首页 > 最新文献

New Phytologist最新文献

英文 中文
Repeated shifts out of tropical climates preceded by whole genome duplication. 热带气候的反复迁移先于全基因组的复制。
IF 9.4 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-10-23 DOI: 10.1111/nph.20200
Tom Carruthers,Deise J P Gonçalves,Pan Li,Andre S Chanderbali,Christopher W Dick,Peter W Fritsch,Drew A Larson,Douglas E Soltis,Pamela S Soltis,William N Weaver,Stephen A Smith
While flowering plants have diversified in virtually every terrestrial clime, climate constrains the distribution of individual lineages. Overcoming climatic constraints may be associated with diverse evolutionary phenomena including whole genome duplication (WGD), gene-tree conflict, and life-history changes. Climatic shifts may also have facilitated increases in flowering plant diversification rates. We investigate climatic shifts in the flowering plant order Ericales, which consists of c. 14 000 species with diverse climatic tolerances. We estimate phylogenetic trees from transcriptomic data, 64 chloroplast loci, and Angiosperms353 nuclear loci that, respectively, incorporate 147, 4508, and 2870 Ericales species. We use these phylogenetic trees to analyse how climatic shifts are associated with WGD, gene-tree conflict, life-history, and diversification rates. Early branches in the phylogenetic trees are extremely short, and have high levels of gene-tree conflict and at least one WGD. On lineages descended from these early branches, there is a significant association between climatic shifts (primarily out of tropical climates), further WGDs, and life-history. Extremely short early branches, and their associated gene-tree conflict and WGDs, appear to underpin the explosive origin of numerous species rich Ericales clades. The evolution of diverse climatic tolerances in these species rich clades is tightly associated with WGD and life-history.
虽然开花植物在几乎所有陆地气候条件下都有多样化,但气候限制了单个品系的分布。克服气候限制可能与多种进化现象有关,包括全基因组复制(WGD)、基因树冲突和生活史变化。气候的变化也可能促进了开花植物多样化率的提高。我们研究了开花植物纲(Ericales)中的气候变迁,该植物纲由大约 14000 个物种组成,具有不同的气候耐受性。我们从转录组数据、64 个叶绿体基因位点和 Angiosperms353 个核基因位点估算出系统发生树,分别包含 147、4508 和 2870 个 Ericales 物种。我们利用这些系统发生树来分析气候变迁如何与 WGD、基因树冲突、生活史和多样化率相关联。系统发生树的早期分支极短,基因树冲突程度高,至少有一个 WGD。在这些早期分支的后代中,气候转变(主要是脱离热带气候)、进一步的 WGD 和生活史之间存在着显著的联系。极短的早期分支及其相关的基因树冲突和 WGD 似乎是众多物种丰富的 Ericales 支系爆炸性起源的基础。在这些物种丰富的支系中,不同气候耐受性的进化与 WGD 和生活史密切相关。
{"title":"Repeated shifts out of tropical climates preceded by whole genome duplication.","authors":"Tom Carruthers,Deise J P Gonçalves,Pan Li,Andre S Chanderbali,Christopher W Dick,Peter W Fritsch,Drew A Larson,Douglas E Soltis,Pamela S Soltis,William N Weaver,Stephen A Smith","doi":"10.1111/nph.20200","DOIUrl":"https://doi.org/10.1111/nph.20200","url":null,"abstract":"While flowering plants have diversified in virtually every terrestrial clime, climate constrains the distribution of individual lineages. Overcoming climatic constraints may be associated with diverse evolutionary phenomena including whole genome duplication (WGD), gene-tree conflict, and life-history changes. Climatic shifts may also have facilitated increases in flowering plant diversification rates. We investigate climatic shifts in the flowering plant order Ericales, which consists of c. 14 000 species with diverse climatic tolerances. We estimate phylogenetic trees from transcriptomic data, 64 chloroplast loci, and Angiosperms353 nuclear loci that, respectively, incorporate 147, 4508, and 2870 Ericales species. We use these phylogenetic trees to analyse how climatic shifts are associated with WGD, gene-tree conflict, life-history, and diversification rates. Early branches in the phylogenetic trees are extremely short, and have high levels of gene-tree conflict and at least one WGD. On lineages descended from these early branches, there is a significant association between climatic shifts (primarily out of tropical climates), further WGDs, and life-history. Extremely short early branches, and their associated gene-tree conflict and WGDs, appear to underpin the explosive origin of numerous species rich Ericales clades. The evolution of diverse climatic tolerances in these species rich clades is tightly associated with WGD and life-history.","PeriodicalId":214,"journal":{"name":"New Phytologist","volume":"235 1","pages":""},"PeriodicalIF":9.4,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142488223","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Empirical evidence and theoretical understanding of ecosystem carbon and nitrogen cycle interactions 生态系统碳氮循环相互作用的经验证据和理论认识
IF 9.4 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-10-23 DOI: 10.1111/nph.20178
Benjamin D. Stocker, Ning Dong, Evan A. Perkowski, Pascal D. Schneider, Huiying Xu, Hugo J. de Boer, Karin T. Rebel, Nicholas G. Smith, Kevin Van Sundert, Han Wang, Sarah E. Jones, I. Colin Prentice, Sandy P. Harrison
Interactions between carbon (C) and nitrogen (N) cycles in terrestrial ecosystems are simulated in advanced vegetation models, yet methodologies vary widely, leading to divergent simulations of past land C balance trends. This underscores the need to reassess our understanding of ecosystem processes, given recent theoretical advancements and empirical data. We review current knowledge, emphasising evidence from experiments and trait data compilations for vegetation responses to CO2 and N input, alongside theoretical and ecological principles for modelling. N fertilisation increases leaf N content but inconsistently enhances leaf-level photosynthetic capacity. Whole-plant responses include increased leaf area and biomass, with reduced root allocation and increased aboveground biomass. Elevated atmospheric CO2 also boosts leaf area and biomass but intensifies belowground allocation, depleting soil N and likely reducing N losses. Global leaf traits data confirm these findings, indicating that soil N availability influences leaf N content more than photosynthetic capacity. A demonstration model based on the functional balance hypothesis accurately predicts responses to N and CO2 fertilisation on tissue allocation, growth and biomass, offering a path to reduce uncertainty in global C cycle projections.
