首页 > 最新文献

Soil Science and Plant Nutrition最新文献

英文 中文
Improvement in potassium budget with water outflow reduction through reducing excessive irrigation in a paddy field 通过减少水田过度灌溉,减少出水量,改善钾收支
IF 2 4区 农林科学 Q3 ENVIRONMENTAL SCIENCES Pub Date : 2022-08-05 DOI: 10.1080/00380768.2022.2108685
Tatsuhiro Nishikiori, T. Kubota, Susumu Miyazu, N. Harada, N. Yoshikawa
ABSTRACT Countermeasures to reduce radiocesium uptake by crops have been implemented in farmlands affected by the accident at Tokyo Electric Power Company’s Fukushima Daiichi Nuclear Power Plant in 2011. A widely practiced countermeasure is the application of K. Long-term maintenance of soil K is crucial due to the long physical half-life of 137Cs (30 years). Plant-available K budgets can be used as an indication of sustainable maintenance. Our previous study found that large water outflow, especially percolation, associated with excessive irrigation caused major K outflow and a negative K budget in a paddy field in Fukushima in 2018. The present study evaluated whether decreasing the water outflow by reducing the irrigation volume from 6300 to 1900 mm reduced K outflow and improved the K budget in the field during the cropping period in 2019. K concentrations in soil solution were comparable in both years, and the percolation water volume decreased to 37% that of 2018, resulting in a 53% reduction in the K output from 392 to 184 kg ha–1. The input via irrigation also decreased (−35 kg ha–1), but the output via surface runoff showed a greater reduction (−58 kg ha–1) owing to a 70% decrease in the water volume compared with 2018. Consequently, the K budget was substantially improved (from −289 to −57 kg ha–1), highlighting the importance of controlling water outflow, particularly percolation, for soil K maintenance in paddy fields with high permeability.
在2011年东京电力公司福岛第一核电站事故影响的农田中实施了减少作物吸收放射性的对策。由于137Cs的物理半衰期很长(30年),长期保持土壤K至关重要。植物可利用钾预算可用作可持续维护的指示。我们之前的研究发现,2018年福岛稻田的大量水流出,特别是渗水,与过度灌溉有关,导致大量钾流出和负钾预算。本研究评估了将灌溉水量从6300 mm减少到1900 mm是否减少了2019年种植期间的钾流出量并改善了田间钾收支。两年土壤溶液中的钾浓度相当,渗透水量下降到2018年的37%,导致钾产量从392 kg ha-1减少到184 kg ha-1,减少了53%。通过灌溉的投入也减少了(- 35 kg ha-1),但由于水量比2018年减少了70%,通过地表径流的产出减少了更大(- 58 kg ha-1)。因此,钾收支大幅改善(从- 289 kg ha-1增加到- 57 kg ha-1),突出了控制水的流出,特别是渗透,对高渗透稻田土壤钾维持的重要性。
{"title":"Improvement in potassium budget with water outflow reduction through reducing excessive irrigation in a paddy field","authors":"Tatsuhiro Nishikiori, T. Kubota, Susumu Miyazu, N. Harada, N. Yoshikawa","doi":"10.1080/00380768.2022.2108685","DOIUrl":"https://doi.org/10.1080/00380768.2022.2108685","url":null,"abstract":"ABSTRACT Countermeasures to reduce radiocesium uptake by crops have been implemented in farmlands affected by the accident at Tokyo Electric Power Company’s Fukushima Daiichi Nuclear Power Plant in 2011. A widely practiced countermeasure is the application of K. Long-term maintenance of soil K is crucial due to the long physical half-life of 137Cs (30 years). Plant-available K budgets can be used as an indication of sustainable maintenance. Our previous study found that large water outflow, especially percolation, associated with excessive irrigation caused major K outflow and a negative K budget in a paddy field in Fukushima in 2018. The present study evaluated whether decreasing the water outflow by reducing the irrigation volume from 6300 to 1900 mm reduced K outflow and improved the K budget in the field during the cropping period in 2019. K concentrations in soil solution were comparable in both years, and the percolation water volume decreased to 37% that of 2018, resulting in a 53% reduction in the K output from 392 to 184 kg ha–1. The input via irrigation also decreased (−35 kg ha–1), but the output via surface runoff showed a greater reduction (−58 kg ha–1) owing to a 70% decrease in the water volume compared with 2018. Consequently, the K budget was substantially improved (from −289 to −57 kg ha–1), highlighting the importance of controlling water outflow, particularly percolation, for soil K maintenance in paddy fields with high permeability.","PeriodicalId":21852,"journal":{"name":"Soil Science and Plant Nutrition","volume":"18 1","pages":"583 - 587"},"PeriodicalIF":2.0,"publicationDate":"2022-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88028601","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Arsenic and cadmium concentrations in brown rice can be controlled by understanding the impacts of weekly water contributions before and after heading 糙米中的砷和镉浓度可以通过了解抽穗前后每周供水量的影响来控制
