首页 > 最新文献

Science Advances最新文献

英文 中文
HfZrO-based synaptic resistor circuit for a Super-Turing intelligent system
IF 13.6 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Pub Date : 2025-02-28 DOI: 10.1126/sciadv.adr2082
Jungmin Lee, Rahul Shenoy, Atharva Deo, Suin Yi, Dawei Gao, David Qiao, Mingjie Xu, Shiva Asapu, Zixuan Rong, Dhruva Nathan, Yong Hei, Dharma Paladugu, Jian-Guo Zheng, J. Joshua Yang, R. Stanley Williams, Qing Wu, Yong Chen
Computers based on the Turing model execute artificial intelligence (AI) algorithms that are either programmed by humans or derived from machine learning. These AI algorithms cannot be modified during the operation process according to environmental changes, resulting in significantly poorer adaptability to new environments, longer learning latency, and higher power consumption compared to the human brain. In contrast, neurobiological circuits can function while simultaneously adapting to changing conditions. Here, we present a brain-inspired Super-Turing AI model based on a synaptic resistor circuit, capable of concurrent real-time inference and learning. Without any prior learning, a circuit of synaptic resistors integrating ferroelectric HfZrO materials was demonstrated to navigate a drone toward a target position while avoiding obstacles in a simulated environment, exhibiting significantly superior learning speed, performance, power consumption, and adaptability compared to computer-based artificial neural networks. Synaptic resistor circuits enable efficient and adaptive Super-Turing AI systems in uncertain and dynamic real-world environments.
{"title":"HfZrO-based synaptic resistor circuit for a Super-Turing intelligent system","authors":"Jungmin Lee, Rahul Shenoy, Atharva Deo, Suin Yi, Dawei Gao, David Qiao, Mingjie Xu, Shiva Asapu, Zixuan Rong, Dhruva Nathan, Yong Hei, Dharma Paladugu, Jian-Guo Zheng, J. Joshua Yang, R. Stanley Williams, Qing Wu, Yong Chen","doi":"10.1126/sciadv.adr2082","DOIUrl":"https://doi.org/10.1126/sciadv.adr2082","url":null,"abstract":"Computers based on the Turing model execute artificial intelligence (AI) algorithms that are either programmed by humans or derived from machine learning. These AI algorithms cannot be modified during the operation process according to environmental changes, resulting in significantly poorer adaptability to new environments, longer learning latency, and higher power consumption compared to the human brain. In contrast, neurobiological circuits can function while simultaneously adapting to changing conditions. Here, we present a brain-inspired Super-Turing AI model based on a synaptic resistor circuit, capable of concurrent real-time inference and learning. Without any prior learning, a circuit of synaptic resistors integrating ferroelectric HfZrO materials was demonstrated to navigate a drone toward a target position while avoiding obstacles in a simulated environment, exhibiting significantly superior learning speed, performance, power consumption, and adaptability compared to computer-based artificial neural networks. Synaptic resistor circuits enable efficient and adaptive Super-Turing AI systems in uncertain and dynamic real-world environments.","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"49 1","pages":""},"PeriodicalIF":13.6,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143518600","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Solid-state spin coherence time approaching the physical limit
IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Pub Date : 2025-02-28
Shuo Han, Xiangyu Ye, Xu Zhou, Zhaoxin Liu, Yuhang Guo, Mengqi Wang, Wentao Ji, Ya Wang, Jiangfeng Du
Extending the coherence time of quantum systems to their physical limit is a long-standing pursuit and critical for developing quantum science and technology. By characterizing all the microscopic noise sources of the electronic spin [nitrogen-vacancy (NV) center] in diamonds using complete noise spectroscopy, we observe a previously unforeseen noise spectrum manifested as the empirical limit (T212T1) that has puzzled researchers for decades in various solid-state systems. By implementing a corresponding dynamical decoupling strategy, we are able to surpass the empirical limit and approach the upper physical limit T2 = 2T1 for NVs, from room temperature down to 220 kelvin. Our observations, including the independence across different spatial sites and its dependence on temperature in the same way as spin-lattice relaxation, suggest an emerging decoherence mechanism dominated by spin-lattice interaction. These results provide a unified and universal strategy for characterizing and controlling microscopic noises, thereby paving the way for achieving the physical limit in various solid-state systems.
