of the phylogeny.
  • We introduce ChromEvol v.3, featuring multiple novel methodological advancements that capture variation in the transition rates along a phylogeny. This version better allows researchers to identify how dysploidy and polyploidy rates change based on the number of chromosomes in the genome, with respect to a discrete trait, or at certain subclades of the phylogeny.
  • We demonstrate the applicability of the new models on the Solanaceae phylogeny. Our analyses identify four chromosome-number transition regimes that characterize distinct Solanaceae clades and demonstrate an association between self-compatibility and altered dynamics of chromosome-number evolution.
  • ChromEvol v.3, available at https://github.com/anatshafir1/chromevol, offers researchers a more flexible, comprehensive, and accurate tool to investigate the evolution of chromosome numbers and the various processes affecting it.

染色体数目的变化是植物进化的主要驱动力,对生态多样性、抗逆性和表型都有影响。ChromEvol 是一种广泛使用的软件工具,用于解读染色体数目沿相关系统发育的变化模式。它可以评估替代模型与数据的拟合度,估算不同类型事件的转变率,并推断出系统发育过程中每个分支的预期事件数量。我们推出的 ChromEvol v.3 具有多种新颖的方法论进步,可以捕捉系统发育过程中转变率的变化。该版本能让研究人员更好地确定非整倍体和多倍体率是如何根据基因组中染色体的数量、某一离散性状或在系统发育的某些亚支系中发生变化的。我们的分析确定了四种染色体数目过渡机制,它们是茄科植物不同支系的特征,并证明了自相容性与染色体数目进化动态改变之间的联系。ChromEvol v.3 可在 https://github.com/anatshafir1/chromevol 网站上查阅,它为研究人员提供了一种更灵活、更全面、更准确的工具,用于研究染色体数目的进化及其各种影响过程。
{"title":"ChromEvol v.3: modeling rate heterogeneity in chromosome number evolution","authors":"Anat Shafir, Keren Halabi, Ella Baumer, Itay Mayrose","doi":"10.1111/nph.20339","DOIUrl":"https://doi.org/10.1111/nph.20339","url":null,"abstract":"<p>\u0000</p><ul>\u0000<li>Changes in chromosome numbers are a prominent driver of plant evolution, impacting ecological diversification, stress tolerance, and phenotypes. <span>ChromEvol</span> is a widely used software tool for deciphering patterns of chromosome-number change along a phylogeny of interest. It evaluates the fit of alternative models to the data, estimates transition rates of different types of events, and infers the expected number of events along each branch of the phylogeny.</li>\u0000<li>We introduce <span>ChromEvol</span> v.3, featuring multiple novel methodological advancements that capture variation in the transition rates along a phylogeny. This version better allows researchers to identify how dysploidy and polyploidy rates change based on the number of chromosomes in the genome, with respect to a discrete trait, or at certain subclades of the phylogeny.</li>\u0000<li>We demonstrate the applicability of the new models on the Solanaceae phylogeny. Our analyses identify four chromosome-number transition regimes that characterize distinct Solanaceae clades and demonstrate an association between self-compatibility and altered dynamics of chromosome-number evolution.</li>\u0000<li>\u0000<span>ChromEvol</span> v.3, available at https://github.com/anatshafir1/chromevol, offers researchers a more flexible, comprehensive, and accurate tool to investigate the evolution of chromosome numbers and the various processes affecting it.</li>\u0000</ul><p></p>","PeriodicalId":214,"journal":{"name":"New Phytologist","volume":"10 1","pages":""},"PeriodicalIF":9.4,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142825007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The SnRK2.2-ZmHsf28-JAZ14/17 module regulates drought tolerance in maize SnRK2.2-ZmHsf28-JAZ14/17 模块调控玉米的抗旱性
IF 9.4 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-12-16 DOI: 10.1111/nph.20355
Lijun Liu, Chen Tang, Yuhan Zhang, Xiaoyu Sha, Shuaibing Tian, Ziyi Luo, Guocheng Wei, Li Zhu, Yuxin Li, Jingye Fu, Peigao Luo, Qiang Wang

  • Abscisic acid (ABA) and jasmonic acid (JA) are important plant hormones in response to drought stress. We have identified that ZmHsf28 elevated ABA and JA accumulation to confer drought tolerance in maize; however, the underlying mechanism still remains elusive.
  • The knockout line zmhsf28 is generated to confirm the positive role of ZmHsf28 in drought response. Multiple approaches are combined to reveal protein interaction among ZmHsf28, ZmSnRK2.2 and ZmJAZ14/17, which form a regulatory module to mediate maize drought tolerance through regulating ABA and JA key biosynthetic genes ZmNCED3 and ZmLOX8.
  • Upon drought stress, zmhsf28 plants exhibit weaker tolerance than the WT plants with slower stomatal closure and more reactive oxygen species accumulation. ZmHsf28 interacted with ZmSnRK2.2 physically, resulting in phosphorylation at Ser220, which enhances binding to the heat shock elements of ZmNECD3 and ZmLOX8 promoters and subsequent gene expression. Meanwhile, ZmMYC2 upregulates ZmHsf28 gene expression through acting on the G-box of its promoter. Besides, ZmJAZ14/17 competitively interact with ZmHsf28 to interfere with protein interaction between ZmHsf28 and ZmSnRK2.2, blocking ZmHsf28 phosphorylation and impairing downstream gene regulation.
  • The ZmSnRK2.2-ZmHsf28-ZmJAZ14/17 module is identified to regulate drought tolerance through coordinating ABA and JA signaling, providing the insights for breeding to improve drought resistance in maize.