先进的植被模型模拟了陆地生态系统中碳(C)和氮(N)循环之间的相互作用,但其方法却大相径庭,导致对过去陆地碳平衡趋势的模拟结果各不相同。这突出表明,鉴于最近的理论进展和经验数据,我们有必要重新评估对生态系统过程的理解。我们回顾了当前的知识,强调了植被对二氧化碳和氮输入反应的实验证据和性状数据汇编,以及建模的理论和生态原则。氮肥可增加叶片的氮含量,但对叶片光合作用能力的增强效果并不一致。植物的整体反应包括叶面积和生物量增加,根系分配减少,地上生物量增加。大气中二氧化碳浓度升高也会增加叶面积和生物量,但会加强地下分配,消耗土壤中的氮,并可能减少氮的损失。全球叶片性状数据证实了这些发现,表明土壤氮的可用性对叶片氮含量的影响大于光合作用能力。基于功能平衡假说的示范模型准确预测了氮肥和二氧化碳施肥对组织分配、生长和生物量的影响,为减少全球碳循环预测的不确定性提供了一条途径。
{"title":"Empirical evidence and theoretical understanding of ecosystem carbon and nitrogen cycle interactions","authors":"Benjamin D. Stocker, Ning Dong, Evan A. Perkowski, Pascal D. Schneider, Huiying Xu, Hugo J. de Boer, Karin T. Rebel, Nicholas G. Smith, Kevin Van Sundert, Han Wang, Sarah E. Jones, I. Colin Prentice, Sandy P. Harrison","doi":"10.1111/nph.20178","DOIUrl":"https://doi.org/10.1111/nph.20178","url":null,"abstract":"Interactions between carbon (C) and nitrogen (N) cycles in terrestrial ecosystems are simulated in advanced vegetation models, yet methodologies vary widely, leading to divergent simulations of past land C balance trends. This underscores the need to reassess our understanding of ecosystem processes, given recent theoretical advancements and empirical data. We review current knowledge, emphasising evidence from experiments and trait data compilations for vegetation responses to CO<sub>2</sub> and N input, alongside theoretical and ecological principles for modelling. N fertilisation increases leaf N content but inconsistently enhances leaf-level photosynthetic capacity. Whole-plant responses include increased leaf area and biomass, with reduced root allocation and increased aboveground biomass. Elevated atmospheric CO<sub>2</sub> also boosts leaf area and biomass but intensifies belowground allocation, depleting soil N and likely reducing N losses. Global leaf traits data confirm these findings, indicating that soil N availability influences leaf N content more than photosynthetic capacity. A demonstration model based on the functional balance hypothesis accurately predicts responses to N and CO<sub>2</sub> fertilisation on tissue allocation, growth and biomass, offering a path to reduce uncertainty in global C cycle projections.","PeriodicalId":214,"journal":{"name":"New Phytologist","volume":"34 1","pages":""},"PeriodicalIF":9.4,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142489004","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Herbarium specimens reveal a cryptic invasion of polyploid Centaurea stoebe in Europe. 标本馆标本揭示了欧洲多倍体矢车菊的隐性入侵。
IF 9.4 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-10-23 DOI: 10.1111/nph.20212
Christoph Rosche,Olivier Broennimann,Andriy Novikov,Viera Mrázová,Ganna V Boiko,Jiří Danihelka,Michael T Gastner,Antoine Guisan,Kevin Kožić,Marcus Lehnert,Heinz Müller-Schärer,Dávid U Nagy,Ruben Remelgado,Michał Ronikier,Julian A Selke,Natalia M Shiyan,Tomasz Suchan,Arpad E Thoma,Pavel Zdvořák,Patrik Mráz
Numerous plant species are expanding their native ranges due to anthropogenic environmental change. Because cytotypes of polyploid complexes often show similar morphologies, there may be unnoticed range expansions (i.e. cryptic invasions) of one cytotype into regions where only the other cytotype is native. We critically revised herbarium specimens of diploid and tetraploid Centaurea stoebe, collected across Europe between 1790 and 2023. Based on their distribution in natural and relict habitats and phylogeographic data, we estimated the native ranges of both cytotypes. Diploids are native across their entire European range, whereas tetraploids are native only to South-Eastern Europe and have recently expanded their range toward Central Europe. The proportion of tetraploids has exponentially increased over time in their expanded but not in their native range. This cryptic invasion predominantly occurred in ruderal habitats and enlarged the climatic niche of tetraploids toward a more oceanic climate. We conclude that spatio-temporally explicit assessments of range shifts, habitat preferences and niche evolution can improve our understanding of cryptic invasions. We also emphasize the value of herbarium specimens for accurate estimation of species´ native ranges, with fundamental implications for the design of research studies and the assessment of biodiversity trends.
由于人为的环境变化,许多植物物种的原生地范围正在扩大。由于多倍体复合体的细胞型通常表现出相似的形态,因此一种细胞型可能会在不被注意的情况下扩大范围(即隐性入侵),进入只有另一种细胞型是原生植物的地区。我们对 1790 年至 2023 年期间在欧洲收集的二倍体和四倍体矢车菊标本进行了批判性修订。根据它们在自然和遗迹栖息地的分布情况以及系统地理学数据,我们估计了这两种细胞型的原生地范围。二倍体原产于整个欧洲地区,而四倍体仅原产于东南欧,最近已扩展到中欧。随着时间的推移,四倍体的比例在其扩大的原产地呈指数增长,而在其原产地则没有。这种隐性入侵主要发生在原生栖息地,并扩大了四倍体的气候生态位,使其更趋向于海洋性气候。我们的结论是,时空明确的范围转移、栖息地偏好和生态位演化评估可以提高我们对隐性入侵的认识。我们还强调了标本馆标本对于准确估计物种原生地的价值,这对设计研究和评估生物多样性趋势具有根本性的意义。
{"title":"Herbarium specimens reveal a cryptic invasion of polyploid Centaurea stoebe in Europe.","authors":"Christoph Rosche,Olivier Broennimann,Andriy Novikov,Viera Mrázová,Ganna V Boiko,Jiří Danihelka,Michael T Gastner,Antoine Guisan,Kevin Kožić,Marcus Lehnert,Heinz Müller-Schärer,Dávid U Nagy,Ruben Remelgado,Michał Ronikier,Julian A Selke,Natalia M Shiyan,Tomasz Suchan,Arpad E Thoma,Pavel Zdvořák,Patrik Mráz","doi":"10.1111/nph.20212","DOIUrl":"https://doi.org/10.1111/nph.20212","url":null,"abstract":"Numerous plant species are expanding their native ranges due to anthropogenic environmental change. Because cytotypes of polyploid complexes often show similar morphologies, there may be unnoticed range expansions (i.e. cryptic invasions) of one cytotype into regions where only the other cytotype is native. We critically revised herbarium specimens of diploid and tetraploid Centaurea stoebe, collected across Europe between 1790 and 2023. Based on their distribution in natural and relict habitats and phylogeographic data, we estimated the native ranges of both cytotypes. Diploids are native across their entire European range, whereas tetraploids are native only to South-Eastern Europe and have recently expanded their range toward Central Europe. The proportion of tetraploids has exponentially increased over time in their expanded but not in their native range. This cryptic invasion predominantly occurred in ruderal habitats and enlarged the climatic niche of tetraploids toward a more oceanic climate. We conclude that spatio-temporally explicit assessments of range shifts, habitat preferences and niche evolution can improve our understanding of cryptic invasions. We also emphasize the value of herbarium specimens for accurate estimation of species´ native ranges, with fundamental implications for the design of research studies and the assessment of biodiversity trends.","PeriodicalId":214,"journal":{"name":"New Phytologist","volume":"13 1","pages":""},"PeriodicalIF":9.4,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142488222","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nonphototrophic hypocotyl 3 domain proteins: traffic directors, hitchhikers, or both? 非光合作用下胚轴 3 结构域蛋白:交通指挥者、搭便车者,还是两者兼而有之?
