Carnation (Dianthus caryophyllus L.) is a prominent floricultural crop valued for its diverse colors, offering significant economic and ornamental value globally. However, the global demand for its flowers makes flower yield an important attribute that relies on the quantity of lateral branches in the crop. Melatonin as a multi-regulatory phytohormone play vital functions in governing plant growth and development. It is synthesized from tryptophan via four key enzymes. Tryptophan decarboxylase (TDC), Tryptamine 5-hydroxylase (T5H), Serotonin N-acetyltransferase (SNAT), and N-Acetylserotonin O-methyltransferase (ASMT). Although the significance of melatonin is recognized, its impact on the growth and development of carnation remains understudied. In the current study, we investigated the effect of exogenous melatonin at different concentrations, on growth pattern of carnation, followed by genome-wide characterization, in-silico analysis and expression profiling of melatonin biosynthetic pathway genes. Results showed increased branching and reduced height with increased melatonin concentrations up to a point. In-silico analysis identified ten genes in the melatonin biosynthetic pathway, including two TDC, two T5H, one SNAT, and five ASMT members. Domain analysis confirmed the presence of characteristic domains such as pyridoxal-dependent decarboxylase, cytochrome P450, Acetyltransferase_1, and O-methyltransferase. Physiochemical properties, gene structure, conserved motifs, promoter regions, gene ontology, synteny, and evolutionary relationships through phylogeny were also analysed. Sub-cellular localization predictions showed distribution of melatonin biosynthetic enzymes across various cellular compartments. Expression analysis of these genes under different exogenous melatonin concentrations (100, 200, 300, 400, 500, and 1000 µM) revealed significant upregulation at 100 µM and 500 µM, while no change was observed at 1000 µM. These findings suggest that optimal exogenous melatonin concentrations enhance the expression of biosynthetic pathway genes ultimately led to increased branching in carnation due to increased endogenous melatonin levels. This study establishes a basis for future functional characterization of melatonin biosynthetic pathway genes to elucidate their roles in carnation growth and development.
{"title":"Genome-wide characterization of melatonin biosynthetic pathway genes in carnation (Dianthus caryophyllus L.) and their expression analysis in response to exogenous melatonin","authors":"Priti, Payal Kapoor, Surbhi Mali, Vipasha Verma, Megha Katoch, Gaurav Zinta, Bhavya Bhargava","doi":"10.1016/j.scienta.2024.113776","DOIUrl":"https://doi.org/10.1016/j.scienta.2024.113776","url":null,"abstract":"Carnation (<ce:italic>Dianthus caryophyllus</ce:italic> L.) is a prominent floricultural crop valued for its diverse colors, offering significant economic and ornamental value globally. However, the global demand for its flowers makes flower yield an important attribute that relies on the quantity of lateral branches in the crop. Melatonin as a multi-regulatory phytohormone play vital functions in governing plant growth and development. It is synthesized from tryptophan via four key enzymes. Tryptophan decarboxylase (TDC), Tryptamine 5-hydroxylase (T5H), Serotonin <ce:italic>N</ce:italic>-acetyltransferase (SNAT), and <ce:italic>N</ce:italic>-Acetylserotonin <ce:italic>O-</ce:italic>methyltransferase (ASMT). Although the significance of melatonin is recognized, its impact on the growth and development of carnation remains understudied. In the current study, we investigated the effect of exogenous melatonin at different concentrations, on growth pattern of carnation, followed by genome-wide characterization, <ce:italic>in-silico</ce:italic> analysis and expression profiling of melatonin biosynthetic pathway genes. Results showed increased branching and reduced height with increased melatonin concentrations up to a point. <ce:italic>In-silico</ce:italic> analysis identified ten genes in the melatonin biosynthetic pathway, including two <ce:italic>TDC</ce:italic>, two <ce:italic>T5H,</ce:italic> one <ce:italic>SNAT</ce:italic>, and five <ce:italic>ASMT</ce:italic> members. Domain analysis confirmed the presence of characteristic domains such as pyridoxal-dependent decarboxylase, cytochrome P450, Acetyltransferase_1, and O-methyltransferase. Physiochemical properties, gene structure, conserved motifs, promoter regions, gene ontology, synteny, and evolutionary relationships through phylogeny were also analysed. Sub-cellular localization predictions showed distribution of melatonin biosynthetic enzymes across various cellular compartments. Expression analysis of these genes under different exogenous melatonin concentrations (100, 200, 300, 400, 500, and 1000 µM) revealed significant upregulation at 100 µM and 500 µM, while no change was observed at 1000 µM. These findings suggest that optimal exogenous melatonin concentrations enhance the expression of biosynthetic pathway genes ultimately led to increased