脱落酸(ABA)和茉莉酸(JA)是应对干旱胁迫的重要植物激素。我们发现,ZmHsf28能提高ABA和JA的积累,从而赋予玉米耐旱性;然而,其潜在机制仍然难以捉摸。为了证实ZmHsf28在干旱响应中的积极作用,我们产生了基因敲除品系zmhsf28。结合多种方法揭示了ZmHsf28、ZmSnRK2.2和ZmJAZ14/17之间的蛋白质相互作用,它们通过调控ABA和JA关键生物合成基因ZmNCED3和ZmLOX8形成一个调控模块,介导玉米的抗旱性。ZmHsf28与ZmSnRK2.2发生了物理作用,导致ZmSnRK2.2在Ser220处磷酸化,从而增强了与ZmNECD3和ZmLOX8启动子中热休克元件的结合,进而促进了基因的表达。同时,ZmMYC2 通过作用于 ZmHsf28 启动子的 G-box 上调 ZmHsf28 基因的表达。ZmSnRK2.2-ZmHsf28-ZmJAZ14/17模块通过协调ABA和JA信号转导调控抗旱性,为提高玉米抗旱性的育种提供了启示。
{"title":"The SnRK2.2-ZmHsf28-JAZ14/17 module regulates drought tolerance in maize","authors":"Lijun Liu, Chen Tang, Yuhan Zhang, Xiaoyu Sha, Shuaibing Tian, Ziyi Luo, Guocheng Wei, Li Zhu, Yuxin Li, Jingye Fu, Peigao Luo, Qiang Wang","doi":"10.1111/nph.20355","DOIUrl":"https://doi.org/10.1111/nph.20355","url":null,"abstract":"<p>\u0000</p><ul>\u0000<li>Abscisic acid (ABA) and jasmonic acid (JA) are important plant hormones in response to drought stress. We have identified that ZmHsf28 elevated ABA and JA accumulation to confer drought tolerance in maize; however, the underlying mechanism still remains elusive.</li>\u0000<li>The knockout line <i>zmhsf28</i> is generated to confirm the positive role of ZmHsf28 in drought response. Multiple approaches are combined to reveal protein interaction among ZmHsf28, ZmSnRK2.2 and ZmJAZ14/17, which form a regulatory module to mediate maize drought tolerance through regulating ABA and JA key biosynthetic genes <i>ZmNCED3</i> and <i>ZmLOX8</i>.</li>\u0000<li>Upon drought stress, <i>zmhsf28</i> plants exhibit weaker tolerance than the WT plants with slower stomatal closure and more reactive oxygen species accumulation. ZmHsf28 interacted with ZmSnRK2.2 physically, resulting in phosphorylation at Ser220, which enhances binding to the heat shock elements of <i>ZmNECD3</i> and <i>ZmLOX8</i> promoters and subsequent gene expression. Meanwhile, ZmMYC2 upregulates <i>ZmHsf28</i> gene expression through acting on the G-box of its promoter. Besides, ZmJAZ14/17 competitively interact with ZmHsf28 to interfere with protein interaction between ZmHsf28 and ZmSnRK2.2, blocking ZmHsf28 phosphorylation and impairing downstream gene regulation.</li>\u0000<li>The ZmSnRK2.2-ZmHsf28-ZmJAZ14/17 module is identified to regulate drought tolerance through coordinating ABA and JA signaling, providing the insights for breeding to improve drought resistance in maize.</li>\u0000</ul><p></p>","PeriodicalId":214,"journal":{"name":"New Phytologist","volume":"23 1","pages":""},"PeriodicalIF":9.4,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142832786","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evolution of sympatric host-specialized lineages of the fungal plant pathogen Zymoseptoria passerinii in natural ecosystems
IF 9.4 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-12-16 DOI: 10.1111/nph.20340
Idalia C. Rojas-Barrera, Victor M. Flores-Núñez, Janine Haueisen, Alireza Alizadeh, Fatemeh Salimi, Eva H. Stukenbrock
<h2> Introduction</h2><p>The increasing emergence and severity of infectious fungal diseases threaten food security and natural ecosystems (Fisher <i>et al</i>., <span>2012</span>; Stukenbrock & Gurr, <span>2023</span>). Continuous monitoring, prediction modeling of disease spread, and deeper comprehension of fungal pathogens in wild plant hosts have been largely neglected. This is crucial to profile the impact of fungal pathogens on the context of climate change and independent of agricultural environments (Fisher <i>et al</i>., <span>2012</span>). Current evidence supports that crop wild relatives (CWRs) might serve as reservoirs for domesticated plant pathogens (Monteil <i>et al</i>., <span>2013</span>, <span>2016</span>), although still few studies are focused on wild pathogen population processes and dynamics (Rouxel <i>et al</i>., <span>2013</span>; Penczykowski <i>et al</i>., <span>2015</span>; Eck <i>et al</i>., <span>2022</span>; Treindl <i>et al</i>., <span>2023</span>). CWRs hold higher levels of genetic diversity and have coevolved in sympatry with plant pathogens in natural ecosystems. Moreover, the centers of diversity and domestication of crop plants harbor a wealth of species (Harlan, <span>1971</span>) that could serve as hosts for plant pathogens (Vavilov, <span>1992</span>). Despite the latter, natural ecosystems are undervalued economically, which limits funding for studies (Fisher <i>et al</i>., <span>2012</span>). Furthermore, having access to wild species found in remote locations or immersed in complex geopolitical contexts adds another layer of difficulty, generating a geographical bias toward high-income regions at the expense of exploring the remaining biodiversity (Marks <i>et al</i>., <span>2023</span>). One way to overcome this is to prioritize neglected areas by collaborating with scientific communities situated in less-represented regions of the globe (Marks <i>et al</i>., <span>2023</span>), and promoting research on nonmodel species and dynamics in natural ecosystems.</p><p>Cumulative evidence supports that ecological divergence of plant pathogens is driven by host specialization. As proposed by Crous & Groenewald (<span>2005</span>) and exemplified by multiple studies (Steenkamp <i>et al</i>., <span>2002</span>; Choi <i>et al</i>., <span>2011</span>; Rouxel <i>et al</i>., <span>2013</span>; Faticov <i>et al</i>., <span>2022</span>), plant pathogens phylogenies frequently represent multiple closely related sister or cryptic species. In this regard, the <i>Zymoseptoria</i> genus comprises eight ascomycete species, only two of them, <i>Zymoseptoria tritici</i> and <i>Zymoseptoria passerinii</i> (Sacc.) Quaedvlieg & Crous, have been reported to infect domesticated hosts (Quaedvlieg <i>et al</i>., <span>2011</span>; Stukenbrock <i>et al</i>., <span>2012b</span>). The origin, population genetics, and plant–pathogen dynamics of the wheat fungal pathogen <i>Z. tritici</i> have been extensively investigated
引言传染性真菌疾病的出现和严重程度不断增加,威胁着粮食安全和自然生态系统(Fisher 等人,2012 年;Stukenbrock &amp; Gurr,2023 年)。对野生植物寄主中真菌病原体的持续监测、疾病传播预测建模和深入了解在很大程度上被忽视了。这对于剖析真菌病原体对气候变化的影响以及独立于农业环境的影响至关重要(Fisher 等人,2012 年)。目前有证据表明,作物野生近缘种(CWRs)可作为驯化植物病原体的贮藏库(Monteil 等人,2013 年,2016 年),但有关野生病原体种群过程和动态的研究仍然很少(Rouxel 等人,2013 年;Penczykowski 等人,2015 年;Eck 等人,2022 年;Treindl 等人,2023 年)。CWRs 具有更高水平的遗传多样性,并在自然生态系统中与植物病原体共同进化。此外,作物植物的多样性和驯化中心蕴藏着丰富的物种(Harlan,1971 年),可作为植物病原体的宿主(Vavilov,1992 年)。尽管如此,自然生态系统的经济价值却被低估,这限制了研究资金的投入(Fisher 等人,2012 年)。此外,在偏远地区或复杂的地缘政治背景下获取野生物种又增加了一层困难,这就造成了对高收入地区的地理偏向,从而牺牲了对剩余生物多样性的探索(Marks 等人,2023 年)。克服这一问题的方法之一是通过与全球代表性较低地区的科学界合作,优先考虑被忽视的领域(Marks 等人,2023 年),并促进对自然生态系统中的非模式物种和动态的研究。正如 Crous &amp; Groenewald(2005 年)所提出并在多项研究(Steenkamp 等人,2002 年;Choi 等人,2011 年;Rouxel 等人,2013 年;Faticov 等人,2022 年)中例证的那样,植物病原体系统发育经常代表多个密切相关的姊妹种或隐蔽种。在这方面,Zymoseptoria 属由 8 个子囊菌种组成,其中只有两个,即 Zymoseptoria tritici 和 Zymoseptoria passerinii (Sacc.) Quaedvlieg &amp; Crous,被报道感染驯化宿主(Quaedvlieg 等人,2011 年;Stukenbrock 等人,2012 年 b)。在农业背景下,对小麦真菌病原体 Z. tritici 的起源、种群遗传学和植物病原体动力学进行了广泛研究(Linde 等人,2002 年;Stukenbrock 等人,2011 年;McDonald 等人,2022 年;Orellana-Torrejon 等人,2022 年;Feurtey 等人,2023 年)。Zymseptoria tritici 和 Z. passerinii 的地理范围相互重叠,并在其原产地中心发生了共生多样化(Rojas-Barrera 等人,2023 年)。然而,我们对它们的种群遗传学以及多个同域宿主对自然生态系统中病原体流行的影响的了解仍然有限(Stukenbrock 等人,2011 年,2012a)。对 Z. tritici 的种群遗传学研究表明,Zymoseptoria 属的多样性中心位于中东地区(Banke et al、2004),毗邻被公认为作物驯化中心的新月沃地(Harlan,1971),那里有大量的 CWRs 自然分布(Harlan &amp; Zohary, 1966)。在 20 世纪 90 年代末到 21 世纪初,半生真菌 Z. passerinii 在美国上中西部和加拿大邻近省份的最后一次大爆发中变得非常重要(Toubia-Rahme &amp; Steffenson, 2004)。在此期间,对 2003 年和 2004 年在北达科他州和明尼苏达州西部采集的 309 株分离株进行了广泛研究,结果显示 Passerinii 的遗传多样性很高,种群结构较浅(Lee &amp; Neate, 2007b),两种交配类型的频率均衡(Lee &amp; Neate, 2007a),表明其为有性生殖。然而,这种病原体的远缘阶段只在实验条件下报道过,在野外还没有描述过(Ware 等人,2006 年)。有趣的是,尽管 SSLB 在本世纪初很重要,但据我们所知,目前还没有关于 SSLB 在北美或其他地区(包括中东)爆发的报道。病害三角区指出,在决定病害流行的严重程度方面,有利的气候变量与植物特征同样重要(Stevens,1960 年)。因此,SSLB 的零星发生归因于孢子萌发需要 48 小时的持续湿度(Green &amp; Dickson, 1957)和较长的潜伏期(16-19 d)(Koble 等人,1959;Cunfer, 2000),这表明它对天气条件有很强的依赖性。