IF 9.4 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-10-19 DOI: 10.1111/nph.20211
Paul E. Verslues, Neha Upadhyay‐Tiwari
SummaryThe nonphototrophic hypocotyl 3 (NPH3) domain is plant specific and of unknown function. It is nearly always attached to an N‐terminal BTB domain and a largely unstructured C‐terminal region. Recent reports revealed NPH3‐domain GTPase activity and connection to intracellular trafficking, condensate formation, membrane attachment of the C‐terminal region for some NPH3‐domain proteins and, at the physiological level, drought‐related function for at least one NPH3‐domain protein. We integrate these new ideas of NPH3‐domain protein function into two, nonexclusive, working models: the ‘traffic director’ model, whereby NPH3‐domain proteins regulate intracellular trafficking and, the ‘hitchhiker’ model whereby NPH3‐domain proteins ride the trafficking system to find ubiquitination targets. Determining which model best applies to uncharacterized NPH3‐domain proteins will contribute to understanding intracellular trafficking and environmental responses.
摘要非光合下胚轴 3(NPH3)结构域具有植物特异性,功能未知。它几乎总是连接在一个 N 端 BTB 结构域和一个基本无结构的 C 端区域上。最近的报道揭示了 NPH3 结构域的 GTPase 活性以及与细胞内运输、凝结物形成、某些 NPH3 结构域蛋白 C 端区域的膜连接以及至少一种 NPH3 结构域蛋白在生理水平上的干旱相关功能的联系。我们将这些关于 NPH3-domain蛋白功能的新观点整合到两个非排他性的工作模型中:"交通指挥 "模型,即NPH3-domain蛋白调节细胞内的运输;以及 "搭便车 "模型,即NPH3-domain蛋白搭乘运输系统寻找泛素化目标。确定哪种模式最适用于未表征的 NPH3-结构域蛋白将有助于了解细胞内的运输和环境反应。
{"title":"Nonphototrophic hypocotyl 3 domain proteins: traffic directors, hitchhikers, or both?","authors":"Paul E. Verslues, Neha Upadhyay‐Tiwari","doi":"10.1111/nph.20211","DOIUrl":"https://doi.org/10.1111/nph.20211","url":null,"abstract":"SummaryThe nonphototrophic hypocotyl 3 (NPH3) domain is plant specific and of unknown function. It is nearly always attached to an N‐terminal BTB domain and a largely unstructured C‐terminal region. Recent reports revealed NPH3‐domain GTPase activity and connection to intracellular trafficking, condensate formation, membrane attachment of the C‐terminal region for some NPH3‐domain proteins and, at the physiological level, drought‐related function for at least one NPH3‐domain protein. We integrate these new ideas of NPH3‐domain protein function into two, nonexclusive, working models: the ‘traffic director’ model, whereby NPH3‐domain proteins regulate intracellular trafficking and, the ‘hitchhiker’ model whereby NPH3‐domain proteins ride the trafficking system to find ubiquitination targets. Determining which model best applies to uncharacterized NPH3‐domain proteins will contribute to understanding intracellular trafficking and environmental responses.","PeriodicalId":214,"journal":{"name":"New Phytologist","volume":"62 1","pages":""},"PeriodicalIF":9.4,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142449558","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Relieving the transfusion tissue traffic jam: a network model of radial transport in conifer needles 缓解输血组织交通堵塞:针叶树针叶径向传输网络模型
IF 9.4 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-10-19 DOI: 10.1111/nph.20189
Melissa H. Mai, Chen Gao, Peter A. R. Bork, N. Michele Holbrook, Alexander Schulz, Tomas Bohr
Summary Characteristic of all conifer needles, the transfusion tissue mediates the radial transport of water and sugar between the endodermis and axial vasculature. Physical constraints imposed by the needle's linear geometry introduce two potential extravascular bottlenecks where the opposition of sugar and water flows may frustrate sugar export: one at the vascular access point and the other at the endodermis. We developed a network model of the transfusion tissue to explore how its structure and composition affect the delivery of sugars to the axial phloem. To describe extravascular transport with cellular resolution, we construct networks from images of Pinus pinea needles obtained through tomographic microscopy, as well as fluorescence and electron microscopy. The transfusion tissue provides physically distinct pathways for sugar and water, reducing resistance between the vasculature and endodermis and mitigating flow constriction at the vascular flank. Dissipation of flow velocities through the transfusion tissue's branched structure allows for bidirectional transport of an inbound diffusive sugar flux against an outbound advective water flux across the endodermis. Our results clarify the structure–function relationships of the transfusion tissue under conditions free of physiological stress. The presented model framework is also applicable to different transfusion tissue morphologies in other gymnosperms.
摘要 输糖组织是所有针叶树针的特征,它介导水分和糖分在内皮和轴向血管之间的径向运输。针的线性几何形状所造成的物理限制带来了两个潜在的血管外瓶颈,在这两个瓶颈处,糖和水的对流可能会阻碍糖的输出:一个是在血管接入点,另一个是在内皮层。我们建立了一个输血组织网络模型,以探索其结构和组成如何影响向轴向韧皮部输送糖分。为了以细胞分辨率描述血管外运输,我们通过断层显微镜以及荧光和电子显微镜获得的松针图像构建了网络。输血组织为糖和水提供了不同的物理通道,减少了血管和内皮之间的阻力,减轻了血管侧面的流动收缩。通过输血组织的分枝结构消散流速,可实现内皮层中流入的扩散性糖通量与流出的平流性水通量的双向传输。我们的研究结果阐明了无生理压力条件下输血组织的结构-功能关系。所提出的模型框架也适用于其他裸子植物的不同输导组织形态。
{"title":"Relieving the transfusion tissue traffic jam: a network model of radial transport in conifer needles","authors":"Melissa H. Mai, Chen Gao, Peter A. R. Bork, N. Michele Holbrook, Alexander Schulz, Tomas Bohr","doi":"10.1111/nph.20189","DOIUrl":"https://doi.org/10.1111/nph.20189","url":null,"abstract":"Summary<jats:list list-type=\"bullet\"> <jats:list-item>Characteristic of all conifer needles, the transfusion tissue mediates the radial transport of water and sugar between the endodermis and axial vasculature. Physical constraints imposed by the needle's linear geometry introduce two potential extravascular bottlenecks where the opposition of sugar and water flows may frustrate sugar export: one at the vascular access point and the other at the endodermis.</jats:list-item> <jats:list-item>We developed a network model of the transfusion tissue to explore how its structure and composition affect the delivery of sugars to the axial phloem. To describe extravascular transport with cellular resolution, we construct networks from images of <jats:italic>Pinus pinea</jats:italic> needles obtained through tomographic microscopy, as well as fluorescence and electron microscopy.</jats:list-item> <jats:list-item>The transfusion tissue provides physically distinct pathways for sugar and water, reducing resistance between the vasculature and endodermis and mitigating flow constriction at the vascular flank. Dissipation of flow velocities through the transfusion tissue's branched structure allows for bidirectional transport of an inbound diffusive sugar flux against an outbound advective water flux across the endodermis.</jats:list-item> <jats:list-item>Our results clarify the structure–function relationships of the transfusion tissue under conditions free of physiological stress. The presented model framework is also applicable to different transfusion tissue morphologies in other gymnosperms.</jats:list-item> </jats:list>","PeriodicalId":214,"journal":{"name":"New Phytologist","volume":"80 1","pages":""},"PeriodicalIF":9.4,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142449582","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biomolecular condensation programs floral transition to orchestrate flowering time and inflorescence architecture 生物分子凝结编程花期过渡,协调花期和花序结构
IF 9.4 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-10-18 DOI: 10.1111/nph.20204
Xiaozhen Huang, Yongfang Yang, Cao Xu
Biomolecular condensation involves the concentration of biomolecules (DNA, RNA, proteins) into compartments to form membraneless organelles or condensates with unique properties and functions. This ubiquitous phenomenon has garnered considerable attention in recent years owing to its multifaceted roles in developmental processes and responses to environmental cues in living systems. Recent studies have revealed that biomolecular condensation plays essential roles in regulating the transition of plants from vegetative to reproductive growth, a programmed process known as floral transition that determines flowering time and inflorescence architecture in flowering plants. In this Tansley insight, we review advances in how biomolecular condensation integrates developmental and environmental signals to program and reprogram the floral transition thus diversifies flowering time and inflorescence architecture.
