首页 > 最新文献

New Phytologist最新文献

英文 中文
Differential 'resuscitation' from the seed microbiota: a plant-holobiont ecological strategy for buffering stresses. 种子微生物群的差异“复苏”:缓冲压力的植物-全生物生态策略。
IF 9.4 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2026-01-22 DOI: 10.1111/nph.70920
Ying Xu,Ning Ling,Cendrine Mony,Philippe Vandenkoornhuyse
The plant and its associated microbiota constitute a holobiont. Within this framework, the seed endophyte reservoir, shaped through multigenerational selection, exhibits pronounced host specificity, mutualistic potential, and signatures of co-evolution. We hypothesise that this reservoir operates as a 'symbiotic toolbox' forming an 'Anticipated Utility Microbiota' within the holobiont. Upon germination, specific microbes from this toolbox may undergo resuscitation to buffer environmental stresses, thereby influencing plant fitness. Using axenic Vicia sativa seeds, we simulated cold, salinity, and drought stresses and applied 16S rRNA sequencing to track seed symbiont resuscitation. Taxa showing resuscitation across stresses were classified as generalists, whilst those resuscitating under specific stresses were specialists. Microbial inoculants from these taxa were then tested in pots for host growth effects. As expected, distinct resuscitation patterns under different stresses supported the hypothesised seed 'symbiotic toolbox'. We identified 115 generalist amplicon sequence variants (e.g. Methylobacterium, Pantoea, and Sphingomonas) and stress-specific specialists: 60 cold specialists (e.g. Stenotrophomonas and Geobacter), 79 salt specialists (e.g. Leptotrichia), and 13 drought specialists (e.g. Proteobacteria). Strikingly, generalist microbial inoculants consistently promoted seedling growth across stresses, whilst specialist inoculants showed stress-specific efficacy. This study elucidates a holobiont mechanism whereby vertically transmitted seed microbes constitute a 'symbiotic toolbox' that differentially resuscitates under stress, thereby enhancing seedling fitness.
植物和与之相关的微生物群构成一个整体生物。在这个框架内,种子内生菌库通过多代选择形成,表现出明显的宿主特异性、互惠潜力和共同进化的特征。我们假设这个储层作为一个“共生工具箱”在全息生物体内形成一个“预期效用微生物群”。在萌发时,这个工具箱中的特定微生物可能会进行复苏以缓冲环境压力,从而影响植物的适应性。以无性油菜种子为研究对象,模拟低温、盐度和干旱胁迫,并应用16S rRNA测序技术追踪种子共生复苏。在不同压力下复苏的分类群被归类为通才,而在特定压力下复苏的分类群被归类为专家。然后在盆栽中测试了这些分类群的微生物接种剂对宿主生长的影响。正如预期的那样,在不同的压力下,不同的复苏模式支持了假设的种子“共生工具箱”。我们确定了115个通用扩增子序列变体(如甲基细菌、泛菌和鞘氨单胞菌)和应激特异性专家:60个寒冷专家(如窄养单胞菌和地杆菌),79个盐专家(如细毛菌)和13个干旱专家(如变形菌)。引人注目的是,通用微生物接种剂始终如一地促进了幼苗的生长,而专业接种剂则显示出特定于压力的效果。这项研究阐明了一种全生物机制,即垂直传播的种子微生物构成了一个“共生工具箱”,在胁迫下进行差异化复苏,从而提高了幼苗的适应性。
{"title":"Differential 'resuscitation' from the seed microbiota: a plant-holobiont ecological strategy for buffering stresses.","authors":"Ying Xu,Ning Ling,Cendrine Mony,Philippe Vandenkoornhuyse","doi":"10.1111/nph.70920","DOIUrl":"https://doi.org/10.1111/nph.70920","url":null,"abstract":"The plant and its associated microbiota constitute a holobiont. Within this framework, the seed endophyte reservoir, shaped through multigenerational selection, exhibits pronounced host specificity, mutualistic potential, and signatures of co-evolution. We hypothesise that this reservoir operates as a 'symbiotic toolbox' forming an 'Anticipated Utility Microbiota' within the holobiont. Upon germination, specific microbes from this toolbox may undergo resuscitation to buffer environmental stresses, thereby influencing plant fitness. Using axenic Vicia sativa seeds, we simulated cold, salinity, and drought stresses and applied 16S rRNA sequencing to track seed symbiont resuscitation. Taxa showing resuscitation across stresses were classified as generalists, whilst those resuscitating under specific stresses were specialists. Microbial inoculants from these taxa were then tested in pots for host growth effects. As expected, distinct resuscitation patterns under different stresses supported the hypothesised seed 'symbiotic toolbox'. We identified 115 generalist amplicon sequence variants (e.g. Methylobacterium, Pantoea, and Sphingomonas) and stress-specific specialists: 60 cold specialists (e.g. Stenotrophomonas and Geobacter), 79 salt specialists (e.g. Leptotrichia), and 13 drought specialists (e.g. Proteobacteria). Strikingly, generalist microbial inoculants consistently promoted seedling growth across stresses, whilst specialist inoculants showed stress-specific efficacy. This study elucidates a holobiont mechanism whereby vertically transmitted seed microbes constitute a 'symbiotic toolbox' that differentially resuscitates under stress, thereby enhancing seedling fitness.","PeriodicalId":214,"journal":{"name":"New Phytologist","volume":"64 1","pages":""},"PeriodicalIF":9.4,"publicationDate":"2026-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146015274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cold hardiness mechanisms and modeling: existing approaches and future avenues. 抗寒机制和建模:现有方法和未来途径。
IF 9.4 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2026-01-20 DOI: 10.1111/nph.70863
Guillaume Charrier,Al P Kovaleski,Bénédicte Wenden,Heikki Hänninen
Cold hardiness models are useful tools to predict cold damage in plants, such as those produced by unseasonal temperature cycles or by increased cold exposure. Although development of these models started about five decades ago, their applications remain limited. We describe the main paradigms driving the different types of cold hardiness models (empirical to process-based), their similarities and differences. Among the existing paradigms, process-based models are built to translate physiological mechanisms into mathematical functions over a broad range of climatic conditions, thus making them more accurate for studying the effect of climate change. Different approaches have been developed in predicting cold hardiness: (1) empirical relationships between temperature and cold hardiness; (2) phenological processes controlling acclimation and deacclimation rates; (3) phenological and physiological processes predicting cold hardiness through the osmo-hydric approach; and (4) molecular regulation driving the metabolic drivers of cold hardiness. For the first three approaches, we describe the context, the experimental and field observations that defined their frameworks as well as their limitations. To increase the realism of cold hardiness models, we describe the potential of a fourth approach, based on the perception of environmental signals, how it translates into cold acclimation/deacclimation and provide recommendations to develop this framework.