{"title":"Solid-state spin coherence time approaching the physical limit","authors":"Shuo Han,&nbsp;Xiangyu Ye,&nbsp;Xu Zhou,&nbsp;Zhaoxin Liu,&nbsp;Yuhang Guo,&nbsp;Mengqi Wang,&nbsp;Wentao Ji,&nbsp;Ya Wang,&nbsp;Jiangfeng Du","doi":"","DOIUrl":"","url":null,"abstract":"<div >Extending the coherence time of quantum systems to their physical limit is a long-standing pursuit and critical for developing quantum science and technology. By characterizing all the microscopic noise sources of the electronic spin [nitrogen-vacancy (NV) center] in diamonds using complete noise spectroscopy, we observe a previously unforeseen noise spectrum manifested as the empirical limit (<span><math><mrow><msub><mi>T</mi><mn>2</mn></msub><mo>≈</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><msub><mi>T</mi><mn>1</mn></msub></mrow></math></span>) that has puzzled researchers for decades in various solid-state systems. By implementing a corresponding dynamical decoupling strategy, we are able to surpass the empirical limit and approach the upper physical limit <i>T</i><sub>2</sub> = 2<i>T</i><sub>1</sub> for NVs, from room temperature down to 220 kelvin. Our observations, including the independence across different spatial sites and its dependence on temperature in the same way as spin-lattice relaxation, suggest an emerging decoherence mechanism dominated by spin-lattice interaction. These results provide a unified and universal strategy for characterizing and controlling microscopic noises, thereby paving the way for achieving the physical limit in various solid-state systems.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 9","pages":""},"PeriodicalIF":11.7,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adr9298","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143527745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Implantable wireless suture sensor for in situ tendon and ligament strain monitoring
IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Pub Date : 2025-02-28
Guangmin Yang, Rongzan Lin, Haojie Li, Yuqiu Chen, Meiling Liu, Ziyang Luo, Kewei Wang, Jinying Tu, Yue Xu, Zixiao Fan, Yizhi Zhou, Yongwei Pan, Zhe Zhao, Ran Liu
Tendon and ligament ruptures are prevalent, and severe sports injuries require surgical repair. In clinical practice, monitoring of tissue strain is critical to alert severe postoperative complications such as graft reinjury and loosening. Here, we present a sensor system that integrates a strain sensor and communication coil onto surgical silk sutures, enabling in situ monitoring and wireless readout of tissue strains via surgical implantation. The flexible sensor shows excellent adaptability to soft tissues, providing a strain monitoring range of 0 to 10% with a minimum detection threshold of 0.25% and maintaining stability more than 300,000 stretching cycles. The wireless sensor could be integrated with complex structures in surgical scenarios involving lateral collateral ligament injury and anterior cruciate ligament reconstruction, enabling distinct responses to graft stretching, reinjury, and loosening. Animal experiments demonstrate that the sensor can acquire real-time, clinical-grade strain data while exhibiting high biocompatibility. The sensor system shows considerable potential in evaluating preclinical implant performance and monitoring implant-related surgical complications.
{"title":"Implantable wireless suture sensor for in situ tendon and ligament strain monitoring","authors":"Guangmin Yang,&nbsp;Rongzan Lin,&nbsp;Haojie Li,&nbsp;Yuqiu Chen,&nbsp;Meiling Liu,&nbsp;Ziyang Luo,&nbsp;Kewei Wang,&nbsp;Jinying Tu,&nbsp;Yue Xu,&nbsp;Zixiao Fan,&nbsp;Yizhi Zhou,&nbsp;Yongwei Pan,&nbsp;Zhe Zhao,&nbsp;Ran Liu","doi":"","DOIUrl":"","url":null,"abstract":"<div >Tendon and ligament ruptures are prevalent, and severe sports injuries require surgical repair. In clinical practice, monitoring of tissue strain is critical to alert severe postoperative complications such as graft reinjury and loosening. Here, we present a sensor system that integrates a strain sensor and communication coil onto surgical silk sutures, enabling in situ monitoring and wireless readout of tissue strains via surgical implantation. The flexible sensor shows excellent adaptability to soft tissues, providing a strain monitoring range of 0 to 10% with a minimum detection threshold of 0.25% and maintaining stability more than 300,000 stretching cycles. The wireless sensor could be integrated with complex structures in surgical scenarios involving lateral collateral ligament injury and anterior cruciate ligament reconstruction, enabling distinct responses to graft stretching, reinjury, and loosening. Animal experiments demonstrate that the sensor can acquire real-time, clinical-grade strain data while exhibiting high biocompatibility. The sensor system shows considerable potential in evaluating preclinical implant performance and monitoring implant-related surgical complications.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 9","pages":""},"PeriodicalIF":11.7,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adt3811","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143527747","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Constraining the entire Earth system projections for more reliable climate change adaptation planning.
IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Pub Date : 2025-02-28 Epub Date: 2025-02-26 DOI: 10.1126/sciadv.adr5346
Chao Li, Francis W Zwiers, Xuebin Zhang, Erich M Fischer, Fujun Du, Jieyu Liu, Jianyu Wang, Yongxiao Liang, Tong Li, Lina Yuan

The warming climate is creating increased levels of climate risk because of changes to the hazards to which human and natural systems are exposed. Projections of how those hazards will change are affected by uncertainties in the climate sensitivity of climate models, among other factors. While the level-of-global-warming approach can circumvent model climate sensitivity uncertainties in some applications, practitioners faced with specific adaptation responsibilities often find such projections difficult to use because they generally require time-oriented information. Earth system projections following specified emissions scenarios can, however, be constrained by applying the level-of-global-warming approach to observationally constrained warming projections to yield more reliable time-oriented projections for adaption planning and implementation. This approach also allows individual groups to produce consistent and comparable assessments of multifaceted climate impacts and causal mechanisms, thereby benefiting climate assessments at national and international levels that provide the science basis for adaptation action.

{"title":"Constraining the entire Earth system projections for more reliable climate change adaptation planning.","authors":"Chao Li, Francis W Zwiers, Xuebin Zhang, Erich M Fischer, Fujun Du, Jieyu Liu, Jianyu Wang, Yongxiao Liang, Tong Li, Lina Yuan","doi":"10.1126/sciadv.adr5346","DOIUrl":"10.1126/sciadv.adr5346","url":null,"abstract":"<p><p>The warming climate is creating increased levels of climate risk because of changes to the hazards to which human and natural systems are exposed. Projections of how those hazards will change are affected by uncertainties in the climate sensitivity of climate models, among other factors. While the level-of-global-warming approach can circumvent model climate sensitivity uncertainties in some applications, practitioners faced with specific adaptation responsibilities often find such projections difficult to use because they generally require time-oriented information. Earth system projections following specified emissions scenarios can, however, be constrained by applying the level-of-global-warming approach to observationally constrained warming projections to yield more reliable time-oriented projections for adaption planning and implementation. This approach also allows individual groups to produce consistent and comparable assessments of multifaceted climate impacts and causal mechanisms, thereby benefiting climate assessments at national and international levels that provide the science basis for adaptation action.</p>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 9","pages":"eadr5346"},"PeriodicalIF":11.7,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11864194/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143516556","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cryo-EM structure of the bacterial intramembrane metalloprotease RseP in the substrate-bound state.
IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Pub Date : 2025-02-28 Epub Date: 2025-02-26 DOI: 10.1126/sciadv.adu0925
Kikuko Asahi, Mika Hirose, Rie Aruga, Yosuke Shimizu, Michiko Tajiri, Tsubasa Tanaka, Yuriko Adachi, Yukari Tanaka, Mika K Kaneko, Yukinari Kato, Satoko Akashi, Yoshinori Akiyama, Yohei Hizukuri, Takayuki Kato, Terukazu Nogi

Site-2 proteases (S2Ps), conserved intramembrane metalloproteases that maintain cellular homeostasis, are associated with chronic infection and persistence leading to multidrug resistance in bacterial pathogens. A structural model of how S2Ps discriminate and accommodate substrates could help us develop selective antimicrobial agents. We previously proposed that the Escherichia coli S2P RseP unwinds helical substrate segments before cleavage, but the mechanism for accommodating a full-length membrane-spanning substrate remained unclear. Our present cryo-EM analysis of Aquifex aeolicus RseP (AaRseP) revealed that a substrate-like membrane protein fragment from the expression host occupied the active site while spanning a transmembrane cavity that is inaccessible via lateral diffusion. Furthermore, in vivo photocrosslinking supported that this substrate accommodation mode is recapitulated on the cell membrane. Our results suggest that the substrate accommodation by threading through a conserved membrane-associated region stabilizes the substrate-complex and contributes to substrate discrimination on the membrane.