生物分子凝聚是指将生物大分子(DNA、RNA、蛋白质)集中到小室中,形成具有独特性质和功能的无膜细胞器或凝聚体。这种无处不在的现象近年来备受关注,因为它在生命系统的发育过程和对环境线索的反应中发挥着多方面的作用。最近的研究发现,生物分子缩合在调节植物从无性生殖向生殖生长过渡的过程中发挥着至关重要的作用,这一程序化过程被称为花期过渡,它决定了开花植物的开花时间和花序结构。在这篇 "坦斯利洞察 "中,我们回顾了生物分子缩聚如何整合发育和环境信号,对花的过渡过程进行编程和重编程,从而使开花时间和花序结构多样化的研究进展。
{"title":"Biomolecular condensation programs floral transition to orchestrate flowering time and inflorescence architecture","authors":"Xiaozhen Huang, Yongfang Yang, Cao Xu","doi":"10.1111/nph.20204","DOIUrl":"https://doi.org/10.1111/nph.20204","url":null,"abstract":"Biomolecular condensation involves the concentration of biomolecules (DNA, RNA, proteins) into compartments to form membraneless organelles or condensates with unique properties and functions. This ubiquitous phenomenon has garnered considerable attention in recent years owing to its multifaceted roles in developmental processes and responses to environmental cues in living systems. Recent studies have revealed that biomolecular condensation plays essential roles in regulating the transition of plants from vegetative to reproductive growth, a programmed process known as floral transition that determines flowering time and inflorescence architecture in flowering plants. In this Tansley insight, we review advances in how biomolecular condensation integrates developmental and environmental signals to program and reprogram the floral transition thus diversifies flowering time and inflorescence architecture.","PeriodicalId":214,"journal":{"name":"New Phytologist","volume":"25 1","pages":""},"PeriodicalIF":9.4,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142449684","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A new dimension of leaf economic spectrum: temporal instability of relationships among genotypes 叶片经济谱系的一个新维度:基因型之间关系的时间不稳定性
IF 9.4 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-10-18 DOI: 10.1111/nph.20191
Pratima Pahadi, Jay Wason, Seanna Annis, Brian McGill, Yong-Jiang Zhang

  • Leaf economic spectrum (LES) relationships have been studied across many different plant lineages and at different organizational scales. However, the temporal stability of the LES relationships is largely unknown. We used the wild blueberry system with high genotypic diversity to test whether trait–trait relationships across genotypes demonstrate the same LES relationships found in the global database (GLOPNET) and whether they are stable across years.
  • We studied leaf structure, photosynthesis, and leaf nutrients for 16 genotypes of two wild blueberry species semi-naturally grown in a common farm in Maine, USA, across 4 yr.
  • We found substantial variation in leaf structure, physiology, and nutrient traits within and among genotypes, as well as across years in wild blueberries. The LES trait–trait relationships (covariance structure) across genotypes were not always found in all years. The trait syndrome of wild blueberries was shifted by changing environmental conditions over the years. Additionally, traits in 1 yr cannot be used to predict those of another year.
  • Our findings show that LES generally holds among genotypes but is temporally unstable, stressing the significant influence of trait plasticity in response to fluctuating environmental conditions across years, and the importance of temporal dimensions in shaping functional traits and species coexistence.

人们已经在许多不同的植物品系和不同的组织尺度上对叶片经济谱(LES)关系进行了研究。然而,LES 关系的时间稳定性在很大程度上还不为人所知。我们研究了在美国缅因州一个普通农场中半自然生长的两个野生蓝莓物种的 16 个基因型的叶片结构、光合作用和叶片养分,历时 4 年。不同基因型之间的 LES 性状-性状关系(协方差结构)并不总是在所有年份都能发现。野生蓝莓的性状综合征因多年来环境条件的变化而改变。我们的研究结果表明,LES 通常在不同基因型之间成立,但在时间上并不稳定,这强调了性状可塑性在应对不同年份环境条件波动方面的重要影响,以及时间维度在塑造功能性状和物种共存方面的重要性。
{"title":"A new dimension of leaf economic spectrum: temporal instability of relationships among genotypes","authors":"Pratima Pahadi, Jay Wason, Seanna Annis, Brian McGill, Yong-Jiang Zhang","doi":"10.1111/nph.20191","DOIUrl":"https://doi.org/10.1111/nph.20191","url":null,"abstract":"<p>\u0000</p><ul>\u0000<li>Leaf economic spectrum (LES) relationships have been studied across many different plant lineages and at different organizational scales. However, the temporal stability of the LES relationships is largely unknown. We used the wild blueberry system with high genotypic diversity to test whether trait–trait relationships across genotypes demonstrate the same LES relationships found in the global database (GLOPNET) and whether they are stable across years.</li>\u0000<li>We studied leaf structure, photosynthesis, and leaf nutrients for 16 genotypes of two wild blueberry species semi-naturally grown in a common farm in Maine, USA, across 4 yr.</li>\u0000<li>We found substantial variation in leaf structure, physiology, and nutrient traits within and among genotypes, as well as across years in wild blueberries. The LES trait–trait relationships (covariance structure) across genotypes were not always found in all years. The trait syndrome of wild blueberries was shifted by changing environmental conditions over the years. Additionally, traits in 1 yr cannot be used to predict those of another year.</li>\u0000<li>Our findings show that LES generally holds among genotypes but is temporally unstable, stressing the significant influence of trait plasticity in response to fluctuating environmental conditions across years, and the importance of temporal dimensions in shaping functional traits and species coexistence.</li>\u0000</ul><p></p>","PeriodicalId":214,"journal":{"name":"New Phytologist","volume":"45 1","pages":""},"PeriodicalIF":9.4,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142449803","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tracking tree demography and forest dynamics at scale using remote sensing 利用遥感技术大规模跟踪树木分布和森林动态
IF 9.4 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-10-18 DOI: 10.1111/nph.20199