{"title":"Evolution of sympatric host-specialized lineages of the fungal plant pathogen Zymoseptoria passerinii in natural ecosystems","authors":"Idalia C. Rojas-Barrera, Victor M. Flores-Núñez, Janine Haueisen, Alireza Alizadeh, Fatemeh Salimi, Eva H. Stukenbrock","doi":"10.1111/nph.20340","DOIUrl":"https://doi.org/10.1111/nph.20340","url":null,"abstract":"&lt;h2&gt; Introduction&lt;/h2&gt;\u0000&lt;p&gt;The increasing emergence and severity of infectious fungal diseases threaten food security and natural ecosystems (Fisher &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2012&lt;/span&gt;; Stukenbrock &amp; Gurr, &lt;span&gt;2023&lt;/span&gt;). Continuous monitoring, prediction modeling of disease spread, and deeper comprehension of fungal pathogens in wild plant hosts have been largely neglected. This is crucial to profile the impact of fungal pathogens on the context of climate change and independent of agricultural environments (Fisher &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2012&lt;/span&gt;). Current evidence supports that crop wild relatives (CWRs) might serve as reservoirs for domesticated plant pathogens (Monteil &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2013&lt;/span&gt;, &lt;span&gt;2016&lt;/span&gt;), although still few studies are focused on wild pathogen population processes and dynamics (Rouxel &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2013&lt;/span&gt;; Penczykowski &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2015&lt;/span&gt;; Eck &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2022&lt;/span&gt;; Treindl &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2023&lt;/span&gt;). CWRs hold higher levels of genetic diversity and have coevolved in sympatry with plant pathogens in natural ecosystems. Moreover, the centers of diversity and domestication of crop plants harbor a wealth of species (Harlan, &lt;span&gt;1971&lt;/span&gt;) that could serve as hosts for plant pathogens (Vavilov, &lt;span&gt;1992&lt;/span&gt;). Despite the latter, natural ecosystems are undervalued economically, which limits funding for studies (Fisher &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2012&lt;/span&gt;). Furthermore, having access to wild species found in remote locations or immersed in complex geopolitical contexts adds another layer of difficulty, generating a geographical bias toward high-income regions at the expense of exploring the remaining biodiversity (Marks &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2023&lt;/span&gt;). One way to overcome this is to prioritize neglected areas by collaborating with scientific communities situated in less-represented regions of the globe (Marks &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2023&lt;/span&gt;), and promoting research on nonmodel species and dynamics in natural ecosystems.&lt;/p&gt;\u0000&lt;p&gt;Cumulative evidence supports that ecological divergence of plant pathogens is driven by host specialization. As proposed by Crous &amp; Groenewald (&lt;span&gt;2005&lt;/span&gt;) and exemplified by multiple studies (Steenkamp &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2002&lt;/span&gt;; Choi &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2011&lt;/span&gt;; Rouxel &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2013&lt;/span&gt;; Faticov &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2022&lt;/span&gt;), plant pathogens phylogenies frequently represent multiple closely related sister or cryptic species. In this regard, the &lt;i&gt;Zymoseptoria&lt;/i&gt; genus comprises eight ascomycete species, only two of them, &lt;i&gt;Zymoseptoria tritici&lt;/i&gt; and &lt;i&gt;Zymoseptoria passerinii&lt;/i&gt; (Sacc.) Quaedvlieg &amp; Crous, have been reported to infect domesticated hosts (Quaedvlieg &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2011&lt;/span&gt;; Stukenbrock &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2012b&lt;/span&gt;). The origin, population genetics, and plant–pathogen dynamics of the wheat fungal pathogen &lt;i&gt;Z. tritici&lt;/i&gt; have been extensively investigated","PeriodicalId":214,"journal":{"name":"New Phytologist","volume":"54 1","pages":""},"PeriodicalIF":9.4,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142832788","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Temperature governs the relative contributions of cuticle and stomata to leaf minimum conductance
IF 9.4 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-12-14 DOI: 10.1111/nph.20346
Josef C. Garen, Sean T. Michaletz
<h2> Introduction</h2><p>Climate change is increasing the frequency and severity of hot drought events in many parts of the world, with further increases forecast for the coming century (Intergovernmental Panel on Climate Change (IPCC), <span>2021</span>). During periods of water stress, plants typically reduce their stomatal aperture, restricting both water loss and carbon substrate availability for photosynthesis (Cowan & Farquhar, <span>1977</span>). However, even with stomata maximally closed, leaves still lose water at a rate described by the leaf minimum conductance to water vapour, <i>g</i><sub>min</sub> (mol m<sup>−2</sup> s<sup>−1</sup>; Table 1) (Duursma <i>et al</i>., <span>2019</span>). While <i>g</i><sub>min</sub> is typically more than an order of magnitude less than stomatal conductance (<i>g</i><sub>sw</sub>; mol m<sup>−2</sup> s<sup>−1</sup>) during more favourable conditions (Slot <i>et al</i>., <span>2021</span>), plants may lose substantial amounts of water even under maximal stomatal closure due to high evaporative demand (Vicente-Serrano <i>et al</i>., <span>2020</span>). Improved understanding of <i>g</i><sub>min</sub> is necessary, as transpiration during hot drought events can have substantial effects on plant mortality and landscape-scale water balance (Park Williams <i>et al</i>., <span>2013</span>; Rogers <i>et al</i>., <span>2017</span>; Hammond & Adams, <span>2019</span>).</p><div><header><span>Table 1. </span>List of symbols.</header><div tabindex="0"><table><thead><tr><th>Symbol</th><th>Definition</th><th>Units</th></tr></thead><tbody><tr><td><i>A</i></td><td>Net assimilation rate</td><td>μmol m<sup>−2</sup> s<sup>−1</sup></td></tr><tr><td><i>a</i><sub>l</sub></td><td>One-sided (projected) leaf area</td><td>m<sup>2</sup></td></tr><tr><td><i>c</i><sub>a</sub></td><td>Ambient air CO<sub>2</sub> concentration</td><td>μmol mol<sup>−1</sup></td></tr><tr><td><i>c</i><sub>i</sub></td><td>Leaf intercellular CO<sub>2</sub> concentration</td><td>μmol mol<sup>−1</sup></td></tr><tr><td><i>E</i></td><td>Transpiration rate</td><td>mol m<sup>−2</sup> s<sup>−1</sup></td></tr><tr><td><i>g</i><sub>bw</sub></td><td>Leaf boundary layer conductance to water vapour</td><td>mol m<sup>−2</sup> s<sup>−1</sup></td></tr><tr><td><i>g</i><sub>cw</sub></td><td>Leaf cuticular conductance to water vapour</td><td>mol m<sup>−2</sup> s<sup>−1</sup></td></tr><tr><td><i>g</i><sub>min</sub></td><td>Leaf minimum conductance to water vapour</td><td>mol m<sup>−2</sup> s<sup>−1</sup></td></tr><tr><td><i>g</i><sub>sw</sub></td><td>Stomatal conductance to water vapour</td><td>mol m<sup>−2</sup> s<sup>−1</sup></td></tr><tr><td><i>g</i><sub>sw,min</sub></td><td>Minimum stomatal conductance</td><td>mol m<sup>−2</sup> s<sup>−1</sup></td></tr><tr><td><span data-altimg="/cms/asset/a4dd9478-c7b4-4223-89b8-9d04cfe00212/nph20346-math-0001.png"></span><mjx-container ctxtmenu_counter="0" ctxtmenu_
Schreiber, 2001; Riederer, 2006),但这通常是在酶切分离的角质层或叶盘上测量的,很少在体内测量(参见 Márquez 等人,2021 年)。至关重要的是,从未在体内同时测量过 gmin 和 gcw 的短期温度依赖性;因此,人们对这些不同的水分途径如何对温度做出反应知之甚少。了解不同的水分损失途径如何导致观察到的 gmin 的温度敏感性,对于为替代性植物水分利用策略的理论提供信息十分必要(Blonder 等人,2023 年)。最近,研究人员报告了在叶片温度较高时气孔 "脱钩 "的情况(Aparecido 等人,2020 年;Krich 等人,2022 年;Marchin 等人,2023 年)。气孔脱钩发生在叶片温度较高时,尽管同化率下降,但气孔导度却增加或不下降,这与基于最优性原理的理论相矛盾(Cowan &amp; Farquhar, 1977; Medlyn et al.)目前还不清楚这种脱钩是植物为了冷却叶片而做出的适应性反应(Michaletz 等人,2016 年;Garen 等人,2023 年),还是一种被动的 "失败 "机制(Slot 等人,2021 年;Blonder 等人,2023 年)。此外,了解 gcw 的温度响应对于改进气体交换测量也很有必要。最近,Márquez 等人(2021 年)提出了一种考虑到 gcw 的新叶片气体交换模型(Marquez-Stuart-Williams-Farquhar 或 MSF 模型)。以前的气体交换模型是根据 CO2 和 H2O 在空气中的扩散比(c. 1.6)计算叶片细胞间 CO2 浓度 ci,假设所有蒸腾作用都是通过气孔进行的(von Caemmerer &amp; Farquhar, 1981)。然而,虽然 CO2 和 H2O 都很容易通过气孔,但角质层对 CO2 几乎是不渗透的(Boyer,2015 年)。鉴于部分水蒸气会通过角质层逸出,将所有蒸腾作用都归因于气孔的模型会高估 ci(Tominaga 等人,2018 年)。光合作用能力指标,如 Vcmax(Rubisco 羧化的最大速率)和 Jmax(RuBP 再生的最大速率),是利用同化速率 A 与 ci 之间的关系(即 A-ci 曲线)估算出来的(Farquhar 等人,1980 年;Sharkey 等人,1980 年)、1980 年;Sharkey 等人,2007 年),因此 ci 的误差可能会影响 Vcmax 和 Jmax 的估计值,从而对采用这些指标的基于过程的建模框架产生潜在影响(Stinziano 等人,2019 年;Hussain 等人,2024 年)。然而,此前尚未研究过 gcw 温度依赖性对光合作用能力指标的影响。为了量化误差的大小并改进光合作用能力的估算,有必要知道是否以及何时考虑 gcw 及其温度依赖性。我们的研究有以下三个目标:描述 gmin 和 gcw 的温度依赖性,并描述叶片失水途径如何随温度而变化;检验 gmin 和 gcw 是否依赖于叶片的解剖、结构和形态特征;检验 gcw 及其温度依赖性是否会导致光合作用能力测量的误差。我们发现叶片传导率和叶片性状之间的关系与温度有关,并进一步证明光合作用能力指标取决于 gcw,尤其是在气孔传导率较低时。
{"title":"Temperature governs the relative contributions of cuticle and stomata to leaf minimum conductance","authors":"Josef C. Garen, Sean T. Michaletz","doi":"10.1111/nph.20346","DOIUrl":"https://doi.org/10.1111/nph.20346","url":null,"abstract":"&lt;h2&gt; Introduction&lt;/h2&gt;\u0000&lt;p&gt;Climate change is increasing the frequency and severity of hot drought events in many parts of the world, with further increases forecast for the coming century (Intergovernmental Panel on Climate Change (IPCC), &lt;span&gt;2021&lt;/span&gt;). During periods of water stress, plants typically reduce their stomatal aperture, restricting both water loss and carbon substrate availability for photosynthesis (Cowan &amp; Farquhar, &lt;span&gt;1977&lt;/span&gt;). However, even with stomata maximally closed, leaves still lose water at a rate described by the leaf minimum conductance to water vapour, &lt;i&gt;g&lt;/i&gt;&lt;sub&gt;min&lt;/sub&gt; (mol m&lt;sup&gt;−2&lt;/sup&gt; s&lt;sup&gt;−1&lt;/sup&gt;; Table 1) (Duursma &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2019&lt;/span&gt;). While &lt;i&gt;g&lt;/i&gt;&lt;sub&gt;min&lt;/sub&gt; is typically more than an order of magnitude less than stomatal conductance (&lt;i&gt;g&lt;/i&gt;&lt;sub&gt;sw&lt;/sub&gt;; mol m&lt;sup&gt;−2&lt;/sup&gt; s&lt;sup&gt;−1&lt;/sup&gt;) during more favourable conditions (Slot &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2021&lt;/span&gt;), plants may lose substantial amounts of water even under maximal stomatal closure due to high evaporative demand (Vicente-Serrano &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2020&lt;/span&gt;). Improved understanding of &lt;i&gt;g&lt;/i&gt;&lt;sub&gt;min&lt;/sub&gt; is necessary, as transpiration during hot drought events can have substantial effects on plant mortality and landscape-scale water balance (Park Williams &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2013&lt;/span&gt;; Rogers &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2017&lt;/span&gt;; Hammond &amp; Adams, &lt;span&gt;2019&lt;/span&gt;).