branching in carnation due to increased endogenous melatonin levels. This study establishes a basis for future functional characterization of melatonin biosynthetic pathway genes to elucidate their roles in carnation growth and development.","PeriodicalId":21679,"journal":{"name":"Scientia Horticulturae","volume":"1 1","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142643194","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pomegranate is sensitive to low temperature and is susceptible to chilling injury (CI), resulting in husk browning. The effects of Methyl jasmonate (MeJA), hot water treatment (HWT), and control treatments on the quality of pomegranate fruit during low temperature storage were investigated. The results showed that MeJA and HWT treatments could effectively inhibit the increase of browning index, color difference, relative conductivity, polyphenol oxidase (PPO) and peroxidase (POD) activities, maintain phenolic substances and the activity of phenylalanine ammonia-lyase (PAL). The browning index of MeJA treatment was 55.42 % lower than control treatment on the 70th day, the relative conductivity and MDA content were 24.32 % and 51.67 % lower than control treatment, respectively. Furthermore, MeJA treatment delayed the increase of PgPPO and PgPOD gene expression levels, upregulated the expression levels of PgPAL gene. Overall, MeJA treatment could improve antioxidant capacities, alleviate CI by regulating phenolic metabolism and gene expression levels.
{"title":"Methyl jasmonate alleviates the husk browning and regulates expression of genes related to phenolic metabolism of pomegranate fruit","authors":"Sai Jing, Yuwen Shi, Bihe Zhu, Yongjia Yang, Shuwei Nian, Kehan Wang, Xiaocheng Guo, Qinggang Zhu, Liping Kou","doi":"10.1016/j.scienta.2024.113783","DOIUrl":"https://doi.org/10.1016/j.scienta.2024.113783","url":null,"abstract":"Pomegranate is sensitive to low temperature and is susceptible to chilling injury (CI), resulting in husk browning. The effects of Methyl jasmonate (MeJA), hot water treatment (HWT), and control treatments on the quality of pomegranate fruit during low temperature storage were investigated. The results showed that MeJA and HWT treatments could effectively inhibit the increase of browning index, color difference, relative conductivity, polyphenol oxidase (PPO) and peroxidase (POD) activities, maintain phenolic substances and the activity of phenylalanine ammonia-lyase (PAL). The browning index of MeJA treatment was 55.42 % lower than control treatment on the 70th day, the relative conductivity and MDA content were 24.32 % and 51.67 % lower than control treatment, respectively. Furthermore, MeJA treatment delayed the increase of <ce:italic>PgPPO</ce:italic> and <ce:italic>PgPOD</ce:italic> gene expression levels, upregulated the expression levels of <ce:italic>PgPAL</ce:italic> gene. Overall, MeJA treatment could improve antioxidant capacities, alleviate CI by regulating phenolic metabolism and gene expression levels.","PeriodicalId":21679,"journal":{"name":"Scientia Horticulturae","volume":"64 1","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142643190","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-05DOI: 10.1016/j.scienta.2024.113782
Miriam González-Lázaro, Itziar Sáenz de Urturi, Sandra Marín-San Román, Rebeca Murillo-Peña, Eva P. Pérez-Álvarez, Teresa Garde-Cerdán
Anthocyanins, the main phenolic compounds responsible for the color of red grapes and wines, exhibit antioxidant and antimicrobial properties and offer various health benefits for humans. Currently, climate change can affect grape quality by causing a decoupling between the technological and phenolic maturities of the grapes. Foliar application of methyl jasmonate (MeJ) and urea (Ur) can be a tool to mitigate the global warming effects in the vineyard. The aim of this work was to study i) the development of anthocyanin content in ‘Tempranillo’ grapes along the ripening process, and ii) the effect of foliar application of MeJ and MeJ+Ur on these phenolic compounds over two vintages (2019 and 2020). Overall, in the first vintage, anthocyanins peaked in their concentrations in the pre-harvest or harvest moments; whereas in the second vintage, the highest contents of these phenolic compounds were reached at harvest time, after that, a maintenance or decreased of their concentrations was observed. In both vintages, non-acylated anthocyanins was the most abundant family of anthocyanins. Foliar application of MeJ+Ur was more effective in enhancing anthocyanin biosynthesis than MeJ treatment, which also increased anthocyanin content compared to control grapes. Therefore, MeJ and Ur foliar treatment could present a synergy in anthocyanin biosynthesis by the plant. Moreover, the impact of these applications varied across vintages, and also the content of anthocyanins in grapes, probably due to different climatological conditions. Consequently, the two foliar treatments, MeJ and MeJ+Ur, could be a suitable tool to increase anthocyanins biosynthesis in grapes, and thus improve grape quality.