{"title":"Cryo-EM structure of the bacterial intramembrane metalloprotease RseP in the substrate-bound state.","authors":"Kikuko Asahi, Mika Hirose, Rie Aruga, Yosuke Shimizu, Michiko Tajiri, Tsubasa Tanaka, Yuriko Adachi, Yukari Tanaka, Mika K Kaneko, Yukinari Kato, Satoko Akashi, Yoshinori Akiyama, Yohei Hizukuri, Takayuki Kato, Terukazu Nogi","doi":"10.1126/sciadv.adu0925","DOIUrl":"10.1126/sciadv.adu0925","url":null,"abstract":"<p><p>Site-2 proteases (S2Ps), conserved intramembrane metalloproteases that maintain cellular homeostasis, are associated with chronic infection and persistence leading to multidrug resistance in bacterial pathogens. A structural model of how S2Ps discriminate and accommodate substrates could help us develop selective antimicrobial agents. We previously proposed that the <i>Escherichia coli</i> S2P RseP unwinds helical substrate segments before cleavage, but the mechanism for accommodating a full-length membrane-spanning substrate remained unclear. Our present cryo-EM analysis of <i>Aquifex aeolicus</i> RseP (<i>Aa</i>RseP) revealed that a substrate-like membrane protein fragment from the expression host occupied the active site while spanning a transmembrane cavity that is inaccessible via lateral diffusion. Furthermore, in vivo photocrosslinking supported that this substrate accommodation mode is recapitulated on the cell membrane. Our results suggest that the substrate accommodation by threading through a conserved membrane-associated region stabilizes the substrate-complex and contributes to substrate discrimination on the membrane.</p>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 9","pages":"eadu0925"},"PeriodicalIF":11.7,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11864173/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143516569","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thermal diffusivity microscope: Zooming in on anisotropic heat transport.
IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Pub Date : 2025-02-28 Epub Date: 2025-02-26 DOI: 10.1126/sciadv.ads6538
Neetu Lamba, Braulio Beltrán-Pitarch, Tianbo Yu, Muhamed Dawod, Alex Berner, Benny Guralnik, Andrey Orekhov, Nicolas Gauquelin, Yaron Amouyal, Johan Verbeeck, Ole Hansen, Nini Pryds, Dirch Hjorth Petersen

Anisotropic heat-conducting materials play crucial roles in designing electronic, optoelectronic, and thermoelectric devices, where temperature and thermal stress are important. Despite substantial research efforts, a major obstacle to determining the anisotropic thermal diffusivity tensor in polycrystalline systems is the need for a robust, direct, and nondestructive technique to distinguish between distinct thermal diffusivities. Here, we demonstrate a conceptually unique thermal diffusivity microscope capable of performing high-resolution local measurements of anisotropic thermal diffusivity. The microscope features a unique micro four-point probe for fast, nondestructive scanning without calibration or extra sample preparation. It measures anisotropic thermal diffusivity based on thermal delay from a single heater. Through a series of experiments, we demonstrate that the anisotropy of the measured thermal diffusivity correlates excellently with the crystallographic direction of prototypical Bi2Te3. The anisotropic heat transport shows that the lattice contribution dominates the heat transport for both in- and out-of-plane directions.

{"title":"Thermal diffusivity microscope: Zooming in on anisotropic heat transport.","authors":"Neetu Lamba, Braulio Beltrán-Pitarch, Tianbo Yu, Muhamed Dawod, Alex Berner, Benny Guralnik, Andrey Orekhov, Nicolas Gauquelin, Yaron Amouyal, Johan Verbeeck, Ole Hansen, Nini Pryds, Dirch Hjorth Petersen","doi":"10.1126/sciadv.ads6538","DOIUrl":"10.1126/sciadv.ads6538","url":null,"abstract":"<p><p>Anisotropic heat-conducting materials play crucial roles in designing electronic, optoelectronic, and thermoelectric devices, where temperature and thermal stress are important. Despite substantial research efforts, a major obstacle to determining the anisotropic thermal diffusivity tensor in polycrystalline systems is the need for a robust, direct, and nondestructive technique to distinguish between distinct thermal diffusivities. Here, we demonstrate a conceptually unique thermal diffusivity microscope capable of performing high-resolution local measurements of anisotropic thermal diffusivity. The microscope features a unique micro four-point probe for fast, nondestructive scanning without calibration or extra sample preparation. It measures anisotropic thermal diffusivity based on thermal delay from a single heater. Through a series of experiments, we demonstrate that the anisotropy of the measured thermal diffusivity correlates excellently with the crystallographic direction of prototypical Bi<sub>2</sub>Te<sub>3</sub>. The anisotropic heat transport shows that the lattice contribution dominates the heat transport for both in- and out-of-plane directions.</p>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 9","pages":"eads6538"},"PeriodicalIF":11.7,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11864195/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143516579","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unveiling the importance of nonshortest paths in quantum networks.
IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Pub Date : 2025-02-28 Epub Date: 2025-02-26 DOI: 10.1126/sciadv.adt2404
Xinqi Hu, Gaogao Dong, Kim Christensen, Hanlin Sun, Jingfang Fan, Zihao Tian, Jianxi Gao, Shlomo Havlin, Renaud Lambiotte, Xiangyi Meng

Quantum networks (QNs) exhibit stronger connectivity than predicted by classical percolation, yet the origin of this phenomenon remains unexplored. We apply a statistical physics model-concurrence percolation-to uncover the origin of stronger connectivity on hierarchical scale-free networks, the (U, V) flowers. These networks allow full analytical control over path connectivity through two adjustable path-length parameters, ≤V. This precise control enables us to determine critical exponents well beyond current simulation limits, revealing that classical and concurrence percolations, while both satisfying the hyperscaling relation, fall into distinct universality classes. This distinction arises from how they "superpose" parallel, nonshortest path contributions into overall connectivity. Concurrence percolation, unlike its classical counterpart, is sensitive to nonshortest paths and shows higher resilience to detours as these paths lengthen. This enhanced resilience is also observed in real-world hierarchical, scale-free internet networks. Our findings highlight a crucial principle for QN design: When nonshortest paths are abundant, they notably enhance QN connectivity beyond what is achievable with classical percolation.

{"title":"Unveiling the importance of nonshortest paths in quantum networks.","authors":"Xinqi Hu, Gaogao Dong, Kim Christensen, Hanlin Sun, Jingfang Fan, Zihao Tian, Jianxi Gao, Shlomo Havlin, Renaud Lambiotte, Xiangyi Meng","doi":"10.1126/sciadv.adt2404","DOIUrl":"10.1126/sciadv.adt2404","url":null,"abstract":"<p><p>Quantum networks (QNs) exhibit stronger connectivity than predicted by classical percolation, yet the origin of this phenomenon remains unexplored. We apply a statistical physics model-concurrence percolation-to uncover the origin of stronger connectivity on hierarchical scale-free networks, the (<i>U</i>, <i>V</i>) flowers. These networks allow full analytical control over path connectivity through two adjustable path-length parameters, ≤<i>V</i>. This precise control enables us to determine critical exponents well beyond current simulation limits, revealing that classical and concurrence percolations, while both satisfying the hyperscaling relation, fall into distinct universality classes. This distinction arises from how they \"superpose\" parallel, nonshortest path contributions into overall connectivity. Concurrence percolation, unlike its classical counterpart, is sensitive to nonshortest paths and shows higher resilience to detours as these paths lengthen. This enhanced resilience is also observed in real-world hierarchical, scale-free internet networks. Our findings highlight a crucial principle for QN design: When nonshortest paths are abundant, they notably enhance QN connectivity beyond what is achievable with classical percolation.</p>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 9","pages":"eadt2404"},"PeriodicalIF":11.7,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11864168/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143516587","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A long-lived pool of PINK1 imparts a molecular memory of depolarization-induced activity
IF 13.6 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Pub Date : 2025-02-28 DOI: 10.1126/sciadv.adr1938
Liam Pollock, Ioanna Ch. Georgiou, Emma V. Rusilowicz-Jones, Michael J. Clague, Sylvie Urbé
The Parkinson’s disease–linked kinase, PINK1, is a short-lived protein that undergoes cleavage upon mitochondrial import leading to its proteasomal degradation. Under depolarizing conditions, it accumulates on mitochondria where it becomes activated, phosphorylating both ubiquitin and the ubiquitin E3 ligase Parkin, at Ser 65 . Our experiments reveal that in retinal pigment epithelial cells, only a fraction of PINK1 becomes stabilized after depolarization by electron transport chain inhibitors. Furthermore, the observed accrual of PINK1 cannot be completely accounted for without an accompanying increase in biosynthesis. We have used a ubiquitylation inhibitor TAK-243 to accumulate cleaved PINK1. Under these conditions, generation of unconjugated “free” phospho-ubiquitin serves as a proxy readout for PINK1 activity. This has enabled us to find a preconditioning phenomenon, whereby an initial depolarizing treatment leaves a residual pool of active PINK1 that remains competent to seed the activation of nascent cleaved PINK1 following a 16-hour recovery period.