IF 2 4区 农林科学 Q3 ENVIRONMENTAL SCIENCES Pub Date : 2022-08-02 DOI: 10.1080/00380768.2022.2107384
Kazuki Togami, K. Miura
ABSTRACT Arsenic (As) and cadmium (Cd) are harmful to humans, and their concentrations in rice are affected by the water management strategies used in paddy fields. Water management, however, is considered a burden for farmers, and thus an efficient strategy by which to decrease As and Cd concentrations in brown rice is desired. The purpose of this study was to estimate the effects of water management on the total As and Cd concentrations in brown rice during the 3 weeks before and after heading on a weekly basis. Moreover, the study aimed to determine the differences in this effect among soil types and cultivars. Pot cultivation experiments of rice were conducted by applying two levels of weekly flooding or draining to an L12 orthogonal table, and their effects each week on the As and Cd concentrations in brown rice were identified. Redox potentials of soils decreased during flooding and increased during draining, but the decrease during flooding in Andosols was slower than that in Fluvisols. For the plants growing in Fluvisols, the total As and Cd concentrations in the brown rice increased and decreased with flooding, respectively, and an opposite trend was observed with draining. In the Japonica varieties ‘Koshihikari’ and ‘Hitomebore,’ water management during the first week from 0 to 2 days after heading had the greatest impact on As and Cd concentrations. However, in the Indica variety ‘Takanari,’ the weeks that most affected the As and Cd concentrations were the second and first week from the day after heading, respectively. In the Andosols, the Cd concentration was changed by water management as in the Fluvisols, but the same was not found for the As. This suggests that the effect of water management on the As concentration in brown rice could be nullified by the Andosols ability to absorb As. However, it was also possible that the effect of water management could not be detected due to the low As concentration of the Andosols. These results provide insights that will help to efficiently reduce As and Cd concentrations using information on the rice variety and soil type.
砷(As)和镉(Cd)对人体有害,其在水稻中的浓度受稻田水管理策略的影响。然而,水管理被认为是农民的负担,因此需要一种有效的策略来降低糙米中砷和镉的浓度。本研究的目的是以周为单位,评估水分管理对糙米抽穗前后3周内砷和镉总浓度的影响。此外,本研究旨在确定土壤类型和品种之间这种效应的差异。在L12正交试验台上进行了水稻盆栽试验,研究了每周2个水平的水淹和排水对糙米中砷和镉浓度的影响。土壤氧化还原电位在淹水过程中下降,在排水过程中上升,但安土土壤在淹水过程中下降的速度比河流土壤慢。对生长在Fluvisols中的植物,糙米中总砷和总镉浓度分别随淹水而升高和降低,随排水而相反。在粳稻品种“光”和“Hitomebore”中,抽穗后第1周(0 ~ 2天)的水分管理对砷和镉浓度的影响最大。然而,在籼稻品种“高稻”中,对砷和镉浓度影响最大的周分别是抽穗后第2周和第1周。在安土中,镉浓度随水分管理的变化而变化,与河流中一样,但在as中没有发现相同的变化。这表明水分管理对糙米中砷浓度的影响可以被安多酚吸收砷的能力所抵消。然而,也有可能由于安多酚的低砷浓度而无法检测到水管理的影响。这些结果将有助于利用水稻品种和土壤类型的信息有效地降低砷和镉浓度。
{"title":"Arsenic and cadmium concentrations in brown rice can be controlled by understanding the impacts of weekly water contributions before and after heading","authors":"Kazuki Togami, K. Miura","doi":"10.1080/00380768.2022.2107384","DOIUrl":"https://doi.org/10.1080/00380768.2022.2107384","url":null,"abstract":"ABSTRACT Arsenic (As) and cadmium (Cd) are harmful to humans, and their concentrations in rice are affected by the water management strategies used in paddy fields. Water management, however, is considered a burden for farmers, and thus an efficient strategy by which to decrease As and Cd concentrations in brown rice is desired. The purpose of this study was to estimate the effects of water management on the total As and Cd concentrations in brown rice during the 3 weeks before and after heading on a weekly basis. Moreover, the study aimed to determine the differences in this effect among soil types and cultivars. Pot cultivation experiments of rice were conducted by applying two levels of weekly flooding or draining to an L12 orthogonal table, and their effects each week on the As and Cd concentrations in brown rice were identified. Redox potentials of soils decreased during flooding and increased during draining, but the decrease during flooding in Andosols was slower than that in Fluvisols. For the plants growing in Fluvisols, the total As and Cd concentrations in the brown rice increased and decreased with flooding, respectively, and an opposite trend was observed with draining. In the Japonica varieties ‘Koshihikari’ and ‘Hitomebore,’ water management during the first week from 0 to 2 days after heading had the greatest impact on As and Cd concentrations. However, in