{"title":"Effects of foliar applications of methyl jasmonate alone or with urea on anthocyanins content during grape ripening","authors":"Miriam González-Lázaro, Itziar Sáenz de Urturi, Sandra Marín-San Román, Rebeca Murillo-Peña, Eva P. Pérez-Álvarez, Teresa Garde-Cerdán","doi":"10.1016/j.scienta.2024.113782","DOIUrl":"https://doi.org/10.1016/j.scienta.2024.113782","url":null,"abstract":"Anthocyanins, the main phenolic compounds responsible for the color of red grapes and wines, exhibit antioxidant and antimicrobial properties and offer various health benefits for humans. Currently, climate change can affect grape quality by causing a decoupling between the technological and phenolic maturities of the grapes. Foliar application of methyl jasmonate (MeJ) and urea (Ur) can be a tool to mitigate the global warming effects in the vineyard. The aim of this work was to study i) the development of anthocyanin content in ‘Tempranillo’ grapes along the ripening process, and ii) the effect of foliar application of MeJ and MeJ+Ur on these phenolic compounds over two vintages (2019 and 2020). Overall, in the first vintage, anthocyanins peaked in their concentrations in the pre-harvest or harvest moments; whereas in the second vintage, the highest contents of these phenolic compounds were reached at harvest time, after that, a maintenance or decreased of their concentrations was observed. In both vintages, non-acylated anthocyanins was the most abundant family of anthocyanins. Foliar application of MeJ+Ur was more effective in enhancing anthocyanin biosynthesis than MeJ treatment, which also increased anthocyanin content compared to control grapes. Therefore, MeJ and Ur foliar treatment could present a synergy in anthocyanin biosynthesis by the plant. Moreover, the impact of these applications varied across vintages, and also the content of anthocyanins in grapes, probably due to different climatological conditions. Consequently, the two foliar treatments, MeJ and MeJ+Ur, could be a suitable tool to increase anthocyanins biosynthesis in grapes, and thus improve grape quality.","PeriodicalId":21679,"journal":{"name":"Scientia Horticulturae","volume":"53 1","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142643198","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-04DOI: 10.1016/j.scienta.2024.113778
Ziao Hu, Yi Qian, Jun Tao, Daqiu Zhao
The herbaceous peony (Paeonia lactiflora Pall.) is renowned for its striking flowers, which are highly valued in the cut flower industry. However, in the middle and lower reaches of the Yangtze River, the elevated summer temperatures negatively affect the plant's flowering capacity in the subsequent year. 3-oxoacyl-ACP reductase (FabG) is a component of the type II fatty acid synthesis (FAS II) system, where it plays a role in facilitating the production of saturated fatty acids. However, its role in conferring resistance to high-temperature stress remains unclear. In order to investigate the function of PlFabG in dealing with high-temperature stress, we isolated PlFabG from P. lactiflora. The gene contains an open reading frame (ORF) of 780 bp, which encodes 259 amino acids. Quantitative real-time PCR (qRT-PCR) analysis showed that the expression levels of PlFabG increased with prolonged exposure to high temperature. Additionally, plants overexpressing PlFabG maintained a relatively healthy phenotype under high-temperature stress, whereas plants with silencing PlFabG exhibited more severe leaf scorching and wilting under the same conditions. Various physiological indices indicated that PlFabG reduced reactive oxygen species (ROS) accumulation and enhanced the saturation of photosystem II. Most importantly, PlFabG helped P. lactiflora withstand high-temperature stress by increasing the proportion of saturated fatty acids, thereby maintaining cell membrane integrity. These findings elucidate the beneficial role of PlFabG in enhancing plant tolerance to high temperature and provide a strong theoretical support for the development of high-temperature tolerance in transgenic P. lactiflora.