&lt;/p&gt;\u0000&lt;div&gt;\u0000&lt;header&gt;&lt;span&gt;Table 1. &lt;/span&gt;List of symbols.&lt;/header&gt;\u0000&lt;div tabindex=\"0\"&gt;\u0000&lt;table&gt;\u0000&lt;thead&gt;\u0000&lt;tr&gt;\u0000&lt;th&gt;Symbol&lt;/th&gt;\u0000&lt;th&gt;Definition&lt;/th&gt;\u0000&lt;th&gt;Units&lt;/th&gt;\u0000&lt;/tr&gt;\u0000&lt;/thead&gt;\u0000&lt;tbody&gt;\u0000&lt;tr&gt;\u0000&lt;td&gt;&lt;i&gt;A&lt;/i&gt;&lt;/td&gt;\u0000&lt;td&gt;Net assimilation rate&lt;/td&gt;\u0000&lt;td&gt;μmol m&lt;sup&gt;−2&lt;/sup&gt; s&lt;sup&gt;−1&lt;/sup&gt;&lt;/td&gt;\u0000&lt;/tr&gt;\u0000&lt;tr&gt;\u0000&lt;td&gt;&lt;i&gt;a&lt;/i&gt;&lt;sub&gt;l&lt;/sub&gt;&lt;/td&gt;\u0000&lt;td&gt;One-sided (projected) leaf area&lt;/td&gt;\u0000&lt;td&gt;m&lt;sup&gt;2&lt;/sup&gt;&lt;/td&gt;\u0000&lt;/tr&gt;\u0000&lt;tr&gt;\u0000&lt;td&gt;&lt;i&gt;c&lt;/i&gt;&lt;sub&gt;a&lt;/sub&gt;&lt;/td&gt;\u0000&lt;td&gt;Ambient air CO&lt;sub&gt;2&lt;/sub&gt; concentration&lt;/td&gt;\u0000&lt;td&gt;μmol mol&lt;sup&gt;−1&lt;/sup&gt;&lt;/td&gt;\u0000&lt;/tr&gt;\u0000&lt;tr&gt;\u0000&lt;td&gt;&lt;i&gt;c&lt;/i&gt;&lt;sub&gt;i&lt;/sub&gt;&lt;/td&gt;\u0000&lt;td&gt;Leaf intercellular CO&lt;sub&gt;2&lt;/sub&gt; concentration&lt;/td&gt;\u0000&lt;td&gt;μmol mol&lt;sup&gt;−1&lt;/sup&gt;&lt;/td&gt;\u0000&lt;/tr&gt;\u0000&lt;tr&gt;\u0000&lt;td&gt;&lt;i&gt;E&lt;/i&gt;&lt;/td&gt;\u0000&lt;td&gt;Transpiration rate&lt;/td&gt;\u0000&lt;td&gt;mol m&lt;sup&gt;−2&lt;/sup&gt; s&lt;sup&gt;−1&lt;/sup&gt;&lt;/td&gt;\u0000&lt;/tr&gt;\u0000&lt;tr&gt;\u0000&lt;td&gt;&lt;i&gt;g&lt;/i&gt;&lt;sub&gt;bw&lt;/sub&gt;&lt;/td&gt;\u0000&lt;td&gt;Leaf boundary layer conductance to water vapour&lt;/td&gt;\u0000&lt;td&gt;mol m&lt;sup&gt;−2&lt;/sup&gt; s&lt;sup&gt;−1&lt;/sup&gt;&lt;/td&gt;\u0000&lt;/tr&gt;\u0000&lt;tr&gt;\u0000&lt;td&gt;&lt;i&gt;g&lt;/i&gt;&lt;sub&gt;cw&lt;/sub&gt;&lt;/td&gt;\u0000&lt;td&gt;Leaf cuticular conductance to water vapour&lt;/td&gt;\u0000&lt;td&gt;mol m&lt;sup&gt;−2&lt;/sup&gt; s&lt;sup&gt;−1&lt;/sup&gt;&lt;/td&gt;\u0000&lt;/tr&gt;\u0000&lt;tr&gt;\u0000&lt;td&gt;&lt;i&gt;g&lt;/i&gt;&lt;sub&gt;min&lt;/sub&gt;&lt;/td&gt;\u0000&lt;td&gt;Leaf minimum conductance to water vapour&lt;/td&gt;\u0000&lt;td&gt;mol m&lt;sup&gt;−2&lt;/sup&gt; s&lt;sup&gt;−1&lt;/sup&gt;&lt;/td&gt;\u0000&lt;/tr&gt;\u0000&lt;tr&gt;\u0000&lt;td&gt;&lt;i&gt;g&lt;/i&gt;&lt;sub&gt;sw&lt;/sub&gt;&lt;/td&gt;\u0000&lt;td&gt;Stomatal conductance to water vapour&lt;/td&gt;\u0000&lt;td&gt;mol m&lt;sup&gt;−2&lt;/sup&gt; s&lt;sup&gt;−1&lt;/sup&gt;&lt;/td&gt;\u0000&lt;/tr&gt;\u0000&lt;tr&gt;\u0000&lt;td&gt;&lt;i&gt;g&lt;/i&gt;&lt;sub&gt;sw,min&lt;/sub&gt;&lt;/td&gt;\u0000&lt;td&gt;Minimum stomatal conductance&lt;/td&gt;\u0000&lt;td&gt;mol m&lt;sup&gt;−2&lt;/sup&gt; s&lt;sup&gt;−1&lt;/sup&gt;&lt;/td&gt;\u0000&lt;/tr&gt;\u0000&lt;tr&gt;\u0000&lt;td&gt;&lt;span data-altimg=\"/cms/asset/a4dd9478-c7b4-4223-89b8-9d04cfe00212/nph20346-math-0001.png\"&gt;&lt;/span&gt;&lt;mjx-container ctxtmenu_counter=\"0\" ctxtmenu_","PeriodicalId":214,"journal":{"name":"New Phytologist","volume":"16 1","pages":""},"PeriodicalIF":9.4,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142820982","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hyperspectral reflectance integrates key traits for predicting leaf metabolism
IF 9.4 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-12-14 DOI: 10.1111/nph.20345
Troy S. Magney
<div>There has been widespread interest in developing trait-based models to predict photosynthetic capacity from leaves to ecosystems (Walker <i>et al</i>., <span>2014</span>; Xu & Trugman, <span>2021</span>), but comparably less for nonphotorespiratory mitochondrial CO<sub>2</sub> release (dark respiration, <i>R</i><sub>dark</sub>). This is significant, given that about half of the CO<sub>2</sub> released from plants is via <i>R</i><sub>dark</sub> – which occurs day and night – and supports ATP production, redox balance, nitrogen assimilation and carbon skeleton synthesis (Atkin <i>et al</i>., <span>2015</span>). Terrestrial biosphere models use simplified empirical relationships between the maximum rate of carboxylation (<i>V</i><sub>cmax</sub>) and <i>R</i><sub>dark</sub> – often derived from more easily measurable leaf traits such as leaf mass per area (LMA), leaf lifespan, nitrogen (N), and phosphorus (P), which have more extensive data availability (Reich <i>et al</i>., <span>1998</span>; Tcherkez <i>et al</i>., <span>2024</span>). Notably, these traits are measured across a unidimensional continuum, and there has yet to be solid evidence that the magnitude and direction of a leaf trait is highly predictive of a metabolic trait like <i>R</i><sub>dark</sub>. Leaf metabolic parameters change dramatically with their environment and encompass an integrated suite of traits – some which increase, some which decrease, and some that remain unchanged. This begs the question – <i>is there an alternative approach</i>, <i>which integrates a large suite of the biochemical</i>, <i>structural and environmental traits</i>, <i>to predict R</i><sub><i>dark</i></sub> <i>on its own?</i> A recent paper published in <i>New Phytologist</i> (Wu <i>et al</i>., <span>2024</span>; doi:10.1111/nph.20267) addresses this question by comparing the utility of traditional trait-based approaches against hyperspectral reflectance data across three forest types. <blockquote><p>‘By incorporating bidirectional variations across the visible to shortwave spectrum, hyperspectral reflectance effectively captures dynamic shifts in a broad array of leaf structural and biochemical traits…’</p><div></div></blockquote></div><p>Wu <i>et al</i>. (<span>2024</span>) show that while trait-based models have provided valuable insights in some other studies, their predictive power of <i>R</i><sub>dark</sub> is underwhelming. The authors show that univariate trait<i>–R</i><sub>dark</sub> relationships are weak (<i>r</i><sup>2</sup> ≤ 0.15), and even multivariate models explain only a fraction of the observed variability (<i>r</i><sup>2</sup> = 0.30), leaving much of <i>R</i><sub>dark</sub> complexity unexplained. Beyond traditional leaf economic traits like LMA, N, and P, the authors investigate other elements such as magnesium (Mg), manganese (Mn), calcium (Ca), potassium (K), and sulfur (S), as they play crucial roles in respiratory metabolism but are rarely incorporated into predicti
{"title":"Hyperspectral reflectance integrates key traits for predicting leaf metabolism","authors":"Troy S. Magney","doi":"10.1111/nph.20345","DOIUrl":"https://doi.org/10.1111/nph.20345","url":null,"abstract":"&lt;div&gt;There has been widespread interest in developing trait-based models to predict photosynthetic capacity from leaves to ecosystems (Walker &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2014&lt;/span&gt;; Xu &amp; Trugman, &lt;span&gt;2021&lt;/span&gt;), but comparably less for nonphotorespiratory mitochondrial CO&lt;sub&gt;2&lt;/sub&gt; release (dark respiration, &lt;i&gt;R&lt;/i&gt;&lt;sub&gt;dark&lt;/sub&gt;). This is significant, given that about half of the CO&lt;sub&gt;2&lt;/sub&gt; released from plants is via &lt;i&gt;R&lt;/i&gt;&lt;sub&gt;dark&lt;/sub&gt; – which occurs day and night – and supports ATP production, redox balance, nitrogen assimilation and carbon skeleton synthesis (Atkin &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2015&lt;/span&gt;). Terrestrial biosphere models use simplified empirical relationships between the maximum rate of carboxylation (&lt;i&gt;V&lt;/i&gt;&lt;sub&gt;cmax&lt;/sub&gt;) and &lt;i&gt;R&lt;/i&gt;&lt;sub&gt;dark&lt;/sub&gt; – often derived from more easily measurable leaf traits such as leaf mass per area (LMA), leaf lifespan, nitrogen (N), and phosphorus (P), which have more extensive data availability (Reich &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;1998&lt;/span&gt;; Tcherkez &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2024&lt;/span&gt;). Notably, these traits are measured across a unidimensional continuum, and there has yet to be solid evidence that the magnitude and direction of a leaf trait is highly predictive of a metabolic trait like &lt;i&gt;R&lt;/i&gt;&lt;sub&gt;dark&lt;/sub&gt;. Leaf metabolic parameters change dramatically with their environment and encompass an integrated suite of traits – some which increase, some which decrease, and some that remain unchanged. This begs the question – &lt;i&gt;is there an alternative approach&lt;/i&gt;, &lt;i&gt;which integrates a large suite of the biochemical&lt;/i&gt;, &lt;i&gt;structural and environmental traits&lt;/i&gt;, &lt;i&gt;to predict R&lt;/i&gt;&lt;sub&gt;&lt;i&gt;dark&lt;/i&gt;&lt;/sub&gt; &lt;i&gt;on its own?