Srdjan D. Matijašević, Vladimir Topalović, V. Savić, N. Labus, J. Nikolić, S. Zildzovic, S. Grujić
The crystal growth rate of LiGe2(PO4)3 phase from lithium germanium-phosphate glass was studied. The glass have been homogenized using the previously established temperature-time conditions, which make it possible to remove volatile substances from the glass melt. The atomic absorption spectrophotometry (AAS) was used to determine the chemical content of the obtained glass and scanning electron microscope (SEM) were used to reveal the isothermal process of crystal growth. The crystal growth rates were determined experimentally and theoretically.
{"title":"The crystal growth of NASICON phase from the lithium germanium phosphate glass","authors":"Srdjan D. Matijašević, Vladimir Topalović, V. Savić, N. Labus, J. Nikolić, S. Zildzovic, S. Grujić","doi":"10.2298/sos220809022m","DOIUrl":"https://doi.org/10.2298/sos220809022m","url":null,"abstract":"The crystal growth rate of LiGe2(PO4)3 phase from lithium germanium-phosphate glass was studied. The glass have been homogenized using the previously established temperature-time conditions, which make it possible to remove volatile substances from the glass melt. The atomic absorption spectrophotometry (AAS) was used to determine the chemical content of the obtained glass and scanning electron microscope (SEM) were used to reveal the isothermal process of crystal growth. The crystal growth rates were determined experimentally and theoretically.","PeriodicalId":21592,"journal":{"name":"Science of Sintering","volume":"1 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"68811025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this work, AISI 4340 steel was produced by powder metallurgy. Samples were sintered at 1150?C for 90 min. and then cooled in the furnace. Except to those in the as-sintered condition, one of the produced samples was homogenized at 1150?C for 1 h and then cooled in air. Other samples were deformed at the temperature range of 1150-930?C and deformation rate of 30 and 60% followed by cooling in sand, air and water mediums. The grain size gradually decreased depending on the deformation rate or cooling rate in AISI 4340 steel. Small grains occurred due to completely recrystallization at 60% deformation rate. Density and hardness also increased by the increase in deformation rate. The results showed that hot deformation is a process that is capable of improving the properties of AISI 4340 steel produced by powder metallurgy without rising the addition of alloying elements.
{"title":"Microstructural and mechanical properties of hot deformed AISI 4340 steel produced by powder metallurgy","authors":"Ayşe Yirik, S. Gündüz, Demet Taştemür, M. Erden","doi":"10.2298/sos2301045y","DOIUrl":"https://doi.org/10.2298/sos2301045y","url":null,"abstract":"In this work, AISI 4340 steel was produced by powder metallurgy. Samples were sintered at 1150?C for 90 min. and then cooled in the furnace. Except to those in the as-sintered condition, one of the produced samples was homogenized at 1150?C for 1 h and then cooled in air. Other samples were deformed at the temperature range of 1150-930?C and deformation rate of 30 and 60% followed by cooling in sand, air and water mediums. The grain size gradually decreased depending on the deformation rate or cooling rate in AISI 4340 steel. Small grains occurred due to completely recrystallization at 60% deformation rate. Density and hardness also increased by the increase in deformation rate. The results showed that hot deformation is a process that is capable of improving the properties of AISI 4340 steel produced by powder metallurgy without rising the addition of alloying elements.","PeriodicalId":21592,"journal":{"name":"Science of Sintering","volume":"1 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"68811041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. Kennour, N. Lamrani, A. Chaouchi, Y. Lorgouilloux, M. Rguiti, C. Courtois
In this study, the humidity detection properties of the ceramic with composition (Na0.5Bi0.5)0.94Ba0.06TiO3, noted (NBT-06BT), were investigated. The NBT-06BT ceramic was synthesized by the semi-solid method and characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The NBT-BT ceramic material sintered at 1100?C, crystallizes in the tetragonal system without any secondary phase and presents a heterogeneous distribution of polyhedral shaped grains with open intergranular porosities. The electrical and dielectric properties investigations show that the NBT-06BT ceramic material exhibits excellent humidity detection characteristics such as high sensitivity, good linearity and narrow hysteresis. The impedance decreases by three orders of magnitude when the relative humidity increases from 15 % to 90 % at 100 Hz. The maximum hysteresis value of the sensor is 4.69 % RH. The response time and the recovery time are about 68 s and 125 s respectively. Moreover, the sensing mechanism has been discussed in detail by analyzing the complex impedance spectra. These results indicate the potential application of the ceramic material NBT-06BT as a humidity sensor.