抗寒性模型是预测植物冷损伤的有用工具,例如那些由非季节性温度循环或增加的冷暴露产生的植物。虽然这些模型的开发始于大约50年前,但它们的应用仍然有限。我们描述了驱动不同类型的耐寒性模型的主要范式(经验到基于过程的),它们的异同。在现有的范式中,基于过程的模型将生理机制转化为广泛气候条件下的数学函数,从而使其更准确地用于研究气候变化的影响。预测抗寒性的方法有以下几种:(1)温度与抗寒性的经验关系;(2)控制驯化和脱驯化速率的物候过程;(3)渗透水分法预测抗寒性的物候和生理过程;(4)耐寒性代谢驱动因子的分子调控。对于前三种方法,我们描述了背景、实验和实地观察,这些观察定义了它们的框架以及它们的局限性。为了提高抗寒性模型的真实性,我们描述了第四种方法的潜力,基于对环境信号的感知,它如何转化为冷适应/去适应,并提供了开发该框架的建议。
{"title":"Cold hardiness mechanisms and modeling: existing approaches and future avenues.","authors":"Guillaume Charrier,Al P Kovaleski,Bénédicte Wenden,Heikki Hänninen","doi":"10.1111/nph.70863","DOIUrl":"https://doi.org/10.1111/nph.70863","url":null,"abstract":"Cold hardiness models are useful tools to predict cold damage in plants, such as those produced by unseasonal temperature cycles or by increased cold exposure. Although development of these models started about five decades ago, their applications remain limited. We describe the main paradigms driving the different types of cold hardiness models (empirical to process-based), their similarities and differences. Among the existing paradigms, process-based models are built to translate physiological mechanisms into mathematical functions over a broad range of climatic conditions, thus making them more accurate for studying the effect of climate change. Different approaches have been developed in predicting cold hardiness: (1) empirical relationships between temperature and cold hardiness; (2) phenological processes controlling acclimation and deacclimation rates; (3) phenological and physiological processes predicting cold hardiness through the osmo-hydric approach; and (4) molecular regulation driving the metabolic drivers of cold hardiness. For the first three approaches, we describe the context, the experimental and field observations that defined their frameworks as well as their limitations. To increase the realism of cold hardiness models, we describe the potential of a fourth approach, based on the perception of environmental signals, how it translates into cold acclimation/deacclimation and provide recommendations to develop this framework.","PeriodicalId":214,"journal":{"name":"New Phytologist","volume":"65 1","pages":""},"PeriodicalIF":9.4,"publicationDate":"2026-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146005103","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Golgi-localized mannanases sustain hemicellulose biosynthesis 高尔基定位的甘露聚糖酶维持半纤维素的生物合成
IF 9.4 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2026-01-20 DOI: 10.1111/nph.70875
Talia Jacobson, Mair Edwards, Moni Qiande, Madalen Robert, Julia Moncrieff, Cătălin Voiniciuc

Data availability

Data supporting the findings of this work are available in the main text and in Figs S1–S9; Tables S1–S6, and in Video S1. Popular plasmids and seeds will be donated to Addgene and ABRC, respectively. High-resolution transmission electron micrographs for yeast are on FigShare: doi: 10.6084/m9.figshare.30369646.

数据可得性支持本研究结果的数据可在正文和图S1-S9中获得;表S1 - s6和视频S1。受欢迎的质粒和种子将分别捐赠给Addgene和ABRC。酵母的高分辨率透射电子显微图见FigShare: doi: 10.6084/m9.figshare.30369646。
{"title":"Golgi-localized mannanases sustain hemicellulose biosynthesis","authors":"Talia Jacobson, Mair Edwards, Moni Qiande, Madalen Robert, Julia Moncrieff, Cătălin Voiniciuc","doi":"10.1111/nph.70875","DOIUrl":"https://doi.org/10.1111/nph.70875","url":null,"abstract":"<h2>Data availability</h2>\u0000<p>Data supporting the findings of this work are available in the main text and in Figs S1–S9; Tables S1–S6, and in Video S1. Popular plasmids and seeds will be donated to Addgene and ABRC, respectively. High-resolution transmission electron micrographs for yeast are on FigShare: doi: 10.6084/m9.figshare.30369646.</p>","PeriodicalId":214,"journal":{"name":"New Phytologist","volume":"100 1","pages":""},"PeriodicalIF":9.4,"publicationDate":"2026-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146000875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Colletotrichum gloeosporioides effector Vne1 targets the transcription factor MdAHL17 to subvert MdCNL1-mediated plant immunity in apple 苹果炭疽病菌效应因子Vne1靶向转录因子MdAHL17,破坏mdcnl1介导的植物免疫
IF 9.4 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2026-01-19 DOI: 10.1111/nph.70931
Na Wang, Meiyu Wang, Xuanzhu Zhao, Jie Xu, Ruijie Chen, Zhirui Ji, Junxiang Zhang

Data availability

All data are available in the main text or Dataset S1, Figs S1–S13, and Tables S1–S3).

数据可用性所有数据均可在正文或数据集S1、图S1 - s13和表S1 - s3中获得。
{"title":"A Colletotrichum gloeosporioides effector Vne1 targets the transcription factor MdAHL17 to subvert MdCNL1-mediated plant immunity in apple","authors":"Na Wang, Meiyu Wang, Xuanzhu Zhao, Jie Xu, Ruijie Chen, Zhirui Ji, Junxiang Zhang","doi":"10.1111/nph.70931","DOIUrl":"https://doi.org/10.1111/nph.70931","url":null,"abstract":"<h2>Data availability</h2>\u0000<p>All data are available in the main text or Dataset S1, Figs S1–S13, and Tables S1–S3).</p>","PeriodicalId":214,"journal":{"name":"New Phytologist","volume":"39 1","pages":""},"PeriodicalIF":9.4,"publicationDate":"2026-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146001548","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Herbicide‐induced metabolic changes in a plant–aphid system: how soil bacteria drive the fate and impact of a residual dose of Isoproturon? 除草剂诱导的植物蚜虫系统代谢变化:土壤细菌如何驱动异丙隆残留剂量的命运和影响?