{"title":"PlFabG improves high-temperature resistance in herbaceous peony by increasing saturated fatty acids","authors":"Ziao Hu, Yi Qian, Jun Tao, Daqiu Zhao","doi":"10.1016/j.scienta.2024.113778","DOIUrl":"https://doi.org/10.1016/j.scienta.2024.113778","url":null,"abstract":"The herbaceous peony (<ce:italic>Paeonia lactiflora</ce:italic> Pall<ce:italic>.</ce:italic>) is renowned for its striking flowers, which are highly valued in the cut flower industry. However, in the middle and lower reaches of the Yangtze River, the elevated summer temperatures negatively affect the plant's flowering capacity in the subsequent year. 3-oxoacyl-ACP reductase (FabG) is a component of the type II fatty acid synthesis (FAS II) system, where it plays a role in facilitating the production of saturated fatty acids. However, its role in conferring resistance to high-temperature stress remains unclear. In order to investigate the function of <ce:italic>PlFabG</ce:italic> in dealing with high-temperature stress, we isolated <ce:italic>PlFabG</ce:italic> from <ce:italic>P. lactiflora</ce:italic>. The gene contains an open reading frame (ORF) of 780 bp, which encodes 259 amino acids. Quantitative real-time PCR (qRT-PCR) analysis showed that the expression levels of <ce:italic>PlFabG</ce:italic> increased with prolonged exposure to high temperature. Additionally, plants overexpressing <ce:italic>PlFabG</ce:italic> maintained a relatively healthy phenotype under high-temperature stress, whereas plants with silencing <ce:italic>PlFabG</ce:italic> exhibited more severe leaf scorching and wilting under the same conditions. Various physiological indices indicated that <ce:italic>PlFabG</ce:italic> reduced reactive oxygen species (ROS) accumulation and enhanced the saturation of photosystem II. Most importantly, <ce:italic>PlFabG</ce:italic> helped <ce:italic>P. lactiflora</ce:italic> withstand high-temperature stress by increasing the proportion of saturated fatty acids, thereby maintaining cell membrane integrity. These findings elucidate the beneficial role of <ce:italic>PlFabG</ce:italic> in enhancing plant tolerance to high temperature and provide a strong theoretical support for the development of high-temperature tolerance in transgenic <ce:italic>P. lactiflora.</ce:italic>","PeriodicalId":21679,"journal":{"name":"Scientia Horticulturae","volume":"7 1","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142643186","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-03DOI: 10.1016/j.scienta.2024.113771
Jashanpreet Kaur, Zora Singh, Muhammad Sohail Mazhar, Eben Afrifa-Yamoah, Andrew Woodward
Jackfruit exhibits a high degree of genetic diversity due to cross-pollination and heterozygosity; nevertheless, little is known about the characterisation of fruit quality in jackfruit genotypes grown in tropical Australia. In this study, patterns of morphological and biochemical variation in the fruit of 12 jackfruit genotypes were investigated. Maximum fruit weight and pulp weight were recorded in ‘Accession 304 (yellow-fleshed)’, which can be more suitable for domestic markets. ‘Accession 348 (orange-fleshed)’ exhibited the highest fruit edible portion, showing its potential for both table and processing purposes. There was evidence of wide variability among jackfruit genotypes in total dry matter content ranging from 20.48% in ‘Seedling 1 (yellow-fleshed)’ to 29.66% in ‘Rajang (orange-fleshed)’. The highest ratio of soluble solids content: titratable acidity was recorded in the fruit of ‘Seedling 2 (orange-fleshed)’ which can be a viable option for processing purposes. Orange-fleshed genotypes having higher a*, ascorbic acid and carotenoid content can be favourable for fresh consumption due to bright-coloured bulbs. ‘Accession 306 (yellow-fleshed)’ exhibited the highest total phenolics content, while ‘Rajang (orange-fleshed)’ showed the highest total flavonoids content. Overall, these findings highlight the unique characteristics of each jackfruit genotype and this information would be useful when selecting the genotypes for marketing and processing purposes.