Robin Battison, Suzanne M. Prober, Katherine Zdunic, Toby D. Jackson, Fabian Jörg Fischer, Tommaso Jucker
<h2> Introduction</h2><p>Forest ecosystems face growing pressure on multiple fronts, from increasingly frequent and severe droughts and heatwaves, larger and more intense wildfires and storms, novel pests and pathogens, and human-driven degradation (Senf <i>et al</i>., <span>2018</span>; Canadell <i>et al</i>., <span>2021</span>; Hammond <i>et al</i>., <span>2022</span>; Turner & Seidl, <span>2023</span>). Understanding how trees are responding to these novel disturbance regimes is critical if we are to forecast how forest dynamics will change over the coming century, and what implications this will have for biodiversity and carbon storage in these ecosystems (McDowell <i>et al</i>., <span>2020</span>; Turner & Seidl, <span>2023</span>). To achieve this, we need demographic information that allow us to infer and model changes in population dynamics at scale – data that capture how rates of tree growth, mortality and recruitment vary across both space and time (Coomes <i>et al</i>., <span>2014</span>; Fisher <i>et al</i>., <span>2018</span>; Kunstler <i>et al</i>., <span>2021</span>; Needham <i>et al</i>., <span>2022b</span>; Zuidema & van der Sleen, <span>2022</span>). Ecologists have traditionally relied on networks of permanent field plots to estimate these demographic rates (Lines <i>et al</i>., <span>2010</span>; Ruiz-Benito <i>et al</i>., <span>2013</span>; Kunstler <i>et al</i>., <span>2021</span>; Needham <i>et al</i>., <span>2022b</span>; Piponiot <i>et al</i>., <span>2022</span>). However, while plot networks remain the gold standard to characterise community-level dynamics, they have some inherent limitations when it comes to capturing variation in demographic rates across landscapes. Field surveys are incredibly labour-intensive, meaning that most forest plots are small (0.1–1 ha) and cumulatively only cover a tiny fraction of the total forest area (< 0.01% even in best-case scenarios; Yu <i>et al</i>., <span>2022</span>; Holcomb <i>et al</i>., <span>2023</span>). This makes it challenging to understand how demographic rates vary across environmentally heterogeneous landscapes and in response to large, infrequent disturbances.</p><p>Remote sensing offers an intuitive solution to this challenge of tracking large numbers of trees across broad spatial scales (Stovall <i>et al</i>., <span>2019</span>; Brandt <i>et al</i>., <span>2020</span>; Ma <i>et al</i>., <span>2023</span>). In particular, technologies such as airborne laser scanning (ALS, or LiDAR) can be used to build highly accurate and detailed 3D models of both the forest canopy and the underlying terrain (≤ 1-m resolution) that span thousands of hectares (Jucker, <span>2022</span>; Lines <i>et al</i>., <span>2022</span>). Unsurprisingly, ALS has become an integral tool for large-area mapping of forest structure and biomass, and there is now a growing interest in using repeat ALS acquisitions to quantify forest dynamics at scale (Asner & Mascaro, <span>2014</s
ALS 数据的另一个吸引力在于,它们将树木生长的生物和非生物环境背景化,例如树木在景观中的当地竞争邻域和地形位置(Colgan 等人,2012 年;Swetnam 等人,2017 年;Beese 等人,2022 年;Ma 等人,2023 年)。这不仅为量化不同地貌中的人口比率差异提供了机会,也为将这种差异归因于潜在的生态驱动因素提供了机会。最后,基于个体的方法的一个关键卖点是,它们可直接与我们在实地监测森林的方式以及我们在森林动力学模型中表示森林的方式相媲美。这为弥合实地森林监测计划与遥感森林监测计划之间的差距提供了机会,并有助于减少森林动力学模型中的主要不确定性来源,例如与树木死亡率相关的不确定性来源(Hubau 等人,2020 年;McDowell 等人,2020 年;Pugh 等人,2020 年)。在此,我们利用在澳大利亚大西部林地(GWW)相隔 9 年进行的两次 ALS 调查获得的数据,来捕捉 2500 公顷古老林地栖息地中单株树木的高度生长、树冠扩张、树冠枯死和死亡率。这些半干旱林地是使用重复 ALS 数据量化大规模树木人口统计率的理想试验平台,因为这些林地以少量桉树物种为主,形成了单茎树木稀疏的林分。通过开发一种新的管道来分割和匹配 ALS 调查中的树冠,我们能够可靠地识别和跟踪该景观中 42 213 棵以树冠为主的树木的动态变化。利用这些数据,我们着手确定整个种群中树木的生长和死亡率是如何随树木大小而变化的。这使我们能够量化哪些树群对生物量的增加和减少贡献最大,以及树木在增大时如何调整其树冠生长策略的特征。模拟树木的生长和死亡率在整个景观中如何随精细尺度的地形和当地邻域竞争环境而变化,从而使我们更好地理解人口统计过程如何导致干旱森林的植被空间模式。将树木水平的人口统计率放大到群落水平的地上生物量和树冠三维结构动态。在此过程中,我们探讨了树冠三维结构的时间变化主要是由树木的生长还是死亡驱动的,并旨在确定在没有野火造成的大规模干扰的情况下,这些古老林地目前是作为净碳汇还是净碳源发挥作用。
{"title":"Tracking tree demography and forest dynamics at scale using remote sensing","authors":"Robin Battison, Suzanne M. Prober, Katherine Zdunic, Toby D. Jackson, Fabian Jörg Fischer, Tommaso Jucker","doi":"10.1111/nph.20199","DOIUrl":"https://doi.org/10.1111/nph.20199","url":null,"abstract":"&lt;h2&gt; Introduction&lt;/h2&gt;\u0000&lt;p&gt;Forest ecosystems face growing pressure on multiple fronts, from increasingly frequent and severe droughts and heatwaves, larger and more intense wildfires and storms, novel pests and pathogens, and human-driven degradation (Senf &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2018&lt;/span&gt;; Canadell &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2021&lt;/span&gt;; Hammond &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2022&lt;/span&gt;; Turner &amp; Seidl, &lt;span&gt;2023&lt;/span&gt;). Understanding how trees are responding to these novel disturbance regimes is critical if we are to forecast how forest dynamics will change over the coming century, and what implications this will have for biodiversity and carbon storage in these ecosystems (McDowell &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2020&lt;/span&gt;; Turner &amp; Seidl, &lt;span&gt;2023&lt;/span&gt;). To achieve this, we need demographic information that allow us to infer and model changes in population dynamics at scale – data that capture how rates of tree growth, mortality and recruitment vary across both space and time (Coomes &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2014&lt;/span&gt;; Fisher &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2018&lt;/span&gt;; Kunstler &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2021&lt;/span&gt;; Needham &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2022b&lt;/span&gt;; Zuidema &amp; van der Sleen, &lt;span&gt;2022&lt;/span&gt;). Ecologists have traditionally relied on networks of permanent