{"title":"Humidity sensing properties of (Na0.5Bi0.5)0.94Ba0.06 TiO3 lead-free ferroelectrics ceramics","authors":"S. Kennour, N. Lamrani, A. Chaouchi, Y. Lorgouilloux, M. Rguiti, C. Courtois","doi":"10.2298/sos221014015k","DOIUrl":"https://doi.org/10.2298/sos221014015k","url":null,"abstract":"In this study, the humidity detection properties of the ceramic with composition (Na0.5Bi0.5)0.94Ba0.06TiO3, noted (NBT-06BT), were investigated. The NBT-06BT ceramic was synthesized by the semi-solid method and characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The NBT-BT ceramic material sintered at 1100?C, crystallizes in the tetragonal system without any secondary phase and presents a heterogeneous distribution of polyhedral shaped grains with open intergranular porosities. The electrical and dielectric properties investigations show that the NBT-06BT ceramic material exhibits excellent humidity detection characteristics such as high sensitivity, good linearity and narrow hysteresis. The impedance decreases by three orders of magnitude when the relative humidity increases from 15 % to 90 % at 100 Hz. The maximum hysteresis value of the sensor is 4.69 % RH. The response time and the recovery time are about 68 s and 125 s respectively. Moreover, the sensing mechanism has been discussed in detail by analyzing the complex impedance spectra. These results indicate the potential application of the ceramic material NBT-06BT as a humidity sensor.","PeriodicalId":21592,"journal":{"name":"Science of Sintering","volume":"1 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"68811211","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The Powder in Tube (PIT) method was utilized to manufacture the MgB2-based monofilament wire. The ground powders of Mg and B were filled in the stainless-steel tube and went through a cold-rolling process. In order to avoid oxidation, the wire was cut and packed into the stainless-steel tube before sintering at various temperatures (873 K, 973 K, and 1073 K). We offer this heating process in a tube as a method that was both practical and efficient. The formation of the MgB2 phase was analyzed using an X-ray diffractometer post-sintering. At the sintering temperature of 973 K, the MgB2 phase was formed which contained small amounts of magnesium oxide. The sample sintered at 973 K showed superconducting properties, with a critical temperature zero (Tc-zero) and onset (Tc-onset) of 34.09 K and 41.33 K, respectively. A large gap between Tc-onset and Tc-zero was indicated by the insufficient fraction of the MgB2 phase that formed. However, MgB2-based superconducting wire was successfully manufactured in the required tube utilizing a vacuum-free heating process and only a small amount of magnesium oxide.