IF 9.4 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2026-01-17 DOI: 10.1111/nph.70891
Axel Beringue, Lucie Castel, Cécile Monard, Fabrice Martin‐Laurent, Jérémie Béguet, Marion Devers‐Lamrani, Nathalie Le Bris, Frédérique Pallois, Valérie Gouesbet, Stéphanie Llopis, Cécile Sulmon, Cécile Le Lann
Summary Agriculture intensification, massively relying on pesticides, led to the widespread contamination of noncrop terrestrial ecosystems. Soil contamination with pesticide residues widely occurs but its cryptic effects on terrestrial biotic interactions remain unclear, especially at the metabolic scale. We studied the effects of an environmental dose of the herbicide isoproturon on an isoproturon‐degrading Sphingomonas soil bacteria – Lolium perenne (Poaceae) and Rhopalosiphum padi (Hemiptera: aphididae) system – in the laboratory. This system is typical of contaminated peri‐agricultural ecosystems, such as vegetated buffer strips. We found that isoproturon and its main degradation product transferred from the substrate to aphids, accumulating in plant shoots. No macroscopic effects of the herbicide were observed, but primary metabolites varied in both plants and herbivores. Inoculation of isoproturon‐degrading bacteria reduced isoproturon levels in the substrate and suppressed most metabolic variations. Moreover, inoculation of the non‐degrading bacterial strain impacted plant metabolism, potentially through mutualistic interaction, underlining the close link between soil microbiota and aboveground organisms. This study shows that isoproturon residues can transfer in a typical grassland trophic system, altering the metabolism of each biological level. It emphasizes the need to consider above‐ and belowground interactions when assessing seminatural ecosystems' responses to chronic contamination.
农业集约化,大量依赖农药,导致了非作物陆地生态系统的广泛污染。农药残留污染广泛发生,但其对陆地生物相互作用的隐效应尚不清楚,特别是在代谢尺度上。在室内研究了环境剂量除草剂异proturon对土壤中降解异proturon的鞘单胞菌——禾本科和半翅目蚜虫系统的影响。该系统是典型的受污染的农业周边生态系统,如植被缓冲带。我们发现异丙醇及其主要降解产物从基质转移到蚜虫体内,在植物芽中积累。未观察到除草剂的宏观效应,但植物和食草动物的初级代谢产物存在差异。接种异proturon降解菌降低了底物中异proturon的水平,抑制了大多数代谢变异。此外,接种非降解菌株可能通过互惠作用影响植物代谢,强调了土壤微生物群与地上生物之间的密切联系。本研究表明异proturon残基在典型草原营养系统中具有转移作用,改变了各生物水平的代谢。它强调在评估半自然生态系统对慢性污染的反应时需要考虑地上和地下的相互作用。
{"title":"Herbicide‐induced metabolic changes in a plant–aphid system: how soil bacteria drive the fate and impact of a residual dose of Isoproturon?","authors":"Axel Beringue, Lucie Castel, Cécile Monard, Fabrice Martin‐Laurent, Jérémie Béguet, Marion Devers‐Lamrani, Nathalie Le Bris, Frédérique Pallois, Valérie Gouesbet, Stéphanie Llopis, Cécile Sulmon, Cécile Le Lann","doi":"10.1111/nph.70891","DOIUrl":"https://doi.org/10.1111/nph.70891","url":null,"abstract":"Summary <jats:list list-type=\"bullet\"> <jats:list-item> Agriculture intensification, massively relying on pesticides, led to the widespread contamination of noncrop terrestrial ecosystems. Soil contamination with pesticide residues widely occurs but its cryptic effects on terrestrial biotic interactions remain unclear, especially at the metabolic scale. </jats:list-item> <jats:list-item> We studied the effects of an environmental dose of the herbicide isoproturon on an isoproturon‐degrading <jats:italic>Sphingomonas</jats:italic> soil bacteria – <jats:italic>Lolium perenne</jats:italic> (Poaceae) and <jats:italic>Rhopalosiphum padi</jats:italic> (Hemiptera: aphididae) system – in the laboratory. This system is typical of contaminated peri‐agricultural ecosystems, such as vegetated buffer strips. </jats:list-item> <jats:list-item> We found that isoproturon and its main degradation product transferred from the substrate to aphids, accumulating in plant shoots. No macroscopic effects of the herbicide were observed, but primary metabolites varied in both plants and herbivores. Inoculation of isoproturon‐degrading bacteria reduced isoproturon levels in the substrate and suppressed most metabolic variations. Moreover, inoculation of the non‐degrading bacterial strain impacted plant metabolism, potentially through mutualistic interaction, underlining the close link between soil microbiota and aboveground organisms. </jats:list-item> <jats:list-item> This study shows that isoproturon residues can transfer in a typical grassland trophic system, altering the metabolism of each biological level. It emphasizes the need to consider above‐ and belowground interactions when assessing seminatural ecosystems' responses to chronic contamination. </jats:list-item> </jats:list>","PeriodicalId":214,"journal":{"name":"New Phytologist","volume":"30 1","pages":""},"PeriodicalIF":9.4,"publicationDate":"2026-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145986489","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Beyond species means – the intraspecific contribution to global wood density variation 超越物种手段——种内对全球木材密度变化的贡献
IF 9.4 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2026-01-17 DOI: 10.1111/nph.70860
Fabian Jörg Fischer, Jérôme Chave, Amy Zanne, Tommaso Jucker, Alex Fajardo, Adeline Fayolle, Renato Augusto Ferreira de Lima, Ghislain Vieilledent, Hans Beeckman, Wannes Hubau, Tom De Mil, Daniel Wallenus, Ana María Aldana, Esteban Alvarez‐Dávila, Luciana F. Alves, Deborah M. G. Apgaua, Fátima Arcanjo, Jean‐François Bastin, Andrii Bilous, Philippe Birnbaum, Volodymyr Blyshchyk, Joli Borah, Vanessa Boukili, J. Julio Camarero, Luisa Casas, Roberto Cazzolla Gatti, Jeffrey Q. Chambers, Ezequiel Chimbioputo Fabiano, Brendan Choat, Georgina Conti, Will Cornwell, Javid Ahmad Dar, Ashesh Kumar Das, Magnus Dobler, Dao Dougabka, David P. Edwards, Robert Evans, Daniel Falster, Philip Fearnside, Olivier Flores, Nikolaos Fyllas, Jean Gérard, Rosa C. Goodman, Daniel Guibal, L. Francisco Henao‐Diaz, Vincent Hervé, Peter Hietz, Jürgen Homeier, Thomas Ibanez, Jugo Ilic, Steven Jansen, Rinku Moni Kalita, Tanaka Kenzo, Liana Kindermann, Subashree Kothandaraman, Martyna Kotowska, Yasuhiro Kubota, Patrick Langbour, James Lawson, André Luiz Alves de Lima, Roman Mathias Link, Anja Linstädter, Rosana López, Cate Macinnis‐Ng, Luiz Fernando S. Magnago, Adam R. Martin, Ashley M. Matheny, James K. McCarthy, Regis B. Miller, Arun Jyoti Nath, Bruce Walker Nelson, Marco Njana, Euler Melo Nogueira, Alexandre Oliveira, Rafael Oliveira, Mark Olson, Yusuke Onoda, Keryn Paul, Daniel Piotto, Phil Radtke, Onja Razafindratsima, Tahiana Ramananantoandro, Jennifer Read, Sarah Richardson, Enrique G. de la Riva, Oris Rodríguez‐Reyes, Samir G. Rolim, Victor Rolo, Julieta A. Rosell, Roberto Salguero‐Gómez, Nadia S. Santini, Bernhard Schuldt, Luitgard Schwendenmann, Arne Sellin, Timothy Staples, Pablo R. Stevenson, Somaiah Sundarapandian, Masha T. van der Sande, Bernard Thibaut, David Yue Phin Tng, José Marcelo Domingues Torezan, Boris Villanueva, Aaron Weiskittel, Jessie Wells, S. Joseph Wright, Kasia Zieminska