&lt;/i&gt; A recent paper published in &lt;i&gt;New Phytologist&lt;/i&gt; (Wu &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2024&lt;/span&gt;; doi:10.1111/nph.20267) addresses this question by comparing the utility of traditional trait-based approaches against hyperspectral reflectance data across three forest types. &lt;blockquote&gt;&lt;p&gt;‘By incorporating bidirectional variations across the visible to shortwave spectrum, hyperspectral reflectance effectively captures dynamic shifts in a broad array of leaf structural and biochemical traits…’&lt;/p&gt;\u0000&lt;div&gt;&lt;/div&gt;\u0000&lt;/blockquote&gt;\u0000&lt;/div&gt;\u0000&lt;p&gt;Wu &lt;i&gt;et al&lt;/i&gt;. (&lt;span&gt;2024&lt;/span&gt;) show that while trait-based models have provided valuable insights in some other studies, their predictive power of &lt;i&gt;R&lt;/i&gt;&lt;sub&gt;dark&lt;/sub&gt; is underwhelming. The authors show that univariate trait&lt;i&gt;–R&lt;/i&gt;&lt;sub&gt;dark&lt;/sub&gt; relationships are weak (&lt;i&gt;r&lt;/i&gt;&lt;sup&gt;2&lt;/sup&gt; ≤ 0.15), and even multivariate models explain only a fraction of the observed variability (&lt;i&gt;r&lt;/i&gt;&lt;sup&gt;2&lt;/sup&gt; = 0.30), leaving much of &lt;i&gt;R&lt;/i&gt;&lt;sub&gt;dark&lt;/sub&gt; complexity unexplained. Beyond traditional leaf economic traits like LMA, N, and P, the authors investigate other elements such as magnesium (Mg), manganese (Mn), calcium (Ca), potassium (K), and sulfur (S), as they play crucial roles in respiratory metabolism but are rarely incorporated into predicti","PeriodicalId":214,"journal":{"name":"New Phytologist","volume":"142 1","pages":""},"PeriodicalIF":9.4,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142820767","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Forest dynamics where typhoon winds blow 台风吹拂下的森林动态
IF 9.4 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-12-14 DOI: 10.1111/nph.20350
Aland H. Y. Chan, Toby D. Jackson, Ying Ki Law, E-Ping Rau, David A. Coomes
<h2> Introduction</h2><p>Tropical cyclones (TCs), also known as typhoons or hurricanes, are rotating storm systems that bring strong winds and heavy rainfall, often causing substantial damage to natural ecosystems. Even TCs graded 1–2 on the five-point Saffir–Simpson scale bring sustained wind speeds > 125 km h<sup>−1</sup>, leading to defoliation, branch breakage, bole snapping, and uprooting of forest trees (Tanner <i>et al</i>., <span>1991</span>; Everham & Brokaw, <span>1996</span>; Negrón-Juárez <i>et al</i>., <span>2014</span>; Lin <i>et al</i>., <span>2020</span>). TCs cause substantial loss of aboveground forest biomass (AGB), with West Mexican and Puerto Rican forests reportedly losing 34% (Parker <i>et al</i>., <span>2018</span>) and 23% (Hall <i>et al</i>., <span>2020</span>) of ABG after category 3–4 TC events, respectively. TCs change forest structure, not only by damaging trees but also by remodelling tree architecture amongst survivors (Bonnesoeur <i>et al</i>., <span>2016</span>; Ankori-Karlinsky <i>et al</i>., <span>2024</span>). Regions that frequently experience strong TCs have shorter forests with higher stem densities (De Gouvenain & Silander, <span>2003</span>; Ibanez <i>et al</i>., <span>2019</span>; Lin <i>et al</i>., <span>2020</span>), with trees investing into larger basal areas relative to their heights (Ibanez <i>et al</i>., <span>2019</span>). Under climate change, TCs are becoming less frequent but more intense (Kossin <i>et al</i>., <span>2020</span>; Chand <i>et al</i>., <span>2022</span>) and are shifting towards higher latitudes (Murakami <i>et al</i>., <span>2020</span>; Chand <i>et al</i>., <span>2022</span>). To predict how these changes might affect forests in the future, it is critical that we have a comprehensive understanding of wind-forest dynamics at various spatiotemporal scales (Ennos, <span>1997</span>; Lin <i>et al</i>., <span>2020</span>).</p><p>We currently have limited knowledge on how wind, topography, and forest structure affect forest resistance to TCs at a landscape scale. Previous studies have shown that canopy height, soil type, stock density, and management action (e.g. thinning) could all affect forest resistance to strong winds (Cremer <i>et al</i>., <span>1982</span>; Martin & Ogden, <span>2006</span>; Gardiner, <span>2021</span>). However, most of these studies were carried out in coniferous monocultures on flat terrain. We now know that the most valuable forests from biodiversity, carbon, and ecosystem services stand points are those with complex canopy structures (Bohn & Huth, <span>2016</span>; Jucker <i>et al</i>., <span>2018</span>; Zhu <i>et al</i>., <span>2023</span>). Much of these forests also grow on rugged landscapes, where sites a mere few hundred meters apart could have vastly different wind regimes (Finnigan <i>et al</i>., <span>2020</span>). Only a handful of studies have investigated the factors affecting TC-resistance in these more complex systems
{"title":"Forest dynamics where typhoon winds blow","authors":"Aland H. Y. Chan, Toby D. Jackson, Ying Ki Law, E-Ping Rau, David A. Coomes","doi":"10.1111/nph.20350","DOIUrl":"https://doi.org/10.1111/nph.20350","url":null,"abstract":"&lt;h2&gt; Introduction&lt;/h2&gt;\u0000&lt;p&gt;Tropical cyclones (TCs), also known as typhoons or hurricanes, are rotating storm systems that bring strong winds and heavy rainfall, often causing substantial damage to natural ecosystems. Even TCs graded 1–2 on the five-point Saffir–Simpson scale bring sustained wind speeds &gt; 125 km h&lt;sup&gt;−1&lt;/sup&gt;, leading to defoliation, branch breakage, bole snapping, and uprooting of forest trees (Tanner &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;1991&lt;/span&gt;; Everham &amp; Brokaw, &lt;span&gt;1996&lt;/span&gt;; Negrón-Juárez &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2014&lt;/span&gt;; Lin &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2020&lt;/span&gt;). TCs cause substantial loss of aboveground forest biomass (AGB), with West Mexican and Puerto Rican forests reportedly losing 34% (Parker &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2018&lt;/span&gt;) and 23% (Hall &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2020&lt;/span&gt;) of ABG after category 3–4 TC events, respectively. TCs change forest structure, not only by damaging trees but also by remodelling tree architecture amongst survivors (Bonnesoeur &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2016&lt;/span&gt;; Ankori-Karlinsky &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2024&lt;/span&gt;). Regions that frequently experience strong TCs have shorter forests with higher stem densities (De Gouvenain &amp; Silander, &lt;span&gt;2003&lt;/span&gt;; Ibanez &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2019&lt;/span&gt;; Lin &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2020&lt;/span&gt;), with trees investing into larger basal areas relative to their heights (Ibanez &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2019&lt;/span&gt;). Under climate change, TCs are becoming less frequent but more intense (Kossin &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2020&lt;/span&gt;; Chand &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2022&lt;/span&gt;) and are shifting towards higher latitudes (Murakami &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2020&lt;/span&gt;; Chand &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2022&lt;/span&gt;). To predict how these changes might affect forests in the future, it is critical that we have a comprehensive understanding of wind-forest dynamics at various spatiotemporal scales (Ennos, &lt;span&gt;1997&lt;/span&gt;; Lin &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2020&lt;/span&gt;).&lt;/p&gt;\u0000&lt;p&gt;We currently have limited knowledge on how wind, topography, and forest structure affect forest resistance to TCs at a landscape scale. Previous studies have shown that canopy height, soil type, stock density, and management action (e.g. thinning) could all affect forest resistance to strong winds (Cremer &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;1982&lt;/span&gt;; Martin &amp; Ogden, &lt;span&gt;2006&lt;/span&gt;; Gardiner, &lt;span&gt;2021&lt;/span&gt;). However, most of these studies were carried out in coniferous monocultures on flat terrain. We now know that the most valuable forests from biodiversity, carbon, and ecosystem services stand points are those with complex canopy structures (Bohn &amp; Huth, &lt;span&gt;2016&lt;/span&gt;; Jucker &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2018&lt;/span&gt;; Zhu &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2023&lt;/span&gt;). Much of these forests also grow on rugged landscapes, where sites a mere few hundred meters apart could have vastly different wind regimes (Finnigan &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2020&lt;/span&gt;). Only a handful of studies have investigated the factors affecting TC-resistance in these more complex systems ","PeriodicalId":214,"journal":{"name":"New Phytologist","volume":"5 4 1","pages":""},"PeriodicalIF":9.4,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142820760","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CsIREH1 phosphorylation regulates DELLA protein affecting plant height in cucumber (Cucumis sativus)
IF 9.4 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-12-13 DOI: 10.1111/nph.20309
Hongjiao Zhao, Piaoyun Sun, Can Tong, Xiangbao Li, Tongwen Yang, Yanxin Jiang, Bosi Zhao, Junyang Dong, Biao Jiang, Junjun Shen, Zheng Li