{"title":"Manufacturing of the stainless-steel sheathed magnesium diboride superconductor wire","authors":"S. Yudanto, Ahmad Affandi, Azwar Manaf","doi":"10.2298/sos230505047y","DOIUrl":"https://doi.org/10.2298/sos230505047y","url":null,"abstract":"The Powder in Tube (PIT) method was utilized to manufacture the MgB2-based monofilament wire. The ground powders of Mg and B were filled in the stainless-steel tube and went through a cold-rolling process. In order to avoid oxidation, the wire was cut and packed into the stainless-steel tube before sintering at various temperatures (873 K, 973 K, and 1073 K). We offer this heating process in a tube as a method that was both practical and efficient. The formation of the MgB2 phase was analyzed using an X-ray diffractometer post-sintering. At the sintering temperature of 973 K, the MgB2 phase was formed which contained small amounts of magnesium oxide. The sample sintered at 973 K showed superconducting properties, with a critical temperature zero (Tc-zero) and onset (Tc-onset) of 34.09 K and 41.33 K, respectively. A large gap between Tc-onset and Tc-zero was indicated by the insufficient fraction of the MgB2 phase that formed. However, MgB2-based superconducting wire was successfully manufactured in the required tube utilizing a vacuum-free heating process and only a small amount of magnesium oxide.","PeriodicalId":21592,"journal":{"name":"Science of Sintering","volume":"1 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"68812047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study investigated the mechanical and electrical properties of copper matrix composite materials reinforced with graphene nanosheets. The composite materials were produced using the powder metallurgy method, with several weight percentages graphene nanosheets (0, 0.5, 1 and 1.5) added to the copper matrix powders. The mixed powders were compacted unidirectionally in a steel mold at different pressures (500, 600 and 700 MPa) and sintered in an argon atmosphere at different temperatures (850?C, 900?C and 950?C). Furthermore, the sintered samples were subjected to microstructure analysis, hardness and electrical conductivity measurements. The results showed that the microstructure exhibited porosity and agglomeration with increasing amounts of graphene nanosheets, resulting in a decrease in relative density up to 87.4%. The highest electrical conductivity was 76.59 IACS (0% GNS-500 MPa-950?C), while the lowest was 43.49 IACS (1.5% GNS-500 MPa-850?C). The addition of graphene nanosheets resulted in a relative increase in hardness of up to 1%.
{"title":"Mechanical and electrical properties of graphene nanosheet reinforced copper matrix composites materials produced by powder metallurgy method","authors":"Ahmed Basheer Albartouli, A. Uzun","doi":"10.2298/sos230415027a","DOIUrl":"https://doi.org/10.2298/sos230415027a","url":null,"abstract":"This study investigated the mechanical and electrical properties of copper matrix composite materials reinforced with graphene nanosheets. The composite materials were produced using the powder metallurgy method, with several weight percentages graphene nanosheets (0, 0.5, 1 and 1.5) added to the copper matrix powders. The mixed powders were compacted unidirectionally in a steel mold at different pressures (500, 600 and 700 MPa) and sintered in an argon atmosphere at different temperatures (850?C, 900?C and 950?C). Furthermore, the sintered samples were subjected to microstructure analysis, hardness and electrical conductivity measurements. The results showed that the microstructure exhibited porosity and agglomeration with increasing amounts of graphene nanosheets, resulting in a decrease in relative density up to 87.4%. The highest electrical conductivity was 76.59 IACS (0% GNS-500 MPa-950?C), while the lowest was 43.49 IACS (1.5% GNS-500 MPa-850?C). The addition of graphene nanosheets resulted in a relative increase in hardness of up to 1%.","PeriodicalId":21592,"journal":{"name":"Science of Sintering","volume":"1 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"68812256","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Borivoje Nedeljkovic, Vladimir Pavlovic, Nina Obradovic, Nebojsa Mitrovic
The structural properties of a magnetically semi-hard near equiatomic FeCo-2wt%V (FeCoV) alloy produced by Powder Injection Moulding (PIM) (option by fine metal powder - Metal Injection Moulding (MIM) technology) were investigated in this paper. Starting granulate was prepared by mixing FeCoV powder with a low-viscosity binder. After injection, the green samples were first treated with a solvent and then thermally with the same aim of removing the binder. MIM technology was completed by high-temperature sintering for 3.5 hours at temperatures from 1370 OC to 1460 OC in a hydrogen atmosphere, which provides the necessary magnetic and mechanical characteristics. The influence of sintering temperature was investigated concerning the aspects of the processes of structural transformation by the methods of X-ray diffraction (XRD) and scanning electron microscopy (SEM). The appearance of an intense diffraction peak of the ?'-FeCo phase (crystal structure type B2) was registered for all investigated samples. Structural parameters particle size Dmax, Feret X, and Feret Y exhibit constant increase with increase of sintering temperature.