{"title":"Variability in fruit quality traits of tropical Australian jackfruit (Artocarpus heterophyllus Lam.) genotypes","authors":"Jashanpreet Kaur, Zora Singh, Muhammad Sohail Mazhar, Eben Afrifa-Yamoah, Andrew Woodward","doi":"10.1016/j.scienta.2024.113771","DOIUrl":"https://doi.org/10.1016/j.scienta.2024.113771","url":null,"abstract":"Jackfruit exhibits a high degree of genetic diversity due to cross-pollination and heterozygosity; nevertheless, little is known about the characterisation of fruit quality in jackfruit genotypes grown in tropical Australia. In this study, patterns of morphological and biochemical variation in the fruit of 12 jackfruit genotypes were investigated. Maximum fruit weight and pulp weight were recorded in ‘Accession 304 (yellow-fleshed)’, which can be more suitable for domestic markets. ‘Accession 348 (orange-fleshed)’ exhibited the highest fruit edible portion, showing its potential for both table and processing purposes. There was evidence of wide variability among jackfruit genotypes in total dry matter content ranging from 20.48% in ‘Seedling 1 (yellow-fleshed)’ to 29.66% in ‘Rajang (orange-fleshed)’. The highest ratio of soluble solids content: titratable acidity was recorded in the fruit of ‘Seedling 2 (orange-fleshed)’ which can be a viable option for processing purposes. Orange-fleshed genotypes having higher <ce:italic>a*</ce:italic>, ascorbic acid and carotenoid content can be favourable for fresh consumption due to bright-coloured bulbs. ‘Accession 306 (yellow-fleshed)’ exhibited the highest total phenolics content, while ‘Rajang (orange-fleshed)’ showed the highest total flavonoids content. Overall, these findings highlight the unique characteristics of each jackfruit genotype and this information would be useful when selecting the genotypes for marketing and processing purposes.","PeriodicalId":21679,"journal":{"name":"Scientia Horticulturae","volume":"48 1","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142643189","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-02DOI: 10.1016/j.scienta.2024.113768
Hafsa Nazir Cheema, Haiyan Ma, Ke-Xiu Wang, Mingxia Tang, Kaiqin Zhang, Ambreen Jahandad, Tahseen Saba, Xiaoting Fang, Muhammad Amir Shahzad, Muhammad Ansar, Wei He, Shunlin Zheng
Excessive use of nitrogen (N) in crops, such as potatoes, can lead to economic and environmental repercussions. We hypothesized that potato genotypes with resilient root systems and high genetic capabilities for nitrogen-use efficiency (NUE) could effectively mitigate these challenges. Consequently, we investigated intraspecific variations and characteristics within six distinct potato genotypes exhibiting diverse NUEs in response to varying nitrogen levels in an aeroponic system. The morpho-physiological and biochemical properties showed significant genotypic variations, especially related to the N-assimilating enzyme levels and root characteristics. Notably, the root systems of all genotypes demonstrated greater responsiveness to low nitrogen levels, with genotype C17 showcasing the most substantial root system irrespective of nitrogen concentration. Root morphological traits displayed robust positive correlations with NUtE, primarily influenced by genotype rather than nitrogen concentration. Conversely, nitrogen levels, displaying positive correlations with NUpE, influenced growth and activities of N-assimilating enzymes. Based on their distinct root systems, metabolic activities, and NUE profiles, genotypes C17 and C11 were determined to be N-efficient and N-inefficient, respectively. This study provides novel insights into the physiological and biochemical mechanisms underlying nitrogen use efficiency in potato genotypes under aeroponic conditions, offering potential targets for breeding programs, optimizing fertilizer management and cultivation strategies to improve crop performance under nitrogen-deficient conditions. Future investigations, employing multi-omics approaches, will elucidate key genes and pathways in nitrogen metabolism, potentially offering avenues to enhance root architecture and improve NUE.