  • Plant height is a critical agronomic trait that affects crop yield, plant architecture, and environmental adaptability. Gibberellins (GAs) regulate plant height, with DELLA proteins acting as key repressors in the GA signaling pathway by inhibiting GA-induced growth. While DELLA phosphorylation is essential for regulating plant height, the precise mechanisms underlying this process remain incompletely understood.
  • In this study, we identified a cucumber mutant with delayed growth, which exhibited reduced sensitivity to GA treatment. Through bulked segregant analysis (BSA-seq) combined with molecular marker linkage analysis, we successfully identified and cloned the gene responsible for the dwarf phenotype, CsIREH1 (INCOMPLETE ROOT HAIR ELONGATION 1), which encodes an AGC protein kinase.
  • Further research revealed that CsIREH1 interacts with and phosphorylates DELLA proteins, specifically targeting CsGAIP and CsGAI2. We propose that IREH1-dependent phosphorylation of DELLA proteins prevents their excessive accumulation, thereby maintaining normal plant growth.
  • Therefore, investigating the role of IREH1-mediated DELLA phosphorylation provides valuable insights and theoretical foundations for understanding how plants regulate growth mechanisms.

{"title":"CsIREH1 phosphorylation regulates DELLA protein affecting plant height in cucumber (Cucumis sativus)","authors":"Hongjiao Zhao, Piaoyun Sun, Can Tong, Xiangbao Li, Tongwen Yang, Yanxin Jiang, Bosi Zhao, Junyang Dong, Biao Jiang, Junjun Shen, Zheng Li","doi":"10.1111/nph.20309","DOIUrl":"https://doi.org/10.1111/nph.20309","url":null,"abstract":"<p>\u0000</p><ul>\u0000<li>Plant height is a critical agronomic trait that affects crop yield, plant architecture, and environmental adaptability. Gibberellins (GAs) regulate plant height, with DELLA proteins acting as key repressors in the GA signaling pathway by inhibiting GA-induced growth. While DELLA phosphorylation is essential for regulating plant height, the precise mechanisms underlying this process remain incompletely understood.</li>\u0000<li>In this study, we identified a cucumber mutant with delayed growth, which exhibited reduced sensitivity to GA treatment. Through bulked segregant analysis (BSA-seq) combined with molecular marker linkage analysis, we successfully identified and cloned the gene responsible for the dwarf phenotype, <i>CsIREH1</i> (<i>INCOMPLETE ROOT HAIR ELONGATION 1</i>), which encodes an AGC protein kinase.</li>\u0000<li>Further research revealed that CsIREH1 interacts with and phosphorylates DELLA proteins, specifically targeting CsGAIP and CsGAI2. We propose that IREH1-dependent phosphorylation of DELLA proteins prevents their excessive accumulation, thereby maintaining normal plant growth.</li>\u0000<li>Therefore, investigating the role of IREH1-mediated DELLA phosphorylation provides valuable insights and theoretical foundations for understanding how plants regulate growth mechanisms.</li>\u0000</ul><p></p>","PeriodicalId":214,"journal":{"name":"New Phytologist","volume":"63 1","pages":""},"PeriodicalIF":9.4,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142820769","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Corrigendum to: The Arabidopsis splicing factor PORCUPINE/SmE1 orchestrates temperature-dependent root development via auxin homeostasis maintenance
IF 9.4 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-12-13 DOI: 10.1111/nph.20352