{"title":"A long-lived pool of PINK1 imparts a molecular memory of depolarization-induced activity","authors":"Liam Pollock, Ioanna Ch. Georgiou, Emma V. Rusilowicz-Jones, Michael J. Clague, Sylvie Urbé","doi":"10.1126/sciadv.adr1938","DOIUrl":"https://doi.org/10.1126/sciadv.adr1938","url":null,"abstract":"The Parkinson’s disease–linked kinase, PINK1, is a short-lived protein that undergoes cleavage upon mitochondrial import leading to its proteasomal degradation. Under depolarizing conditions, it accumulates on mitochondria where it becomes activated, phosphorylating both ubiquitin and the ubiquitin E3 ligase Parkin, at Ser <jats:sup>65</jats:sup> . Our experiments reveal that in retinal pigment epithelial cells, only a fraction of PINK1 becomes stabilized after depolarization by electron transport chain inhibitors. Furthermore, the observed accrual of PINK1 cannot be completely accounted for without an accompanying increase in biosynthesis. We have used a ubiquitylation inhibitor TAK-243 to accumulate cleaved PINK1. Under these conditions, generation of unconjugated “free” phospho-ubiquitin serves as a proxy readout for PINK1 activity. This has enabled us to find a preconditioning phenomenon, whereby an initial depolarizing treatment leaves a residual pool of active PINK1 that remains competent to seed the activation of nascent cleaved PINK1 following a 16-hour recovery period.","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"86 1","pages":""},"PeriodicalIF":13.6,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143518258","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Approaching infinite selectivity in membrane-based aqueous lithium extraction via solid-state ion transport
IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Pub Date : 2025-02-28
Sohum K. Patel, Arpita Iddya, Weiyi Pan, Jianhao Qian, Menachem Elimelech
As the gap between lithium supply and demand continues to widen, the need to develop ion-selective technologies, which can efficiently extract lithium from unconventional water sources, grows increasingly crucial. In this study, we investigated the fundamentals of applying a solid-state electrolyte (SSE), typically used in battery technologies, as a membrane material for aqueous lithium extraction. We find that the anhydrous hopping of lithium ions through the ordered and confined SSE lattice is highly distinct from ion migration through the hydrated free volumes of conventional nanoporous membranes, thus culminating in unique membrane transport properties. Notably, we reveal that the SSE provides unparalleled performance with respect to ion-ion selectivity, consistently demonstrating lithium ion selectivity values that are immeasurable by even the part-per-billion detection limit of mass spectrometry. Such exceptional selectivity is shown to be the result of the characteristic size and charge exclusion mechanisms of solid-state ion transport, which may be leveraged in the design of next-generation membranes for resource recovery.
{"title":"Approaching infinite selectivity in membrane-based aqueous lithium extraction via solid-state ion transport","authors":"Sohum K. Patel,&nbsp;Arpita Iddya,&nbsp;Weiyi Pan,&nbsp;Jianhao Qian,&nbsp;Menachem Elimelech","doi":"","DOIUrl":"","url":null,"abstract":"<div >As the gap between lithium supply and demand continues to widen, the need to develop ion-selective technologies, which can efficiently extract lithium from unconventional water sources, grows increasingly crucial. In this study, we investigated the fundamentals of applying a solid-state electrolyte (SSE), typically used in battery technologies, as a membrane material for aqueous lithium extraction. We find that the anhydrous hopping of lithium ions through the ordered and confined SSE lattice is highly distinct from ion migration through the hydrated free volumes of conventional nanoporous membranes, thus culminating in unique membrane transport properties. Notably, we reveal that the SSE provides unparalleled performance with respect to ion-ion selectivity, consistently demonstrating lithium ion selectivity values that are immeasurable by even the part-per-billion detection limit of mass spectrometry. Such exceptional selectivity is shown to be the result of the characteristic size and charge exclusion mechanisms of solid-state ion transport, which may be leveraged in the design of next-generation membranes for resource recovery.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 9","pages":""},"PeriodicalIF":11.7,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adq9823","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143527750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