field plots to estimate these demographic rates (Lines &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2010&lt;/span&gt;; Ruiz-Benito &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2013&lt;/span&gt;; Kunstler &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2021&lt;/span&gt;; Needham &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2022b&lt;/span&gt;; Piponiot &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2022&lt;/span&gt;). However, while plot networks remain the gold standard to characterise community-level dynamics, they have some inherent limitations when it comes to capturing variation in demographic rates across landscapes. Field surveys are incredibly labour-intensive, meaning that most forest plots are small (0.1–1 ha) and cumulatively only cover a tiny fraction of the total forest area (&lt; 0.01% even in best-case scenarios; Yu &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2022&lt;/span&gt;; Holcomb &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2023&lt;/span&gt;). This makes it challenging to understand how demographic rates vary across environmentally heterogeneous landscapes and in response to large, infrequent disturbances.&lt;/p&gt;\u0000&lt;p&gt;Remote sensing offers an intuitive solution to this challenge of tracking large numbers of trees across broad spatial scales (Stovall &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2019&lt;/span&gt;; Brandt &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2020&lt;/span&gt;; Ma &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2023&lt;/span&gt;). In particular, technologies such as airborne laser scanning (ALS, or LiDAR) can be used to build highly accurate and detailed 3D models of both the forest canopy and the underlying terrain (≤ 1-m resolution) that span thousands of hectares (Jucker, &lt;span&gt;2022&lt;/span&gt;; Lines &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2022&lt;/span&gt;). Unsurprisingly, ALS has become an integral tool for large-area mapping of forest structure and biomass, and there is now a growing interest in using repeat ALS acquisitions to quantify forest dynamics at scale (Asner &amp; Mascaro, &lt;span&gt;2014&lt;/s","PeriodicalId":214,"journal":{"name":"New Phytologist","volume":"1 3 1","pages":""},"PeriodicalIF":9.4,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142449685","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Precipitation, solar radiation, and their interaction modify leaf hydraulic efficiency–safety trade-off across angiosperms at the global scale 降水、太阳辐射及其相互作用改变了全球范围内被子植物的叶片水力效率-安全权衡
IF 9.4 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-10-18 DOI: 10.1111/nph.20213
Yi Jin, Qing Ye, Xiaorong Liu, Hui Liu, Sean M. Gleason, Pengcheng He, Xingyun Liang, Guilin Wu

  • In theory, there is a trade-off between hydraulic efficiency and safety. However, the strength and direction of this trade-off at the leaf level are not consistent across studies, and habitat climate may impact this trade-off.
  • We compiled a leaf hydraulic efficiency and safety dataset for 362 species from 81 sites world-wide, with 280 paired observations of both traits, and tested whether climate was associated with departure from the proposed trade-off.
  • The leaf hydraulic efficiency–safety trade-off was weak (R2 = 0.144) at the global scale. Mean annual precipitation and solar radiation (SR) modified the trade-off. Species from dry and high SR habitats (e.g. desert and tropical savanna) were generally located above the trade-off line, indicating that these species tended to have higher leaf hydraulic safety and efficiency than species from wet habitats with low SR (e.g. subtropical monsoon forest and montane rainforest), which were located below the trade-off line. Leaves with high vein density, dry leaf mass per area, and osmotic regulation enhanced safety without compromising hydraulic efficiency.
  • Variation in the hydraulic efficiency–safety trade-off at the leaf level likely facilitates plant survival in specific habitats and allows for a more nuanced view of leaf hydraulic adaption strategies at the global scale.

理论上,水力效率和安全性之间存在权衡。我们汇编了全球 81 个地点 362 个物种的叶片水力效率和安全数据集,对这两个性状进行了 280 次配对观测,并测试了气候是否与偏离所提出的权衡有关。年平均降水量和太阳辐射(SR)改变了这种权衡。来自干燥和高SR栖息地(如沙漠和热带稀树草原)的物种一般位于权衡线之上,表明这些物种的叶片水力安全和效率往往高于来自湿润和低SR栖息地(如亚热带季风森林和山地雨林)的物种,后者位于权衡线之下。叶脉密度高、单位面积干叶质量大、渗透调节能力强的叶片在不影响水力效率的情况下提高了安全性。叶片水平上水力效率-安全性权衡的差异可能有利于植物在特定生境中生存,并能在全球范围内对叶片水力适应策略进行更细致的观察。
{"title":"Precipitation, solar radiation, and their interaction modify leaf hydraulic efficiency–safety trade-off across angiosperms at the global scale","authors":"Yi Jin, Qing Ye, Xiaorong Liu, Hui Liu, Sean M. Gleason, Pengcheng He, Xingyun Liang, Guilin Wu","doi":"10.1111/nph.20213","DOIUrl":"https://doi.org/10.1111/nph.20213","url":null,"abstract":"<p>\u0000</p><ul>\u0000<li>In theory, there is a trade-off between hydraulic efficiency and safety. However, the strength and direction of this trade-off at the leaf level are not consistent across studies, and habitat climate may impact this trade-off.</li>\u0000<li>We compiled a leaf hydraulic efficiency and safety dataset for 362 species from 81 sites world-wide, with 280 paired observations of both traits, and tested whether climate was associated with departure from the proposed trade-off.</li>\u0000<li>The leaf hydraulic efficiency–safety trade-off was weak (<i>R</i><sup>2</sup> = 0.144) at the global scale. Mean annual precipitation and solar radiation (SR) modified the trade-off. Species from dry and high SR habitats (e.g. desert and tropical savanna) were generally located above the trade-off line, indicating that these species tended to have higher leaf hydraulic safety and efficiency than species from wet habitats with low SR (e.g. subtropical monsoon forest and montane rainforest), which were located below the trade-off line. Leaves with high vein density, dry leaf mass per area, and osmotic regulation enhanced safety without compromising hydraulic efficiency.</li>\u0000<li>Variation in the hydraulic efficiency–safety trade-off at the leaf level likely facilitates plant survival in specific habitats and allows for a more nuanced view of leaf hydraulic adaption strategies at the global scale.</li>\u0000</ul><p></p>","PeriodicalId":214,"journal":{"name":"New Phytologist","volume":"18 1","pages":""},"PeriodicalIF":9.4,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142449683","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