{"title":"Deciphering nitrogen dynamics in aeroponics: physio-biochemical and enzymatic responses influencing nitrogen use efficiency in contrasting potato genotypes","authors":"Hafsa Nazir Cheema, Haiyan Ma, Ke-Xiu Wang, Mingxia Tang, Kaiqin Zhang, Ambreen Jahandad, Tahseen Saba, Xiaoting Fang, Muhammad Amir Shahzad, Muhammad Ansar, Wei He, Shunlin Zheng","doi":"10.1016/j.scienta.2024.113768","DOIUrl":"https://doi.org/10.1016/j.scienta.2024.113768","url":null,"abstract":"Excessive use of nitrogen (N) in crops, such as potatoes, can lead to economic and environmental repercussions. We hypothesized that potato genotypes with resilient root systems and high genetic capabilities for nitrogen-use efficiency (NUE) could effectively mitigate these challenges. Consequently, we investigated intraspecific variations and characteristics within six distinct potato genotypes exhibiting diverse NUEs in response to varying nitrogen levels in an aeroponic system. The morpho-physiological and biochemical properties showed significant genotypic variations, especially related to the N-assimilating enzyme levels and root characteristics. Notably, the root systems of all genotypes demonstrated greater responsiveness to low nitrogen levels, with genotype C17 showcasing the most substantial root system irrespective of nitrogen concentration. Root morphological traits displayed robust positive correlations with NUtE, primarily influenced by genotype rather than nitrogen concentration. Conversely, nitrogen levels, displaying positive correlations with NUpE, influenced growth and activities of N-assimilating enzymes. Based on their distinct root systems, metabolic activities, and NUE profiles, genotypes C17 and C11 were determined to be N-efficient and N-inefficient, respectively. This study provides novel insights into the physiological and biochemical mechanisms underlying nitrogen use efficiency in potato genotypes under aeroponic conditions, offering potential targets for breeding programs, optimizing fertilizer management and cultivation strategies to improve crop performance under nitrogen-deficient conditions. Future investigations, employing multi-omics approaches, will elucidate key genes and pathways in nitrogen metabolism, potentially offering avenues to enhance root architecture and improve NUE.","PeriodicalId":21679,"journal":{"name":"Scientia Horticulturae","volume":"1 1","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142643188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-02DOI: 10.1016/j.scienta.2024.113763
Xue-Jie Zhang, Huan Lin, John C. Snyder, Hui-Ru Dong
Carotenoids in pumpkin are nutritionally important as antioxidants, while the relationship between species, maturity and carotenoids and also the accumulation of carotenoids during fruit growth have not been extensively analyzed. We investigated β-carotene and lycopene contents of nineteen pumpkin varieties by HPLC. The adopted HPLC method was dependable and provided good separation of β-carotene and lycopene. The formation of β-carotene during pumpkin growth did not present a special formation phase except for one variety, while the accumulation rate of β-carotene differed among varieties, ranging from 1.5 to 32.0 µg/100 g per day. Low concentrations of lycopene were detected in six pumpkin varieties having high content of β-carotene. Maturity and species all had significant effect on β-carotene content (P < 0.05). The β-carotene content in C. maxima was about 3.3 times that in C. moschata (P < 0.05) and 2.0 times higher in early maturity varieties compared to middle-late varieties (P < 0.05). The varieties were separated into three groups of similarity by β-carotene content and average single fruit weight after applying hierarchical cluster analysis, and some early maturity C. maxima varieties especially containing β-carotene over 950 µg/100 g fresh wt., could be good sources of pro-vitamin A.
南瓜中的类胡萝卜素作为抗氧化剂具有重要的营养价值,而品种、成熟度和类胡萝卜素之间的关系以及类胡萝卜素在果实生长过程中的积累尚未得到广泛分析。我们采用高效液相色谱法研究了 19 个南瓜品种的 β-胡萝卜素和番茄红素含量。所采用的高效液相色谱法可靠,能很好地分离β-胡萝卜素和番茄红素。除一个品种外,β-胡萝卜素在南瓜生长过程中的形成并不存在特殊的形成阶段,而β-胡萝卜素的积累速度则因品种而异,从每天 1.5 微克/100 克到 32.0 微克/100 克不等。在六个β-胡萝卜素含量较高的南瓜品种中,检测到的番茄红素浓度较低。成熟度和品种对 β-胡萝卜素含量都有显著影响(P < 0.05)。C. maxima 的 β-胡萝卜素含量约为 C. moschata 的 3.3 倍(P < 0.05),早熟品种是中晚熟品种的 2.0 倍(P < 0.05)。通过分层聚类分析,按β-胡萝卜素含量和平均单果重将品种分为三个相似组,其中一些早熟品种,尤其是β-胡萝卜素含量超过 950 µg/100 g 鲜重的品种,可能是维生素 A 的良好来源。