TFIIH kinase CDK7 drives cell proliferation through a common core transcription factor network
IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Pub Date : 2025-02-28
Taylor Jones, Junjie Feng, Olivia Luyties, Kira Cozzolino, Lynn Sanford, Jenna K. Rimel, Christopher C. Ebmeier, Grace S. Shelby, Lotte P. Watts, Jessica Rodino, Nisha Rajagopal, Shanhu Hu, Finn Brennan, Zachary L. Maas, Sydney Alnemy, William F. Richter, Adrian F. Koh, Nora B. Cronin, Ameya Madduri, Jhuma Das, Elliot Cooper, Kristin B. Hamman, John P. Carulli, Mary A. Allen, Sabrina Spencer, Abhay Kotecha, Jason J. Marineau, Basil J. Greber, Robin D. Dowell, Dylan J. Taatjes
How cyclin-dependent kinase 7 (CDK7) coordinately regulates the cell cycle and RNA polymerase II transcription remains unclear. Here, high-resolution cryo–electron microscopy revealed how two clinically relevant inhibitors block CDK7 function. In cells, CDK7 inhibition rapidly suppressed transcription, but constitutively active genes were disproportionately affected versus stimulus-responsive. Distinct transcription factors (TFs) regulate constitutive versus stimulus-responsive genes. Accordingly, stimulus-responsive TFs were refractory to CDK7 inhibition whereas constitutively active “core” TFs were repressed. Core TFs (n = 78) are predominantly promoter associated and control cell cycle and proliferative gene expression programs across cell types. Mechanistically, rapid suppression of core TF function can occur through CDK7-dependent phosphorylation changes in core TFs and RB1. Moreover, CDK7 inhibition depleted core TF protein levels within hours, consistent with durable target gene suppression. Thus, a major but unappreciated biological function for CDK7 is regulation of a TF cohort that drives proliferation, revealing an apparent universal mechanism by which CDK7 coordinates RNAPII transcription with cell cycle CDK regulation.
{"title":"TFIIH kinase CDK7 drives cell proliferation through a common core transcription factor network","authors":"Taylor Jones,&nbsp;Junjie Feng,&nbsp;Olivia Luyties,&nbsp;Kira Cozzolino,&nbsp;Lynn Sanford,&nbsp;Jenna K. Rimel,&nbsp;Christopher C. Ebmeier,&nbsp;Grace S. Shelby,&nbsp;Lotte P. Watts,&nbsp;Jessica Rodino,&nbsp;Nisha Rajagopal,&nbsp;Shanhu Hu,&nbsp;Finn Brennan,&nbsp;Zachary L. Maas,&nbsp;Sydney Alnemy,&nbsp;William F. Richter,&nbsp;Adrian F. Koh,&nbsp;Nora B. Cronin,&nbsp;Ameya Madduri,&nbsp;Jhuma Das,&nbsp;Elliot Cooper,&nbsp;Kristin B. Hamman,&nbsp;John P. Carulli,&nbsp;Mary A. Allen,&nbsp;Sabrina Spencer,&nbsp;Abhay Kotecha,&nbsp;Jason J. Marineau,&nbsp;Basil J. Greber,&nbsp;Robin D. Dowell,&nbsp;Dylan J. Taatjes","doi":"","DOIUrl":"","url":null,"abstract":"<div >How cyclin-dependent kinase 7 (CDK7) coordinately regulates the cell cycle and RNA polymerase II transcription remains unclear. Here, high-resolution cryo–electron microscopy revealed how two clinically relevant inhibitors block CDK7 function. In cells, CDK7 inhibition rapidly suppressed transcription, but constitutively active genes were disproportionately affected versus stimulus-responsive. Distinct transcription factors (TFs) regulate constitutive versus stimulus-responsive genes. Accordingly, stimulus-responsive TFs were refractory to CDK7 inhibition whereas constitutively active “core” TFs were repressed. Core TFs (n = 78) are predominantly promoter associated and control cell cycle and proliferative gene expression programs across cell types. Mechanistically, rapid suppression of core TF function can occur through CDK7-dependent phosphorylation changes in core TFs and RB1. Moreover, CDK7 inhibition depleted core TF protein levels within hours, consistent with durable target gene suppression. Thus, a major but unappreciated biological function for CDK7 is regulation of a TF cohort that drives proliferation, revealing an apparent universal mechanism by which CDK7 coordinates RNAPII transcription with cell cycle CDK regulation.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 9","pages":""},"PeriodicalIF":11.7,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adr9660","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143527766","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Science Advances
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1