{"title":"Structural features of near equiatomic FeCo-2V semi-hard magnetic alloy prepared by MIM technology","authors":"Borivoje Nedeljkovic, Vladimir Pavlovic, Nina Obradovic, Nebojsa Mitrovic","doi":"10.2298/sos231024055n","DOIUrl":"https://doi.org/10.2298/sos231024055n","url":null,"abstract":"The structural properties of a magnetically semi-hard near equiatomic FeCo-2wt%V (FeCoV) alloy produced by Powder Injection Moulding (PIM) (option by fine metal powder - Metal Injection Moulding (MIM) technology) were investigated in this paper. Starting granulate was prepared by mixing FeCoV powder with a low-viscosity binder. After injection, the green samples were first treated with a solvent and then thermally with the same aim of removing the binder. MIM technology was completed by high-temperature sintering for 3.5 hours at temperatures from 1370 OC to 1460 OC in a hydrogen atmosphere, which provides the necessary magnetic and mechanical characteristics. The influence of sintering temperature was investigated concerning the aspects of the processes of structural transformation by the methods of X-ray diffraction (XRD) and scanning electron microscopy (SEM). The appearance of an intense diffraction peak of the ?'-FeCo phase (crystal structure type B2) was registered for all investigated samples. Structural parameters particle size Dmax, Feret X, and Feret Y exhibit constant increase with increase of sintering temperature.","PeriodicalId":21592,"journal":{"name":"Science of Sintering","volume":"15 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134888570","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Darko Kosanovic, Vladimir Blagojevic, Stanko Aleksic, Jelena Zivojinovic, Adriana Peles-Tadic, Vladimir Pavlovic, Nina Obradovic
BZT ceramics was prepared by using fine powder mixture of BaCO3, TiO2 and ZrO2 in the respective molar ratio to form Ba(Zr0.10Ti0.90)O3 via solid state reaction at elevated temperature. The prepared BZT was milled in the planetary ball mill from 0-120 min to achieve different powder grades from micron to nano-sized particles. After the powder characterization by XRD and SEM the samples were pressed in disc shape and sintered at different temperatures from 1100-1350?C in the air. The sintered samples were characterized by SEM and their density and average grain size was determined and presented vs. sintering temperature and powder grades (milling time). After that the silver epoxy electrodes were deposited on sintered disc samples. The disc samples capacity and resistivity were measured at low frequency region from 1 Hz to 200 kHz using low frequency impedance analyzer. The sintering temperatures and powder grades were used as parameters. Finally the specific resistance ?, dielectric constant (?' + j?") and tg? where determined from the impedance measurements. The behavior of electronic properties where analyzed e.g. the relaxation effect of the space charge (inter-granular electric charges) vs. sintering temperature and ceramic grades. The results obtained were compared with best literature data for the losses in BZT ceramics at low frequencies.