Summary Wood density is central for estimating vegetation carbon storage and a plant functional trait of great ecological and evolutionary importance. However, the global extent of wood density variation is unclear, especially at the intraspecific level. We assembled the most comprehensive wood density collection to date, including 109 626 records from 16 829 plant species across woody life forms and biomes (GWDD v.2, available here: doi: 10.5281/zenodo.16919509 ). Using the GWDD v.2, we explored the sources of wood density variation within individuals, within species and across environmental gradients. Intraspecific variation accounted for c . 15% of overall wood density variation (SD = 0.068 g cm −3 ). Variance was 50% smaller in sapwood than heartwood, and 30% smaller in branchwood than trunkwood. Individuals in extreme environments (dry, hot and acidic soils) had higher wood density than conspecifics elsewhere (+0.02 g cm −3 , c . 4% of the mean). Intraspecific environmental effects strongly tracked interspecific patterns ( r = 0.83) but were 70–80% smaller and varied considerably among taxa. Individual plant wood density was difficult to predict (root mean square error > 0.08 g cm −3 ; single‐measurement R 2 = 0.59). We recommend (1) systematic sampling of multiple individuals and tissues for local applications, and (2) expanded taxonomic coverage combined with integrative models for robust estimates across ecological scales.
木材密度是估算植被碳储量的核心,也是具有重要生态和进化意义的植物功能性状。然而,木材密度变化的全球程度尚不清楚,特别是在种内水平上。我们收集了迄今为止最全面的木材密度数据,包括来自16 829种木本生物形式和生物群落的植物物种的109 626条记录(GWDD v.2),可在这里获得:doi: 10.5281/zenodo。16919509)。使用GWDD v.2,我们探索了个体内、物种内和跨环境梯度的木材密度变化的来源。种内变异占c。木材总密度变化的15% (SD = 0.068 g cm−3)。边材的方差比心材小50%,枝材的方差比干材小30%。极端环境(干燥、炎热和酸性土壤)的个体木材密度高于其他地方的同种个体(+0.02 g cm - 3, c)。平均值的4%)。种内环境效应与种间模式密切相关(r = 0.83),但在不同分类群间差异较大,且较小。单株木材密度难以预测(均方根误差>; 0.08 g cm - 3;单次测量r2 = 0.59)。我们建议:(1)在局部应用中对多个个体和组织进行系统采样;(2)结合综合模型扩大分类学覆盖范围,以便在整个生态尺度上进行可靠的估计。
{"title":"Beyond species means – the intraspecific contribution to global wood density variation","authors":"Fabian Jörg Fischer, Jérôme Chave, Amy Zanne, Tommaso Jucker, Alex Fajardo, Adeline Fayolle, Renato Augusto Ferreira de Lima, Ghislain Vieilledent, Hans Beeckman, Wannes Hubau, Tom De Mil, Daniel Wallenus, Ana María Aldana, Esteban Alvarez‐Dávila, Luciana F. Alves, Deborah M. G. Apgaua, Fátima Arcanjo, Jean‐François Bastin, Andrii Bilous, Philippe Birnbaum, Volodymyr Blyshchyk, Joli Borah, Vanessa Boukili, J. Julio Camarero, Luisa Casas, Roberto Cazzolla Gatti, Jeffrey Q. Chambers, Ezequiel Chimbioputo Fabiano, Brendan Choat, Georgina Conti, Will Cornwell, Javid Ahmad Dar, Ashesh Kumar Das, Magnus Dobler, Dao Dougabka, David P. Edwards, Robert Evans, Daniel Falster, Philip Fearnside, Olivier Flores, Nikolaos Fyllas, Jean Gérard, Rosa C. Goodman, Daniel Guibal, L. Francisco Henao‐Diaz, Vincent Hervé, Peter Hietz, Jürgen Homeier, Thomas Ibanez, Jugo Ilic, Steven Jansen, Rinku Moni Kalita, Tanaka Kenzo, Liana Kindermann, Subashree Kothandaraman, Martyna Kotowska, Yasuhiro Kubota, Patrick Langbour, James Lawson, André Luiz Alves de Lima, Roman Mathias Link, Anja Linstädter, Rosana López, Cate Macinnis‐Ng, Luiz Fernando S. Magnago, Adam R. Martin, Ashley M. Matheny, James K. McCarthy, Regis B. Miller, Arun Jyoti Nath, Bruce Walker Nelson, Marco Njana, Euler Melo Nogueira, Alexandre Oliveira, Rafael Oliveira, Mark Olson, Yusuke Onoda, Keryn Paul, Daniel Piotto, Phil Radtke, Onja Razafindratsima, Tahiana Ramananantoandro, Jennifer Read, Sarah Richardson, Enrique G. de la Riva, Oris Rodríguez‐Reyes, Samir G. Rolim, Victor Rolo, Julieta A. Rosell, Roberto Salguero‐Gómez, Nadia S. Santini, Bernhard Schuldt, Luitgard Schwendenmann, Arne Sellin, Timothy Staples, Pablo R. Stevenson, Somaiah Sundarapandian, Masha T. van der Sande, Bernard Thibaut, David Yue Phin Tng, José Marcelo Domingues Torezan, Boris Villanueva, Aaron Weiskittel, Jessie Wells, S. Joseph Wright, Kasia Zieminska","doi":"10.1111/nph.70860","DOIUrl":"https://doi.org/10.1111/nph.70860","url":null,"abstract":"Summary Wood density is central for estimating vegetation carbon storage and a plant functional trait of great ecological and evolutionary importance. However, the global extent of wood density variation is unclear, especially at the intraspecific level. We assembled the most comprehensive wood density collection to date, including 109 626 records from 16 829 plant species across woody life forms and biomes (GWDD v.2, available here: doi: <jats:ext-link xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"https://doi.org/10.5281/zenodo.16919509\">10.5281/zenodo.16919509</jats:ext-link> ). Using the GWDD v.2, we explored the sources of wood density variation within individuals, within species and across environmental gradients. Intraspecific variation accounted for <jats:italic>c</jats:italic> . 15% of overall wood density variation (SD = 0.068 g cm <jats:sup>−3</jats:sup> ). Variance was 50% smaller in sapwood than heartwood, and 30% smaller in branchwood than trunkwood. Individuals in extreme environments (dry, hot and acidic soils) had higher wood density than conspecifics elsewhere (+0.02 g cm <jats:sup>−3</jats:sup> , <jats:italic>c</jats:italic> . 4% of the mean). Intraspecific environmental effects strongly tracked interspecific patterns ( <jats:italic>r</jats:italic> = 0.83) but were 70–80% smaller and varied considerably among taxa. Individual plant wood density was difficult to predict (root mean square error &gt; 0.08 g cm <jats:sup>−3</jats:sup> ; single‐measurement <jats:italic>R</jats:italic> <jats:sup>2</jats:sup> = 0.59). We recommend (1) systematic sampling of multiple individuals and tissues for local applications, and (2) expanded taxonomic coverage combined with integrative models for robust estimates across ecological scales.","PeriodicalId":214,"journal":{"name":"New Phytologist","volume":"20 1","pages":""},"PeriodicalIF":9.4,"publicationDate":"2026-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145986436","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Wandering starch - how plastid dynamics affect starch granule formation? 游离淀粉——质体动力学如何影响淀粉颗粒的形成?