New Phytologist 244 (2024), 1408–1421, doi: 10.1111/nph.20153

Since its publication, the authors of El Arbi et al. (2024) have identified that under the heading ‘RNA extraction, strand-specific RNA sequencing and data analysis’, the text ‘MRNA sequences were aligned with Salmon (v.0.14.2) (Patro et al., 2017) to the A. thaliana Reference Transcript Dataset 2 (Zhang et al., 2017)’ should read ‘MRNA sequences were aligned with Salmon (v.0.14.2) (Patro et al., 2017) to the A. thaliana Reference Transcript Dataset 2 (AtRTD2-Quasi) (Zhang et al., 2017)’.

We apologise to our readers for this omission.

Author for correspondence:

Markus Schmid

Email: markus.schmid@slu.se

{"title":"Corrigendum to: The Arabidopsis splicing factor PORCUPINE/SmE1 orchestrates temperature-dependent root development via auxin homeostasis maintenance","authors":"","doi":"10.1111/nph.20352","DOIUrl":"https://doi.org/10.1111/nph.20352","url":null,"abstract":"<p><i>New Phytologist</i> <b>244</b> (2024), 1408–1421, doi: 10.1111/nph.20153</p>\u0000<p>Since its publication, the authors of El Arbi <i>et al</i>. (<span>2024</span>) have identified that under the heading ‘RNA extraction, strand-specific RNA sequencing and data analysis’, the text ‘MRNA sequences were aligned with Salmon (v.0.14.2) (Patro <i>et al</i>., <span>2017</span>) to the <i>A. thaliana</i> Reference Transcript Dataset 2 (Zhang <i>et al</i>., <span>2017</span>)’ should read ‘MRNA sequences were aligned with Salmon (v.0.14.2) (Patro <i>et al</i>., <span>2017</span>) to the <i>A. thaliana</i> Reference Transcript Dataset 2 (AtRTD2-Quasi) (Zhang <i>et al</i>., <span>2017</span>)’.</p>\u0000<p>We apologise to our readers for this omission.</p>\u0000<p>Author for correspondence:</p>\u0000<p><i>Markus Schmid</i></p>\u0000<p><i>Email:</i> markus.schmid@slu.se</p>","PeriodicalId":214,"journal":{"name":"New Phytologist","volume":"14 1","pages":""},"PeriodicalIF":9.4,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142820768","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Increased chloroplast occupancy in bundle sheath cells of rice hap3H mutants revealed by Chloro-Count: a new deep learning–based tool
IF 9.4 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-12-12 DOI: 10.1111/nph.20332
Julia Lambret Frotte, Pedro P. Buarque de Gusmão, Georgia Smith, Shuen-Fang Lo, Su-May Yu, Ross W. Hendron, Steven Kelly, Jane A. Langdale