{"title":"Species, variety and maturity affect β-carotene and lycopene in pumpkin fruit","authors":"Xue-Jie Zhang, Huan Lin, John C. Snyder, Hui-Ru Dong","doi":"10.1016/j.scienta.2024.113763","DOIUrl":"https://doi.org/10.1016/j.scienta.2024.113763","url":null,"abstract":"Carotenoids in pumpkin are nutritionally important as antioxidants, while the relationship between species, maturity and carotenoids and also the accumulation of carotenoids during fruit growth have not been extensively analyzed. We investigated β-carotene and lycopene contents of nineteen pumpkin varieties by HPLC. The adopted HPLC method was dependable and provided good separation of β-carotene and lycopene. The formation of β-carotene during pumpkin growth did not present a special formation phase except for one variety, while the accumulation rate of β-carotene differed among varieties, ranging from 1.5 to 32.0 µg/100 g per day. Low concentrations of lycopene were detected in six pumpkin varieties having high content of β-carotene. Maturity and species all had significant effect on β-carotene content (<ce:italic>P</ce:italic> < 0.05). The β-carotene content in <ce:italic>C. maxima</ce:italic> was about 3.3 times that in <ce:italic>C. moschata</ce:italic> (<ce:italic>P</ce:italic> < 0.05) and 2.0 times higher in early maturity varieties compared to middle-late varieties (<ce:italic>P</ce:italic> < 0.05). The varieties were separated into three groups of similarity by β-carotene content and average single fruit weight after applying hierarchical cluster analysis, and some early maturity <ce:italic>C. maxima</ce:italic> varieties especially containing β-carotene over 950 µg/100 g fresh wt., could be good sources of pro-vitamin A.","PeriodicalId":21679,"journal":{"name":"Scientia Horticulturae","volume":"247 1","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142643191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1016/j.scienta.2024.113779
Weizhu Gui, Panpan Wu, Gang Wang, Shanbo Chen, Shijing Feng
Zanthoxylum armatum, as a vital economic tree species serving both as a food source and medicinal plant, it stands as one of the key industries supporting rural revitalization in southwestern China, offered significant economic, ecological, and social benefits. In recent years, there has been a significant increase in the occurrence of male flowers being sterile, which has greatly impeded the industrial development of Z. armatum. In this study, we investigated the MADS-box gene as a pivotal transcription factor (TFs) influencing flower development. To gain a comprehensive understanding of the evolutionary dynamics of MADS-box genes in Z. armatum and establish a solid foundation for future research on this significant gene family, we conducted a genome-wide investigation and analyzed the expression patterns of MADS-box genes. The present study identified a total of 72 MADS-box genes (ZaMADS1–72) from Z. armatum and proposed that the ZaMADS41 gene is pivotal candidate gene influencing the female-to-male transformation. Phylogenetic analysis revealed that these genes can be categorized into two types: Type I (29 genes) and Type II (43 genes), with the latter exhibiting more complex protein domains and motifs compared to the former. Protein-protein interactions were observed among members of the ZaMADS-box gene family, while their promoter regions contained cis-acting elements associated with light response, hormone response, and plant growth and development. Expression profiling during different stages of male and female flower development demonstrated distinct high expression patterns for certain genes specifically in mature male or female flowers. Furthermore, the determination of endogenous hormone content indicated a potential correlation between iP9G and MEJA with sex transformation, while iP9G exhibited a significantly negative association with ZaMADS33 expression. This comprehensive study on MADS-box genes in Z. armatum combined with changes in endogenous hormone levels during male and female flower development, provides a solid theoretical foundation for investigating bud differentiation mechanisms and regulatory techniques in this species.
{"title":"Systematic identification and prediction of sex-specific MADS-box genes in Zanthoxylum armatum during flower development","authors":"Weizhu Gui, Panpan Wu, Gang Wang, Shanbo Chen, Shijing Feng","doi":"10.1016/j.scienta.2024.113779","DOIUrl":"https://doi.org/10.1016/j.scienta.2024.113779","url":null,"abstract":"<ce:italic>Zanthoxylum armatum</ce:italic>, as a vital economic tree species serving both as a food source and medicinal plant, it stands as one of the key industries supporting rural revitalization in southwestern China, offered significant economic, ecological, and social benefits. In recent years, there has been a significant increase in the occurrence of male flowers being sterile, which has greatly impeded the industrial development of <ce:italic>Z. armatum</ce:italic>. In this study, we investigated the MADS-box gene as a pivotal transcription factor (TFs) influencing flower development. To gain a comprehensive understanding of the evolutionary dynamics of MADS-box genes in <ce:italic>Z. armatum</ce:italic> and establish a solid foundation for future research on this significant gene family, we conducted a genome-wide investigation and analyzed the expression patterns of MADS-box genes. The present study identified a total of 72 MADS-box genes (<ce:italic>ZaMADS1</ce:italic>–<ce:italic>72</ce:italic>) from <ce:italic>Z. armatum</ce:italic> and proposed that the <ce:italic>ZaMADS41</ce:italic> gene is pivotal candidate gene influencing the female-to-male transformation. Phylogenetic analysis revealed that these genes can be categorized into two types: Type I (29 genes) and Type II (43 genes), with the latter exhibiting more complex