IF 9.4 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2026-01-16 DOI: 10.1111/nph.70925
James R Lloyd
{"title":"Wandering starch - how plastid dynamics affect starch granule formation?","authors":"James R Lloyd","doi":"10.1111/nph.70925","DOIUrl":"https://doi.org/10.1111/nph.70925","url":null,"abstract":"","PeriodicalId":214,"journal":{"name":"New Phytologist","volume":"101 1","pages":""},"PeriodicalIF":9.4,"publicationDate":"2026-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145986356","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reconciling links between diversity and population stability across global plant communities. 协调全球植物群落多样性与种群稳定性之间的联系。
IF 9.4 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2026-01-16 DOI: 10.1111/nph.70921
Xiaobin Pan,Yann Hautier,Jan Lepš,Shaopeng Wang,Kathryn E Barry,Manuele Bazzichetto,Stefano Chelli,Jiří Doležal,Nico Eisenhauer,Franz Essl,Felícia M Fischer,Oscar Godoy,Daniel Gómez-García,Lars Götzenberger,Clara Gracia,Anaclara Guido,Lauren M Hallett,Susan Harrison,Miao He,Andrew Hector,Pubin Hong,Forest Isbell,George A Kowalchuk,Victor Lecegui,Xiaofei Li,Maowei Liang,Frédérique Louault,Maria Májeková,Rob Marrs,Neha Mohanbabu,Akira S Mori,Robin J Pakeman,Alain Paquette,Begoña Peco,Josep Peñuelas,Valério D Pillar,Marta Rueda,Wolfgang Schmidt,Jules Segrestin,Marta Gaia Sperandii,Enrique Valencia,Vigdis Vandvik,Shengnan Wang,David Ward,Susan Wiser,Ben A Woodcock,Chong Xu,Truman Young,Fei-Hai Yu,Liting Zheng,Zhiwei Zhong,Francesco de Bello
Maintaining ecological stability is essential for sustaining ecosystem functions and the benefits they provide to society. Ecological theory predicts that plant diversity destabilizes local populations, yet empirical studies report variable effects. We hypothesize that this discrepancy arises at least in part from differences captured by different diversity (average vs cumulative richness, i.e. the mean annual richness vs the cumulative richness across years) and stability metrics (abundance-unweighted vs weighted mean population stability). To test this, we analyzed data from > 8000 permanent vegetation plots across biomes on five continents. We found a negative (i.e. destabilizing) diversity-stability relationship when using abundance-weighted rather than unweighted measures of population stability, which are more influenced by dominant species. Similarly, cumulative richness - capturing total species occurrence over time and long-term turnover - reveals a stronger destabilizing effect compared to average annual richness. Our findings reveal that, when specific metrics of diversity and stability are considered, more species and potentially the associated increase in interspecific competition tend to destabilize populations across natural ecosystems world-wide - particularly those of dominant species.
维持生态稳定对于维持生态系统功能及其给社会带来的利益至关重要。生态学理论预测,植物多样性会破坏当地种群的稳定,但实证研究报告了不同的影响。我们假设,这种差异至少部分源于不同多样性(平均丰富度vs累积丰富度,即平均年丰富度vs历年累积丰富度)和稳定性指标(未加权丰度vs加权平均种群稳定性)所捕获的差异。为了验证这一点,我们分析了来自五大洲生物群落的bb0008000个永久植被样地的数据。我们发现,当使用丰度加权而不是非加权的种群稳定性指标时,多样性与稳定性之间存在负的(即不稳定的)关系,后者更受优势物种的影响。同样,累积丰富度——捕获物种随时间的总发生和长期更替——显示出比平均年丰富度更强的不稳定效应。我们的研究结果表明,当考虑到多样性和稳定性的具体指标时,更多的物种和可能相关的种间竞争的增加往往会破坏全球自然生态系统中种群的稳定,特别是那些优势物种。
{"title":"Reconciling links between diversity and population stability across global plant communities.","authors":"Xiaobin Pan,Yann Hautier,Jan Lepš,Shaopeng Wang,Kathryn E Barry,Manuele Bazzichetto,Stefano Chelli,Jiří Doležal,Nico Eisenhauer,Franz Essl,Felícia M Fischer,Oscar Godoy,Daniel Gómez-García,Lars Götzenberger,Clara Gracia,Anaclara Guido,Lauren M Hallett,Susan Harrison,Miao He,Andrew Hector,Pubin Hong,Forest Isbell,George A Kowalchuk,Victor Lecegui,Xiaofei Li,Maowei Liang,Frédérique Louault,Maria Májeková,Rob Marrs,Neha Mohanbabu,Akira S Mori,Robin J Pakeman,Alain Paquette,Begoña Peco,Josep Peñuelas,Valério D Pillar,Marta Rueda,Wolfgang Schmidt,Jules Segrestin,Marta Gaia Sperandii,Enrique Valencia,Vigdis Vandvik,Shengnan Wang,David Ward,Susan Wiser,Ben A Woodcock,Chong Xu,Truman Young,Fei-Hai Yu,Liting Zheng,Zhiwei Zhong,Francesco de Bello","doi":"10.1111/nph.70921","DOIUrl":"https://doi.org/10.1111/nph.70921","url":null,"abstract":"Maintaining ecological stability is essential for sustaining ecosystem functions and the benefits they provide to society. Ecological theory predicts that plant diversity destabilizes local populations, yet empirical studies report variable effects. We hypothesize that this discrepancy arises at least in part from differences captured by different diversity (average vs cumulative richness, i.e. the mean annual richness vs the cumulative richness across years) and stability metrics (abundance-unweighted vs weighted mean population stability). To test this, we analyzed data from > 8000 permanent vegetation plots across biomes on five continents. We found a negative (i.e. destabilizing) diversity-stability relationship when using abundance-weighted rather than unweighted measures of population stability, which are more influenced by dominant species. Similarly, cumulative richness - capturing total species occurrence over time and long-term turnover - reveals a stronger destabilizing effect compared to average annual richness. Our findings reveal that, when specific metrics of diversity and stability are considered, more species and potentially the associated increase in interspecific competition tend to destabilize populations across natural ecosystems world-wide - particularly those of dominant species.","PeriodicalId":214,"journal":{"name":"New Phytologist","volume":"5 1","pages":""},"PeriodicalIF":9.4,"publicationDate":"2026-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145986355","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Net primary productivity and carbon allocation along secondary succession in a central African tropical forest 中非热带森林次生演替的净初级生产力和碳分配