{"title":"Electronic properties of BZT nano-ceramic grades at low frequency region","authors":"Darko Kosanovic, Vladimir Blagojevic, Stanko Aleksic, Jelena Zivojinovic, Adriana Peles-Tadic, Vladimir Pavlovic, Nina Obradovic","doi":"10.2298/sos230717043k","DOIUrl":"https://doi.org/10.2298/sos230717043k","url":null,"abstract":"BZT ceramics was prepared by using fine powder mixture of BaCO3, TiO2 and ZrO2 in the respective molar ratio to form Ba(Zr0.10Ti0.90)O3 via solid state reaction at elevated temperature. The prepared BZT was milled in the planetary ball mill from 0-120 min to achieve different powder grades from micron to nano-sized particles. After the powder characterization by XRD and SEM the samples were pressed in disc shape and sintered at different temperatures from 1100-1350?C in the air. The sintered samples were characterized by SEM and their density and average grain size was determined and presented vs. sintering temperature and powder grades (milling time). After that the silver epoxy electrodes were deposited on sintered disc samples. The disc samples capacity and resistivity were measured at low frequency region from 1 Hz to 200 kHz using low frequency impedance analyzer. The sintering temperatures and powder grades were used as parameters. Finally the specific resistance ?, dielectric constant (?' + j?\") and tg? where determined from the impedance measurements. The behavior of electronic properties where analyzed e.g. the relaxation effect of the space charge (inter-granular electric charges) vs. sintering temperature and ceramic grades. The results obtained were compared with best literature data for the losses in BZT ceramics at low frequencies.","PeriodicalId":21592,"journal":{"name":"Science of Sintering","volume":"18 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135793553","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this study, it was aimed to investigate the microstructure, hardness and wear behavior of graphene nanoplate (GNP) reinforced composites with Al 99.9 matrix produced by powder metallurgy. Different temperatures and times were applied in the sintering process. The hardness values of the composites increased as the sintering temperature and time increased. The hardness values decreased with the increase of GNP reinforcement ratio. The wear losses decreased depending on the increase in sintering temperature and time. With the increase in the GNP reinforcement ratio, reductions in wear losses were recorded. It has been concluded that the GNP reinforcement element in the composite structure reduces the friction coefficient and wear losses by having some lubricating effect. It was observed that the neck and bonding formation between Al 99.9 matrix grains improved with increasing sintering temperature and time. It was concluded that with the development of intergranular bonds, the porosity in the composite structure decreased and the mechanical properties increased.
{"title":"The effect of sintering temperature and time on microstructure, hardness and wear behaviors of Al 99.9/GNP composites","authors":"M. Pul, U. Erdem, Onur Pehlivanli","doi":"10.2298/sos2301029p","DOIUrl":"https://doi.org/10.2298/sos2301029p","url":null,"abstract":"In this study, it was aimed to investigate the microstructure, hardness and wear behavior of graphene nanoplate (GNP) reinforced composites with Al 99.9 matrix produced by powder metallurgy. Different temperatures and times were applied in the sintering process. The hardness values of the composites increased as the sintering temperature and time increased. The hardness values decreased with the increase of GNP reinforcement ratio. The wear losses decreased depending on the increase in sintering temperature and time. With the increase in the GNP reinforcement ratio, reductions in wear losses were recorded. It has been concluded that the GNP reinforcement element in the composite structure reduces the friction coefficient and wear losses by having some lubricating effect. It was observed that the neck and bonding formation between Al 99.9 matrix grains improved with increasing sintering temperature and time. It was concluded that with the development of intergranular bonds, the porosity in the composite structure decreased and the mechanical properties increased.","PeriodicalId":21592,"journal":{"name":"Science of Sintering","volume":"1 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"68810982","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
N. Labus, J. Krstić, Srdjan D. Matijašević, V. Pavlović
Powder mixture consisted of ZnO, Mn2O3 (MnCO3) and Fe2O3 blended powders, was found laminating during compaction. Polyvinyl alcohol (PVA) and a combination of PVA with polyethylene glycol (PEG) added as a plasticizer, were introduced as polymer binders to improve the compaction of oxide mixtures. It has been done by forming a suspension of oxide mixture and varying the polymer solution concentration and composition. By evaporating the solvent, new materials were obtained, which consist of oxide particles bound via polymer. In such a manner obtained hybrid materials were characterized with attenuated total reflection Fourier transformed infrared (ATR-FTIR) spectroscopy, differential thermal analysis (DTA) and transmission electron microscopy (TEM). The oxide polymer material was compacted at 200 MPa and the expansion of this compact during heating was monitored in temperature range up to 550 ?C with dilatometer. It was found that PVA forms graft polymer with PEG and specific interaction with oxide particles surface was revealed.
