Although agent-based models (ABMs) have been increasingly accepted in social sciences as a valid tool to formalize theory, propose mechanisms able to recreate regularities, and guide empirical research, we are not aware of any research using ABMs to assess the robustness of our statistical methods. We argue that ABMs can be extremely helpful to assess models when the phenomena under study are complex. As an example, we create an ABM to evaluate the estimation of selection and influence effects by SIENA, a stochastic actor-oriented model proposed by Tom A. B. Snijders and colleagues. It is a prominent network analysis method that has gained popularity during the last 10 years and been applied to estimate selection and influence for a broad range of behaviors and traits such as substance use, delinquency, violence, health, and educational attainment. However, we know little about the conditions for which this method is reliable or the particular biases it might have. The results from our analysis show that selection and influence are estimated by SIENA asymmetrically and that, with very simple assumptions, we can generate data where selection estimates are highly sensitive to misspecification, suggesting caution when interpreting SIENA analyses.
Most studies of the early origins of adult health rely on summing dichotomously measured negative exposures to measure childhood misfortune (CM), neglect, adversity, or trauma. There are several limitations to this approach, including that it assumes each exposure carries the same level of risk for a particular outcome. Further, it often leads researchers to dichotomize continuous measures for the sake of creating an additive variable from similar indicators. We propose an alternative approach within the structural equation modeling (SEM) framework that allows differential weighting of the negative exposures and can incorporate dichotomous and continuous observed variables as well as latent variables. Using the Health and Retirement Study data, our analyses compare the traditional approach (i.e., adding indicators) with alternative models and assess their prognostic validity on adult depressive symptoms. Results reveal that parameter estimates using the conventional model likely underestimate the effects of CM on adult health outcomes. Additionally, while the conventional approach inhibits testing for mediation, our model enables testing mediation of both individual CM variables and the cumulative variable. Further, we test whether cumulative CM is moderated by the accumulation of protective factors, which facilitates theoretical advances in life course and social inequality research. The approach presented here is one way to examine the cumulative effects of early exposures while attending to diversity in the types of exposures experienced. Using the SEM framework, this versatile approach could be used to model the accumulation of risk or reward in many other areas of sociology and the social sciences beyond health.