IF 9.4 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2026-01-15 DOI: 10.1111/nph.70888
Isaac Ahanamungu Makelele, Kris Verheyen, Pascal Boeckx, Viktor Van de Velde, Landry Cizungu Ntaboba, Basile Mujinya Bazirake, Faustin Boyemba Bosela, Fabrice Kimbesa, Jonathan Bachiseze Magala, Joseph Lokana Mande, Dries Landuyt, Corneille Ewango, Marijn Bauters
Summary Carbon (C) uptake in regrowing secondary forests increasingly dominates landscape‐scale C dynamics in the tropics. Understanding the recovery trajectories of net primary productivity (NPP) and C allocation, along with the underlying demographic and functional drivers of biomass recovery, is therefore critical. Using a space‐for‐time setup spanning five successional stages, we showed that – for forests in the Yoko reserve, in central Africa – C fluxes related to recruitment and mortality decreased along succession, alongside a gradual transition from a forest with high stem density and acquisitive species to one with lower stem density and more conservative species. In the first decade of succession, NPP allocation shifted from being dominated by woody productivity to canopy productivity. Higher tree mortality in early succession counterbalanced the higher woody NPP, producing a relatively constant net woody C sink along succession. While being positive, this woody C sink was small, suggesting a slow but steady recovery to old‐growth aboveground C stocks ranging between 171 and 238 Mg C ha −1 . Overall, our findings demonstrate the potential of secondary forests in the Congo basin to mitigate climate change, but also emphasize the need to conserve old‐growth forest C stocks and expand long‐term observational data to better constrain regional C recovery dynamics.
热带地区再生次生林的碳(C)吸收日益主导着景观尺度的碳动态。因此,了解净初级生产力(NPP)和碳分配的恢复轨迹,以及生物量恢复的潜在人口和功能驱动因素至关重要。利用跨越5个演替阶段的时空设置,我们发现——对于非洲中部Yoko保护区的森林——与补充和死亡相关的碳通量随着演替而减少,同时从高茎密度和获取物种的森林逐渐过渡到低茎密度和更保守物种的森林。在演替的前10年,NPP的分配由以木本生产力为主转向以冠层生产力为主。演替早期较高的树木死亡率抵消了较高的木本NPP,在演替过程中产生相对稳定的净木本碳汇。虽然是正的,但这个木质碳汇很小,表明地表上的碳储量缓慢而稳定地恢复到171 - 238 Mg C ha - 1之间。总体而言,我们的研究结果证明了刚果盆地次生林在减缓气候变化方面的潜力,但也强调了保护原生林碳储量和扩大长期观测数据以更好地约束区域碳恢复动态的必要性。
{"title":"Net primary productivity and carbon allocation along secondary succession in a central African tropical forest","authors":"Isaac Ahanamungu Makelele, Kris Verheyen, Pascal Boeckx, Viktor Van de Velde, Landry Cizungu Ntaboba, Basile Mujinya Bazirake, Faustin Boyemba Bosela, Fabrice Kimbesa, Jonathan Bachiseze Magala, Joseph Lokana Mande, Dries Landuyt, Corneille Ewango, Marijn Bauters","doi":"10.1111/nph.70888","DOIUrl":"https://doi.org/10.1111/nph.70888","url":null,"abstract":"Summary <jats:list list-type=\"bullet\"> <jats:list-item> Carbon (C) uptake in regrowing secondary forests increasingly dominates landscape‐scale C dynamics in the tropics. Understanding the recovery trajectories of net primary productivity (NPP) and C allocation, along with the underlying demographic and functional drivers of biomass recovery, is therefore critical. </jats:list-item> <jats:list-item> Using a space‐for‐time setup spanning five successional stages, we showed that – for forests in the Yoko reserve, in central Africa – C fluxes related to recruitment and mortality decreased along succession, alongside a gradual transition from a forest with high stem density and acquisitive species to one with lower stem density and more conservative species. </jats:list-item> <jats:list-item> In the first decade of succession, NPP allocation shifted from being dominated by woody productivity to canopy productivity. Higher tree mortality in early succession counterbalanced the higher woody NPP, producing a relatively constant net woody C sink along succession. While being positive, this woody C sink was small, suggesting a slow but steady recovery to old‐growth aboveground C stocks ranging between 171 and 238 Mg C ha <jats:sup>−1</jats:sup> . </jats:list-item> <jats:list-item> Overall, our findings demonstrate the potential of secondary forests in the Congo basin to mitigate climate change, but also emphasize the need to conserve old‐growth forest C stocks and expand long‐term observational data to better constrain regional C recovery dynamics. </jats:list-item> </jats:list>","PeriodicalId":214,"journal":{"name":"New Phytologist","volume":"101 1","pages":""},"PeriodicalIF":9.4,"publicationDate":"2026-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145972018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rhizobial motility preference in root colonization of Medicago truncatula 短叶紫花苜蓿根定植的根瘤菌运动偏好