{"title":"Oxide powder mixture with poly-vinyl alcohol (PVA) and added polyethylene glycol (PEG) as plasticizer","authors":"N. Labus, J. Krstić, Srdjan D. Matijašević, V. Pavlović","doi":"10.2298/sos220828005l","DOIUrl":"https://doi.org/10.2298/sos220828005l","url":null,"abstract":"Powder mixture consisted of ZnO, Mn2O3 (MnCO3) and Fe2O3 blended powders, was found laminating during compaction. Polyvinyl alcohol (PVA) and a combination of PVA with polyethylene glycol (PEG) added as a plasticizer, were introduced as polymer binders to improve the compaction of oxide mixtures. It has been done by forming a suspension of oxide mixture and varying the polymer solution concentration and composition. By evaporating the solvent, new materials were obtained, which consist of oxide particles bound via polymer. In such a manner obtained hybrid materials were characterized with attenuated total reflection Fourier transformed infrared (ATR-FTIR) spectroscopy, differential thermal analysis (DTA) and transmission electron microscopy (TEM). The oxide polymer material was compacted at 200 MPa and the expansion of this compact during heating was monitored in temperature range up to 550 ?C with dilatometer. It was found that PVA forms graft polymer with PEG and specific interaction with oxide particles surface was revealed.","PeriodicalId":21592,"journal":{"name":"Science of Sintering","volume":"1 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"68811092","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Glycine assisted self-combustion method resulted in fabrication of cobalt-manganese ferrite substituted by zinc ( Zn ) element. The as-synthesized Zn substituted Co-Mn ferrite was subjected to heat treatment at 600?C and 800?C for 2h. Effects of heat treatment on the structural, morphological, surface and magnetic properties of ZnCoMn ferrite were studied. These properties were characterized by using various techniques including TGA-DTGA, FTIR, XRD, SEM, EDX, TEM and VSM. The results showed that the used preparation route led to the formation of nano crystalline Zn0.2Co0.4Mn0.4Fe2O4 particle with cubic spinel type structure. The crystallinity of this ferrite increases as the heat treatment increases. However, the preparation method resulted to the creation of spongy, fluffy, foamy and fragile material with cubic type structure with some agglomerations. Increasing the calcination temperature from 600?C to 800?C, led to a decrease in the surface area (39.4 %) of the as-synthesized ferrite. This treatment causes an increase in the magnetization(40.3%) of this ferrite. The heat treatment that led to various changes in the different properties of the manufactured ferrite was discussed.
{"title":"Effects of heat treatment on characteristics of Zn substituted Co/Mn ferrite nanoparticles","authors":"N. Deraz","doi":"10.2298/sos221116016d","DOIUrl":"https://doi.org/10.2298/sos221116016d","url":null,"abstract":"Glycine assisted self-combustion method resulted in fabrication of cobalt-manganese ferrite substituted by zinc ( Zn ) element. The as-synthesized Zn substituted Co-Mn ferrite was subjected to heat treatment at 600?C and 800?C for 2h. Effects of heat treatment on the structural, morphological, surface and magnetic properties of ZnCoMn ferrite were studied. These properties were characterized by using various techniques including TGA-DTGA, FTIR, XRD, SEM, EDX, TEM and VSM. The results showed that the used preparation route led to the formation of nano crystalline Zn0.2Co0.4Mn0.4Fe2O4 particle with cubic spinel type structure. The crystallinity of this ferrite increases as the heat treatment increases. However, the preparation method resulted to the creation of spongy, fluffy, foamy and fragile material with cubic type structure with some agglomerations. Increasing the calcination temperature from 600?C to 800?C, led to a decrease in the surface area (39.4 %) of the as-synthesized ferrite. This treatment causes an increase in the magnetization(40.3%) of this ferrite. The heat treatment that led to various changes in the different properties of the manufactured ferrite was discussed.","PeriodicalId":21592,"journal":{"name":"Science of Sintering","volume":"1 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"68811331","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}