FIGL1 attenuates meiotic interhomolog repair and is counteracted by the RAD51 paralog XRCC2 and the chromosome axis protein ASY1 during meiosis 在减数分裂过程中,FIGL1 会减弱减数分裂同源染色体间的修复,并被 RAD51 旁系亲属 XRCC2 和染色体轴蛋白 ASY1 所抵消
IF 9.4 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-10-17 DOI: 10.1111/nph.20181
Côme Emmenecker, Simine Pakzad, Fatou Ture, Julie Guerin, Aurélie Hurel, Aurélie Chambon, Chloé Girard, Raphael Mercier, Rajeev Kumar
<h2> Introduction</h2><p>During meiosis, the repair of DNA double-stranded breaks (DSBs) by homologous recombination (HR) yields crossovers (COs) and noncrossovers (NCOs) (Hunter, <span>2015</span>; Wang & Copenhaver, <span>2018</span>). Meiotic COs between homologous chromosomes (interhomolog) rather than between sister chromatids (intersister) serve important mechanical and evolutionary roles (Schwacha & Kleckner, <span>1994</span>, <span>1997</span>). The choice of the sister or nonsister chromatid template for repair is thus a key determinant for the outcome of meiotic recombination.</p><p>DNA strand exchange recombinases are central in regulating the choice of DNA template for DSB repair (Brown & Bishop, <span>2014</span>; Humphryes & Hochwagen, <span>2014</span>). RAD51 and DMC1 recombinases are two eukaryotic RecA homologs and can assemble into nucleofilaments on single-stranded DNA (ssDNA) generated from the processing of DSBs (Sheridan <i>et al</i>., <span>2008</span>; Brown & Bishop, <span>2014</span>). Both recombinases can perform homology searches of the genome and strand invasion on the donor template during meiosis. Cytologically, RAD51 and DMC1 form nuclear foci on meiotic chromosomes (Bishop, <span>1994</span>; Kurzbauer <i>et al</i>., <span>2012</span>; Brown <i>et al</i>., <span>2015</span>; Slotman <i>et al</i>., <span>2020</span>). Studies in many species contend that meiotic break repair occurs in two temporally distinct phases: a DMC1-permissive phase (Phase 1) followed by a RAD51-permissive phase (Phase 2) (Hayashi <i>et al</i>., <span>2007</span>; Kim <i>et al</i>., <span>2010</span>; Crismani <i>et al</i>., <span>2013</span>; Enguita-Marruedo <i>et al</i>., <span>2019</span>; Toraason <i>et al</i>., <span>2021</span>; Ziesel <i>et al</i>., <span>2022</span>). In the DMC1-permissive phase, DMC1 predominantly repairs DSBs and catalyzes interhomolog recombination, whereas RAD51 is kept catalytically inactive (Tsubouchi & Roeder, <span>2006</span>; Busygina <i>et al</i>., <span>2008</span>; Niu <i>et al</i>., <span>2009</span>; Lao <i>et al</i>., <span>2013</span>; Callender <i>et al</i>., <span>2016</span>). In the RAD51-permissive phase, the RAD51-mediated pathway becomes active to repair remaining DSBs, mainly using sister chromatids (Crismani <i>et al</i>., <span>2013</span>; Enguita-Marruedo <i>et al</i>., <span>2019</span>; Toraason <i>et al</i>., <span>2021</span>; Ziesel <i>et al</i>., <span>2022</span>). The RAD51-dependent pathway also repairs DSB on sisters before meiotic entry (Joshi <i>et al</i>., <span>2015</span>).</p><p>During Phase 1, different RAD51-inhibiting strategies appear to have evolved in eukaryotic species. The Mek1-mediated pathway downregulates Rad51-dependent repair in budding yeast (Niu <i>et al</i>., <span>2009</span>; Callender <i>et al</i>., <span>2016</span>). This regulation is, however, not conserved in plants, because RAD51 can repair breaks in the absence of D
引言 在减数分裂过程中,同源重组(HR)对DNA双链断裂(DSB)的修复会产生交叉(CO)和非交叉(NCO)(Hunter,2015;Wang &amp; Copenhaver,2018)。同源染色体之间(同源染色体间)而非姐妹染色单体之间(姐妹染色单体间)的减数分裂交叉互换具有重要的机械和进化作用(Schwacha &amp; Kleckner,1994,1997)。因此,选择姐妹染色单体或非姐妹染色单体模板进行修复是决定减数分裂重组结果的关键因素。DNA链交换重组酶在调节DSB修复的DNA模板选择方面起着核心作用(Brown &amp; Bishop, 2014; Humphryes &amp; Hochwagen, 2014)。RAD51 和 DMC1 重组酶是两种真核生物 RecA 的同源物,能在处理 DSB 时产生的单链 DNA(ssDNA)上组装成核丝(Sheridan 等人,2008 年;Brown &amp; Bishop,2014 年)。这两种重组酶都能在减数分裂过程中对基因组进行同源搜索,并在供体模板上进行链侵袭。在细胞学上,RAD51 和 DMC1 在减数分裂染色体上形成核病灶(Bishop,1994 年;Kurzbauer 等人,2012 年;Brown 等人,2015 年;Slotman 等人,2020 年)。对许多物种的研究认为,减数分裂断裂修复发生在两个时间上截然不同的阶段:DMC1-允许阶段(第 1 阶段)和 RAD51-允许阶段(第 2 阶段)(Hayashi 等人,2007 年;Kim 等人,2010 年;Crismani 等人,2013 年;Enguita-Marruedo 等人,2019 年;Toraason 等人,2021 年;Ziesel 等人,2022 年)。在DMC1允许阶段,DMC1主要修复DSB并催化同源重组,而RAD51则保持催化不活跃(Tsubouchi &amp; Roeder, 2006; Busygina et al.)在 RAD51 允许阶段,RAD51 介导的途径变得活跃,主要利用姐妹染色单体修复剩余的 DSB(Crismani 等人,2013 年;Enguita-Marruedo 等人,2019 年;Toraason 等人,2021 年;Ziesel 等人,2022 年)。在第一阶段,真核物种中似乎进化出了不同的 RAD51 抑制策略。在芽殖酵母中,Mek1 介导的途径会下调 Rad51 依赖性修复(Niu 等人,2009 年;Callender 等人,2016 年)。然而,这种调控在植物中并不保守,因为 RAD51 可以在没有 DMC1 的情况下修复断裂,尽管是利用缺乏同源染色体间 CO 的姐妹染色单体进行修复(Couteau 等人,1999 年;Wang 等人,2016 年)。在酵母和拟南芥中,仅 DMC1 的存在就会削弱 RAD51 的修复(Lao 等人,2013 年;Da Ines 等人,2022 年)。在酵母中,除了活性 Dmc1 外,Rad51 的持续激活也会延长修复时间(Ziesel 等人,2022 年)。野生型(WT)DMC1 介导的同源重组仍然需要 RAD51 的存在,但不需要其催化活性(Cloud 等人,2012;Da Ines 等人,2013b)。在拟南芥中,RAD51 的 C 端融合了 GFP(RAD51-GFP),它没有催化活性,不能修复有丝分裂和减数分裂细胞中的断裂,但在减数分裂过程中支持 DMC1 介导的修复(Da Ines 等人,2013b)。这一功能表明,在植物中,RAD51 的催化活性对 DMC1 介导的修复并不重要。在真核生物中,DMC1 和 RAD51 的体内功能需要许多辅助蛋白。在植物中,BRCA2 介导 RAD51 和 DMC1 病灶的形成,而 SDS 则是 DMC1 病灶形成所必需的(Azumi,2002 年;Seeliger 等人,2012 年;Fu 等人,2020 年)。这些介质似乎在体内核丝形成步骤中起作用。此外,MND1 和 HOP2 是植物中 DMC1 DNA 交换活性所需的两个进化保守蛋白(Petukhova 等人,2005 年;Chan 等人,2014 年;Uanschou 等人,2014 年)。