IF 9.4 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2026-01-15 DOI: 10.1111/nph.70897
Anaïs Delers, Anne Bennion, Ambre Guillory, Lisa Frances, Elizaveta Krol, Fanny Bonnafous, Laurena Medioni, Javier Serrania, Rémi Peyraud, Joëlle Fournier, Fernanda de Carvalho-Niebel, Anke Becker
<h2> Introduction</h2><p>Symbiotic relationships with soil microorganisms can help plants access the nutrients they need for growth. Certain angiosperm species in the nitrogen-fixing clade evolved the ability to obtain nitrogen through symbiosis with bacteria, which they host intracellularly in specialized organs called root nodules (Huisman & Geurts, <span>2020</span>). These interactions have been well-studied in legume plants, notably in model species such as <i>Medicago truncatula</i>, which hosts the rhizobia symbiont <i>Sinorhizobium meliloti</i>. Establishing this interaction requires precise molecular exchanges between partners (Krönauer & Radutoiu, <span>2021</span>) before bacteria can colonize their host, which occurs in most cases via a tunnel-like apoplastic compartment called the infection thread (IT) (Gage, <span>2004</span>).</p><p>ITs initiate in root hairs and proceed through well-defined stages (reviewed in de Carvalho-Niebel <i>et al</i>., <span>2024</span>). Root hairs curl around Nod factor-producing rhizobia (Esseling <i>et al</i>., <span>2003</span>) and enclose them in a radially expanding infection chamber where they proliferate until polarized secretion creates the tip-growing IT tubular structure (Fournier <i>et al</i>., <span>2015</span>). ITs are sequentially reinitiated in successive cell layers to guide rhizobia transcellularly from root hairs to the developing nodule primordium, where they are released, endocytosed, and differentiated into N-fixing bacteroids (Yang <i>et al</i>., <span>2022</span>).</p><p>The successful formation and progression of ITs within plant cells depends on the plant's specific perception or controlled degradation of rhizobial Nod factors or exopolysaccharide signals (Kawaharada <i>et al</i>., <span>2017</span>; Malolepszy <i>et al</i>., <span>2018</span>). The plant host also triggers a series of cellular events (reviewed in de Carvalho-Niebel <i>et al</i>., <span>2024</span>) to create the optimal IT apoplastic environment for rhizobia colonization. Inside the IT space, rhizobia progress in a sparse, single-file arrangement, slightly behind the IT tip that extends in a cytoplasmic bridge connected with the migrating nucleus (Fournier <i>et al</i>., <span>2008</span>; Guillory <i>et al</i>., <span>2024</span>). It has been proposed that rhizobia progress in the IT environment by combining cell proliferation and collective movement, though the form of motility they actually use is unknown.</p><p>Bacteria can adopt different types of movement to translocate. These can be categorized as swimming motility in aqueous solutions or surface-associated motility in solid environments. While swimming motility depends on flagellar rotation, surface motility relies on different mechanisms, with the most prominent modes being twitching, gliding, swarming, and sliding (reviewed by Wadhwa & Berg, <span>2022</span>). Twitching is mediated by type IV pili, which extend, adhere to a surface
与土壤微生物的共生关系可以帮助植物获得生长所需的养分。固氮进化分支中的某些被子植物物种进化出了通过与细菌共生获取氮的能力,它们将细菌寄主在称为根瘤的细胞内特殊器官中(Huisman & Geurts, 2020)。这些相互作用已经在豆科植物中得到了很好的研究,特别是在模式物种如紫花苜蓿(Medicago truncatula)中,它是根瘤菌共生体Sinorhizobium meliloti的宿主。建立这种相互作用需要伙伴之间精确的分子交换(Krönauer & Radutoiu, 2021),然后细菌才能定植宿主,这在大多数情况下是通过称为感染线(IT)的隧道状外胞体隔室发生的(Gage, 2004)。ITs起源于根毛,并经过明确的阶段(de Carvalho-Niebel et al., 2024)。根毛在产生Nod因子的根瘤菌周围卷曲(Esseling et al., 2003),并将其包围在放射状扩张的感染室中,在那里它们增殖,直到极化分泌形成尖端生长的IT管状结构(Fournier et al., 2015)。ITs在连续的细胞层中依次重新启动,引导根瘤菌从根毛到发育中的根瘤原基,在那里它们被释放、内噬并分化成固定n的类细菌(Yang et al., 2022)。ITs在植物细胞内的成功形成和进展取决于植物对根瘤菌Nod因子或胞外多糖信号的特定感知或受控降解(Kawaharada et al., 2017; Malolepszy et al., 2018)。植物寄主还会触发一系列细胞事件(de Carvalho-Niebel et al., 2024),为根瘤菌定植创造最佳的IT胞外环境。在IT空间内,根瘤菌以稀疏的单纵队排列前进,稍微落后于IT尖端,延伸成与迁移核连接的细胞质桥(Fournier et al., 2008; Guillory et al., 2024)。有人提出根瘤菌在It环境中通过结合细胞增殖和集体运动来进展,尽管它们实际使用的运动形式尚不清楚。细菌可以通过不同的运动方式进行迁移。这些可以分类为在水溶液中游泳运动或在固体环境中与表面相关的运动。游泳运动依赖于鞭毛旋转,而水面运动依赖于不同的机制,最突出的模式是抽搐、滑翔、群体和滑动(Wadhwa & Berg, 2022)。抽动是由IV型菌毛介导的,它们伸展、附着在表面并收缩以拉动细胞向前(Maier & Wong, 2015; Craig et al., 2019)。滑动涉及附着在表面的黏附复合物,并在细胞的长度上移动(McBride, 2001; Kearns, 2011)。蜂群是由鞭毛驱动的集体运动,通过渗透物或表面活性剂的分泌,在表面上的薄层液体中以高细胞密度发生(Kearns, 2011; Wadhwa & Berg, 2022)。滑动是一种独立于鞭毛、毛和粘附复合物的被动运动形式,它依赖于细胞增殖施加的压力,并通过释放表面活性剂来减少摩擦(Holscher & Kovacs, 2017)。Sinorhizobium meliloti能够游泳(Gotz & Schmitt, 1987),并通过群体和滑动在表面上移动(Soto等人,2002;Nogales等人,2012),但没有正式的证据表明s.m iloti具有滑翔或抽搐运动(Zatakia等人,2014;Wadhwa & Berg, 2022),因为滑翔或产生参与抽搐运动的IVa型菌毛所必需的基因不存在于其基因组中。S. meliloti个体的游动运动是通过周围鞭毛的旋转来实现的(Gotz & Schmitt, 1987),这也有助于S. meliloti在固体表面上的集体游动(Nogales et al., 2012)。然而,S. meliloti也可以在独立于鞭毛的表面传播,这被归因于滑动(Nogales et al., 2012)。在S. meliloti中,鞭毛功能部分的组装——细丝、带有推进细丝的马达的基体,以及连接这两个部分的钩——是由三个等级调控的基因控制的,这些基因聚集在一个连续的45kb染色体区域(Sourjik et al., 1999,2000)。S. meliloti的鞭毛生物合成也受到ExpR/Sin群体感应系统的调控,该系统可以在高种群密度下下调鞭毛生物合成基因的表达(Hoang et al., 2004)。该群体感应系统还调节胞外多糖的产生(Hoang et al., 2004),包括具有共生活性的EPS II(半乳糖葡聚糖),它促进了主要由熵力驱动的不寻常的表面运动。 渗透流和损耗吸引)称为冲浪(Dilanji et al., 2014)。