protein domains and motifs compared to the former. Protein-protein interactions were observed among members of the ZaMADS-box gene family, while their promoter regions contained <ce:italic>cis</ce:italic>-acting elements associated with light response, hormone response, and plant growth and development. Expression profiling during different stages of male and female flower development demonstrated distinct high expression patterns for certain genes specifically in mature male or female flowers. Furthermore, the determination of endogenous hormone content indicated a potential correlation between iP9G and MEJA with sex transformation, while iP9G exhibited a significantly negative association with <ce:italic>ZaMADS33</ce:italic> expression. This comprehensive study on MADS-box genes in <ce:italic>Z. armatum</ce:italic> combined with changes in endogenous hormone levels during male and female flower development, provides a solid theoretical foundation for investigating bud differentiation mechanisms and regulatory techniques in this species.","PeriodicalId":21679,"journal":{"name":"Scientia Horticulturae","volume":"38 1","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142643204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1016/j.scienta.2024.113775
Maria Teresa Marrazzo, Andrea Amilcare Passerelli, Guido Cipriani, Gloria De Mori
Actinidia, a genus of kiwifruit, has 54 species, with the commercially dominant species being one with two subspecies: Actinidia chinensis var. chinensis and A. chinensis var. deliciosa. The global kiwifruit industry has used a single variety for decades, but in the last 20 years, new varieties have been introduced, with breeders and propagation rights concerned about protecting them from fraudulent use. The genome of A. chinensis var. chinensis ‘Red5’ was searched for perfect microsatellites with repeat motifs of no less than two to ten bases. Out of 216,456 possible perfect microsatellite loci, 82 were chosen to be spread across all 29 chromosomes. Twenty microsatellite loci with repeat motifs over two have been developed for the varietal characterization of kiwifruit. The markers consist of repeating motifs of at least three bases that suffer less from problems in interpreting electrophoretic profiles due to stuttering. A single amplification protocol valid for all loci was developed. The markers were tested on a sample of 100 genotypes that included diploid, tetraploid, hexaploid, and octoploid individuals. The selected markers were able to clearly discriminate all genotypes except for two clonal mutations. This indicates that the microsatellite loci are highly effective in distinguishing between different kiwifruit varieties, regardless of their ploidy level. The ability to accurately characterize kiwifruit genotypes using these markers can greatly benefit breeding programs and conservation efforts for this important fruit crop.
{"title":"Towards improved markers for molecular characterization in kiwifruit","authors":"Maria Teresa Marrazzo, Andrea Amilcare Passerelli, Guido Cipriani, Gloria De Mori","doi":"10.1016/j.scienta.2024.113775","DOIUrl":"https://doi.org/10.1016/j.scienta.2024.113775","url":null,"abstract":"<ce:italic>Actinidia</ce:italic>, a genus of kiwifruit, has 54 species, with the commercially dominant species being one with two subspecies: <ce:italic>Actinidia chinensis</ce:italic> var. <ce:italic>chinensis</ce:italic> and <ce:italic>A. chinensis</ce:italic> var. <ce:italic>deliciosa</ce:italic>. The global kiwifruit industry has used a single variety for decades, but in the last 20 years, new varieties have been introduced, with breeders and propagation rights concerned about protecting them from fraudulent use. The genome of <ce:italic>A. chinensis</ce:italic> var. <ce:italic>chinensis</ce:italic> ‘Red5’ was searched for perfect microsatellites with repeat motifs of no less than two to ten bases. Out of 216,456 possible perfect microsatellite loci, 82 were chosen to be spread across all 29 chromosomes. Twenty microsatellite loci with repeat motifs over two have been developed for the varietal characterization of kiwifruit. The markers consist of repeating motifs of at least three bases that suffer less from problems in interpreting electrophoretic profiles due to stuttering. A single amplification protocol valid for all loci was developed. The markers were tested on a sample of 100 genotypes that included diploid, tetraploid, hexaploid, and octoploid individuals. The selected markers were able to clearly discriminate all genotypes except for two clonal mutations. This indicates that the microsatellite loci are highly effective in distinguishing between different kiwifruit varieties, regardless of their ploidy level. The ability to accurately characterize kiwifruit genotypes using these markers can greatly benefit breeding programs and conservation efforts for this important fruit crop.","PeriodicalId":21679,"journal":{"name":"Scientia Horticulturae","volume":"25 1","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142643195","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}