  • There is an increasing demand to boost photosynthesis in rice to increase yield potential. Chloroplasts are the site of photosynthesis, and increasing their number and size is a potential route to elevate photosynthetic activity. Notably, bundle sheath cells do not make a significant contribution to overall carbon fixation in rice, and thus, various attempts are being made to increase chloroplast content specifically in this cell type.
  • In this study, we developed and applied a deep learning tool, Chloro-Count, and used it to quantify chloroplast dimensions in bundle sheath cells of OsHAP3H gain- and loss-of-function mutants in rice.
  • Loss of OsHAP3H increased chloroplast occupancy in bundle sheath cells by 50%. When grown in the field, mutants exhibited increased numbers of tillers and panicles. The implementation of Chloro-Count enabled precise quantification of chloroplasts in loss- and gain-of-function OsHAP3H mutants and facilitated a comparison between 2D and 3D quantification methods.
  • Collectively, our observations revealed that a mechanism operates in bundle sheath cells to restrict chloroplast occupancy as cell dimensions increase. That mechanism is unperturbed in Oshap3H mutants but loss of OsHAP3H function leads to an increase in chloroplast numbers. The use of Chloro-Count also revealed that 2D quantification is compromised by the positioning of chloroplasts within the cell.

{"title":"Increased chloroplast occupancy in bundle sheath cells of rice hap3H mutants revealed by Chloro-Count: a new deep learning–based tool","authors":"Julia Lambret Frotte, Pedro P. Buarque de Gusmão, Georgia Smith, Shuen-Fang Lo, Su-May Yu, Ross W. Hendron, Steven Kelly, Jane A. Langdale","doi":"10.1111/nph.20332","DOIUrl":"https://doi.org/10.1111/nph.20332","url":null,"abstract":"<p>\u0000</p><ul>\u0000<li>There is an increasing demand to boost photosynthesis in rice to increase yield potential. Chloroplasts are the site of photosynthesis, and increasing their number and size is a potential route to elevate photosynthetic activity. Notably, bundle sheath cells do not make a significant contribution to overall carbon fixation in rice, and thus, various attempts are being made to increase chloroplast content specifically in this cell type.</li>\u0000<li>In this study, we developed and applied a deep learning tool, Chloro-Count, and used it to quantify chloroplast dimensions in bundle sheath cells of <i>OsHAP3H</i> gain- and loss-of-function mutants in rice.</li>\u0000<li>Loss of <i>OsHAP3H</i> increased chloroplast occupancy in bundle sheath cells by 50%. When grown in the field, mutants exhibited increased numbers of tillers and panicles. The implementation of Chloro-Count enabled precise quantification of chloroplasts in loss- and gain-of-function <i>OsHAP3H</i> mutants and facilitated a comparison between 2D and 3D quantification methods.</li>\u0000<li>Collectively, our observations revealed that a mechanism operates in bundle sheath cells to restrict chloroplast occupancy as cell dimensions increase. That mechanism is unperturbed in <i>Oshap3H</i> mutants but loss of <i>OsHAP3H</i> function leads to an increase in chloroplast numbers. The use of Chloro-Count also revealed that 2D quantification is compromised by the positioning of chloroplasts within the cell.</li>\u0000</ul><p></p>","PeriodicalId":214,"journal":{"name":"New Phytologist","volume":"91 1","pages":""},"PeriodicalIF":9.4,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142816457","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Proper activity of the age-dependent miR156 is required for leaf heteroblasty and extrafloral nectary development in Passiflora spp.
IF 9.4 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-12-12 DOI: 10.1111/nph.20343
Jessica Ribeiro Soares, Kerly Jessenia Moncaleano Robledo, Vinicius Carius de Souza, Lana Laene Lima Dias, Lazara Aline Simões Silva, Emerson Campos da Silveira, Claudinei da Silva Souza, Elisandra Silva Sousa, Pedro Alexandre Sodrzeieski, Yoan Camilo Guzman Sarmiento, Elyabe Monteiro de Matos, Thais Castilho de Arruda Falcão, Lilian da Silva Fialho, Valeria Monteze Guimaraes, Lyderson Facio Viccini, Flaviani Gabriela Pierdona, Elisson Romanel, Jim Fouracre, Wagner Campos Otoni, Fabio Tebaldi Silveira Nogueira

  • Passion flower extrafloral nectaries (EFNs) protrude from leaves and facilitate mutualistic interactions with insects; however, how age cues control EFN growth remains poorly understood.
  • Here, we examined leaf and EFN morphology and development of two Passiflora species with distinct leaf shapes, and compared the phenotype of these to transgenics with manipulated activity of the age-dependent miR156, which targets several SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE (SPL) transcription factors.
  • Low levels of miR156 correlated with leaf maturation and EFN formation in Passiflora edulis and P. cincinnata. Accordingly, manipulating miR156 activity affected leaf heteroblasty and EFN development. miR156-overexpressing leaves exhibited less abundant and tiny EFNs in both Passiflora species. EFN abundance remained mostly unchanged when miR156 activity was reduced, but it led to larger EFNs in P. cincinnata. Transcriptome analysis of young leaf primordia revealed that miR156-targeted SPLs may be required to properly express leaf and EFN-associated genes. Importantly, altered miR156 activity impacted sugar profiles of the nectar and modified ecological relationships between EFNs and ants.
  • Our work provides evidence that the miR156/SPL module indirectly regulates EFN development in an age-dependent manner and that the EFN development program is closely associated with the heteroblastic developmental program of the EFN-bearing leaves.

{"title":"Proper activity of the age-dependent miR156 is required for leaf heteroblasty and extrafloral nectary development in Passiflora spp.","authors":"Jessica Ribeiro Soares, Kerly Jessenia Moncaleano Robledo, Vinicius Carius de Souza, Lana Laene Lima Dias, Lazara Aline Simões Silva, Emerson Campos da Silveira, Claudinei da Silva Souza, Elisandra Silva Sousa, Pedro Alexandre Sodrzeieski, Yoan Camilo Guzman Sarmiento, Elyabe Monteiro de Matos, Thais Castilho de Arruda Falcão, Lilian da Silva Fialho, Valeria Monteze Guimaraes, Lyderson Facio Viccini, Flaviani Gabriela Pierdona, Elisson Romanel, Jim Fouracre, Wagner Campos Otoni, Fabio Tebaldi Silveira Nogueira","doi":"10.1111/nph.20343","DOIUrl":"https://doi.org/10.1111/nph.20343","url":null,"abstract":"<p>\u0000</p><ul>\u0000<li>Passion flower extrafloral nectaries (EFNs) protrude from leaves and facilitate mutualistic interactions with insects; however, how age cues control EFN growth remains poorly understood.</li>\u0000<li>Here, we examined leaf and EFN morphology and development of two <i>Passiflora</i> species with distinct leaf shapes, and compared the phenotype of these to transgenics with manipulated activity of the age-dependent miR156, which targets several <i>SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE</i> (<i>SPL</i>) transcription factors.</li>\u0000<li>Low levels of miR156 correlated with leaf maturation and EFN formation in <i>Passiflora edulis and P. cincinnata</i>. Accordingly, manipulating miR156 activity affected leaf heteroblasty and EFN development. miR156-overexpressing leaves exhibited less abundant and tiny EFNs in both <i>Passiflora</i> species. EFN abundance remained mostly unchanged when miR156 activity was reduced, but it led to larger EFNs in <i>P. cincinnata</i>. Transcriptome analysis of young leaf primordia revealed that miR156-targeted <i>SPLs</i> may be required to properly express leaf and EFN-associated genes. Importantly, altered miR156 activity impacted sugar profiles of the nectar and modified ecological relationships between EFNs and ants.</li>\u0000<li>Our work provides evidence that the miR156/<i>SPL</i> module indirectly regulates EFN development in an age-dependent manner and that the EFN development program is closely associated with the heteroblastic developmental program of the EFN-bearing leaves.</li>\u0000</ul><p></p>","PeriodicalId":214,"journal":{"name":"New Phytologist","volume":"6 1","pages":""},"PeriodicalIF":9.4,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142816152","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
New Phytologist
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1