在 mnd1 和 hop2 中,DMC1 的过度积累会抑制拟南芥减数分裂的 DSB 修复(Kerzendorfer 等人,2006 年;Panoli 等人,2006 年;Vignard 等人,2007 年;Stronghill 等人,2010 年;Farahani-Tafreshi 等人,2022 年)。然而,拟南芥hop2-2低常突变体中微弱的DMC1活性极大地损害了同源体间修复,并使RAD51依赖的DSB修复得以在姐妹花上进行(Uanschou等人,2014年)。RAD54 也需要 RAD51 的功能,但在拟南芥中,DMC1 存在时,RAD54 对减数分裂的 DSB 修复是不必要的(Hernandez Sanchez-Rebato 等,2021 年)。此外,拟南芥有五个结构上相关的 RAD51 准同源物:RAD51C、XRCC3、RAD51D、RAD51B 和 XRCC2(Bleuyard 等人,2005 年)。这些旁系亲属可以形成一个四聚体复合物,称为 BCDX2 复合物(Osakabe 等人,2002 年)。拟南芥的 RAD51C 和 XRCC3 对 RAD51 病灶形成和减数分裂修复至关重要(Bleuyard &amp; White, 2004; Abe et al. 然而,拟南芥 RAD51B 和 XRCC2 的缺失会略微增加减数分裂重组率,这意味着它们在减数分裂修复中的作用尚未确定(Da Ines 等人,2013a)。减数分裂染色体轴蛋白可确保同源物之间的 DSB 修复和 CO 形成,这一过程被称为同源物间偏向(Morgan 等人,2023 年)。拟南芥的 ASY1、ASY3 和 ASY4 是三种与减数分裂轴相关的蛋白,它们能促进突触,这一过程通过 ZYP1 等突触复合体(SC)蛋白的聚合实现同源物之间的拴系(Caryl et al、2000;Armstrong 等人,2002;Higgins 等人,2005;Sanchez-Moran 等人,2007;Ferdous 等人,2012;Chambon 等人,2018;Vrielynck 等人,2023)。ASY1 以一种依赖 ASY3 的方式定位在减数分裂轴上,并在同源物之间的 SC 组装后从突触区耗尽(Ferdous 等人,2012 年)。ASY1、ASY3 和 ASY4 的缺失会导致同源体间 CO 的大量减少,尽管减少的程度不同,但减数分裂的 DSB 主要在姐妹上修复。DMC1的稳定需要ASY1,这表明减数分裂轴与修复机制之间存在功能关系(Sanchez-Moran等人,2007年)。目前还不清楚减数分裂染色体轴蛋白如何促进同源物之间的 DSB 修复。在拟南芥中,I 类 CO 占 CO 的很大比例(85-90%),由 ZMM 蛋白组(SHOC1、P
{"title":"FIGL1 attenuates meiotic interhomolog repair and is counteracted by the RAD51 paralog XRCC2 and the chromosome axis protein ASY1 during meiosis","authors":"Côme Emmenecker, Simine Pakzad, Fatou Ture, Julie Guerin, Aurélie Hurel, Aurélie Chambon, Chloé Girard, Raphael Mercier, Rajeev Kumar","doi":"10.1111/nph.20181","DOIUrl":"https://doi.org/10.1111/nph.20181","url":null,"abstract":"&lt;h2&gt; Introduction&lt;/h2&gt;\u0000&lt;p&gt;During meiosis, the repair of DNA double-stranded breaks (DSBs) by homologous recombination (HR) yields crossovers (COs) and noncrossovers (NCOs) (Hunter, &lt;span&gt;2015&lt;/span&gt;; Wang &amp; Copenhaver, &lt;span&gt;2018&lt;/span&gt;). Meiotic COs between homologous chromosomes (interhomolog) rather than between sister chromatids (intersister) serve important mechanical and evolutionary roles (Schwacha &amp; Kleckner, &lt;span&gt;1994&lt;/span&gt;, &lt;span&gt;1997&lt;/span&gt;). The choice of the sister or nonsister chromatid template for repair is thus a key determinant for the outcome of meiotic recombination.&lt;/p&gt;\u0000&lt;p&gt;DNA strand exchange recombinases are central in regulating the choice of DNA template for DSB repair (Brown &amp; Bishop, &lt;span&gt;2014&lt;/span&gt;; Humphryes &amp; Hochwagen, &lt;span&gt;2014&lt;/span&gt;). RAD51 and DMC1 recombinases are two eukaryotic RecA homologs and can assemble into nucleofilaments on single-stranded DNA (ssDNA) generated from the processing of DSBs (Sheridan &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2008&lt;/span&gt;; Brown &amp; Bishop, &lt;span&gt;2014&lt;/span&gt;). Both recombinases can perform homology searches of the genome and strand invasion on the donor template during meiosis. Cytologically, RAD51 and DMC1 form nuclear foci on meiotic chromosomes (Bishop, &lt;span&gt;1994&lt;/span&gt;; Kurzbauer &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2012&lt;/span&gt;; Brown &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2015&lt;/span&gt;; Slotman &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2020&lt;/span&gt;). Studies in many species contend that meiotic break repair occurs in two temporally distinct phases: a DMC1-permissive phase (Phase 1) followed by a RAD51-permissive phase (Phase 2) (Hayashi &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2007&lt;/span&gt;; Kim &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2010&lt;/span&gt;; Crismani &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2013&lt;/span&gt;; Enguita-Marruedo &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2019&lt;/span&gt;; Toraason &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2021&lt;/span&gt;; Ziesel &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2022&lt;/span&gt;). In the DMC1-permissive phase, DMC1 predominantly repairs DSBs and catalyzes interhomolog recombination, whereas RAD51 is kept catalytically inactive (Tsubouchi &amp; Roeder, &lt;span&gt;2006&lt;/span&gt;; Busygina &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2008&lt;/span&gt;; Niu &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2009&lt;/span&gt;; Lao &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2013&lt;/span&gt;; Callender &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2016&lt;/span&gt;). In the RAD51-permissive phase, the RAD51-mediated pathway becomes active to repair remaining DSBs, mainly using sister chromatids (Crismani &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2013&lt;/span&gt;; Enguita-Marruedo &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2019&lt;/span&gt;; Toraason &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2021&lt;/span&gt;; Ziesel &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2022&lt;/span&gt;). The RAD51-dependent pathway also repairs DSB on sisters before meiotic entry (Joshi &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2015&lt;/span&gt;).&lt;/p&gt;\u0000&lt;p&gt;During Phase 1, different RAD51-inhibiting strategies appear to have evolved in eukaryotic species. The Mek1-mediated pathway downregulates Rad51-dependent repair in budding yeast (Niu &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2009&lt;/span&gt;; Callender &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2016&lt;/span&gt;). This regulation is, however, not conserved in plants, because RAD51 can repair breaks in the absence of D","PeriodicalId":214,"journal":{"name":"New Phytologist","volume":"79 1","pages":""},"PeriodicalIF":9.4,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142448617","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
New Phytologist
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1