经常被用于在M. truncatula中进行共生研究的Sinorhizobium meliloti菌株1021和2011在expR中被破坏(Pellock等,2002)。尽管这些菌株的EPS II生物合成减少,但仍观察到表面运动,尽管依赖于铁载体根瘤菌(Rhb) 1021的生物合成(Nogales et al., 2010, 2012)。因此,Rhb1021可能作为表面活性剂促进表面运动。铁载体是包括细菌在内的许多生物分泌的高亲和力铁螯合剂(Timofeeva et al., 2022)。Rhb1021由rhbABCDEF操纵子上编码的酶合成的修饰柠檬酸盐骨架组成(Lynch et al., 2001)。在清除铁之后,铁载体在被泵回细胞之前结合外膜受体(Timofeeva等,2022)。在S. meliloti中,Rhb1021的摄取依赖于rhtA编码的外膜受体和rhtX编码的渗透酶(Lynch等,2001;Cuív等,2004)。虽然在缺乏expr的s.m iloti菌株中,Rhb1021生物合成基因的突变会破坏表面运动,但当仅阻止rhta介导的铁载体摄取时,它不会受到影响,这表明Rhb1021的表面运动功能在细胞外(Nogales et al., 2010)。运动对根瘤菌与豆科寄主的共生相互作用也至关重要。鞭毛运动有助于趋化运动的根瘤菌宿主根(Caetano-Anolles et al ., 1988;心血来潮et al ., 1990;米勒et al ., 2007; Aroney et al ., 2021;康普顿,Scharf, 2021; Navarro-Gomez et al ., 2024),殖民,和对根表面(Fujishige et al ., 2006;郑et al ., 2015),以及增加竞争力结节入住率(艾姆斯,伯格曼,1981;Mellor et al ., 1987; Caetano-Anolles et al ., 1988;米勒et al ., 2007; Aroney et al ., 2021年,2024年)。此外,一项豆科根瘤菌的转座子插入测序基因研究发现,功能性鞭毛基因可提高根瘤发育后期细菌的存活和生长(Wheatley et al., 2020)。但是,到目前为止,非活动鞭毛突变体似乎没有显著影响结瘤或固氮,至少在苜蓿和三叶草中是这样(Ames & Bergm
{"title":"Rhizobial motility preference in root colonization of Medicago truncatula","authors":"Anaïs Delers, Anne Bennion, Ambre Guillory, Lisa Frances, Elizaveta Krol, Fanny Bonnafous, Laurena Medioni, Javier Serrania, Rémi Peyraud, Joëlle Fournier, Fernanda de Carvalho-Niebel, Anke Becker","doi":"10.1111/nph.70897","DOIUrl":"https://doi.org/10.1111/nph.70897","url":null,"abstract":"&lt;h2&gt; Introduction&lt;/h2&gt;\u0000&lt;p&gt;Symbiotic relationships with soil microorganisms can help plants access the nutrients they need for growth. Certain angiosperm species in the nitrogen-fixing clade evolved the ability to obtain nitrogen through symbiosis with bacteria, which they host intracellularly in specialized organs called root nodules (Huisman &amp; Geurts, &lt;span&gt;2020&lt;/span&gt;). These interactions have been well-studied in legume plants, notably in model species such as &lt;i&gt;Medicago truncatula&lt;/i&gt;, which hosts the rhizobia symbiont &lt;i&gt;Sinorhizobium meliloti&lt;/i&gt;. Establishing this interaction requires precise molecular exchanges between partners (Krönauer &amp; Radutoiu, &lt;span&gt;2021&lt;/span&gt;) before bacteria can colonize their host, which occurs in most cases via a tunnel-like apoplastic compartment called the infection thread (IT) (Gage, &lt;span&gt;2004&lt;/span&gt;).&lt;/p&gt;\u0000&lt;p&gt;ITs initiate in root hairs and proceed through well-defined stages (reviewed in de Carvalho-Niebel &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2024&lt;/span&gt;). Root hairs curl around Nod factor-producing rhizobia (Esseling &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2003&lt;/span&gt;) and enclose them in a radially expanding infection chamber where they proliferate until polarized secretion creates the tip-growing IT tubular structure (Fournier &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2015&lt;/span&gt;). ITs are sequentially reinitiated in successive cell layers to guide rhizobia transcellularly from root hairs to the developing nodule primordium, where they are released, endocytosed, and differentiated into N-fixing bacteroids (Yang &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2022&lt;/span&gt;).&lt;/p&gt;\u0000&lt;p&gt;The successful formation and progression of ITs within plant cells depends on the plant's specific perception or controlled degradation of rhizobial Nod factors or exopolysaccharide signals (Kawaharada &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2017&lt;/span&gt;; Malolepszy &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2018&lt;/span&gt;). The plant host also triggers a series of cellular events (reviewed in de Carvalho-Niebel &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2024&lt;/span&gt;) to create the optimal IT apoplastic environment for rhizobia colonization. Inside the IT space, rhizobia progress in a sparse, single-file arrangement, slightly behind the IT tip that extends in a cytoplasmic bridge connected with the migrating nucleus (Fournier &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2008&lt;/span&gt;; Guillory &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2024&lt;/span&gt;). It has been proposed that rhizobia progress in the IT environment by combining cell proliferation and collective movement, though the form of motility they actually use is unknown.&lt;/p&gt;\u0000&lt;p&gt;Bacteria can adopt different types of movement to translocate. These can be categorized as swimming motility in aqueous solutions or surface-associated motility in solid environments. While swimming motility depends on flagellar rotation, surface motility relies on different mechanisms, with the most prominent modes being twitching, gliding, swarming, and sliding (reviewed by Wadhwa &amp; Berg, &lt;span&gt;2022&lt;/span&gt;). Twitching is mediated by type IV pili, which extend, adhere to a surface ","PeriodicalId":214,"journal":{"name":"New Phytologist","volume":"58 1","pages":""},"PeriodicalIF":9.4,"publicationDate":"2026-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145972017","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
New Phytologist
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1