the Indica variety ‘Takanari,’ the weeks that most affected the As and Cd concentrations were the second and first week from the day after heading, respectively. In the Andosols, the Cd concentration was changed by water management as in the Fluvisols, but the same was not found for the As. This suggests that the effect of water management on the As concentration in brown rice could be nullified by the Andosols ability to absorb As. However, it was also possible that the effect of water management could not be detected due to the low As concentration of the Andosols. These results provide insights that will help to efficiently reduce As and Cd concentrations using information on the rice variety and soil type.","PeriodicalId":21852,"journal":{"name":"Soil Science and Plant Nutrition","volume":"57 1","pages":"574 - 582"},"PeriodicalIF":2.0,"publicationDate":"2022-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79427105","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Elucidation of efficient photosynthesis in plants with limited iron 有限铁条件下植物有效光合作用的阐释
IF 2 4区 农林科学 Q3 ENVIRONMENTAL SCIENCES Pub Date : 2022-07-27 DOI: 10.1080/00380768.2022.2106115
K. Higuchi, A. Saito
ABSTRACT Plants allocate large proportions of nitrogen (N) and iron (Fe) – principal elements in the photosynthetic electron transport system – to leaf chloroplasts. Although the molecular mechanisms to overcome N deficiency have been intensively studied, the acclimation of photosynthetic apparatus to Fe deficiency in higher plants remains to be further investigated. We previously reported about effective strategies in the chloroplasts of an Fe-deficiency-tolerant crop, barley, which allow photosynthesis under Fe-deficient conditions, not relying solely on Fe acquisition via the roots. The Fe-deficient barley leaves employ at least two strategies, viz., induction of thermal dissipation of absorbed light energy via Lhcb1 phosphorylation, which is maintained stably over Fe-deficiency periods regardless of light conditions, and improved electron flow in or around photosystem I through protein complexes with unknown composition. Previous studies have focused on healthy leaves from which chloroplasts can easily be isolated or on model organisms, such as Arabidopsis and cyanobacteria, to demonstrate typical photosystem structures and photochemical reactions. By contrast, in non-model plants, atypical photosystem structures and compositions have been reported. These structures are generally important to adapt to stress conditions or specific niches. In this review, we elucidate the mechanisms of acclimation of barley photosystems to Fe deficiency and provide an overview of the modulations in the photosystems of other plants under various stress conditions.
植物将光合电子传递系统中的主要元素氮(N)和铁(Fe)大量分配给叶片叶绿体。尽管克服缺氮的分子机制已经被深入研究,但高等植物光合机构对缺铁的适应仍有待进一步研究。我们之前报道了耐缺铁作物大麦叶绿体中的有效策略,这些策略允许在缺铁条件下进行光合作用,而不仅仅依赖于通过根获取铁。缺铁大麦叶片采用至少两种策略,即通过Lhcb1磷酸化诱导吸收光能的热耗散,该磷酸化在缺铁期间无论光照条件如何都能稳定维持;通过成分未知的蛋白质复合物改善光系统I内或周围的电子流。以前的研究主要集中在健康的叶片上,因为叶绿体很容易从叶片中分离出来,或者在模式生物上,如拟南芥和蓝藻上,来展示典型的光系统结构和光化学反应。相比之下,在非模式植物中,非典型光系统结构和组成已被报道。这些结构通常对适应压力条件或特定的生态位很重要。本文综述了大麦光系统对铁缺乏的适应机制,并对其他植物在不同胁迫条件下的光系统调节进行了综述。
{"title":"Elucidation of efficient photosynthesis in plants with limited iron","authors":"K. Higuchi, A. Saito","doi":"10.1080/00380768.2022.2106115","DOIUrl":"https://doi.org/10.1080/00380768.2022.2106115","url":null,"abstract":"ABSTRACT Plants allocate large proportions of nitrogen (N) and iron (Fe) – principal elements in the photosynthetic electron transport system – to leaf chloroplasts. Although the molecular mechanisms to overcome N deficiency have been intensively studied, the acclimation of photosynthetic apparatus to Fe deficiency in higher plants remains to be further investigated. We previously reported about effective strategies in the chloroplasts of an Fe-deficiency-tolerant crop, barley, which allow photosynthesis under Fe-deficient conditions, not relying solely on Fe acquisition via the roots. The Fe-deficient barley leaves employ at least two strategies, viz., induction of thermal dissipation of absorbed light energy via Lhcb1 phosphorylation, which is maintained stably over Fe-deficiency periods regardless of light conditions, and improved electron flow in or around photosystem I through protein complexes with unknown composition. Previous studies have focused on healthy leaves from which chloroplasts can easily be isolated or on model organisms, such as Arabidopsis and cyanobacteria, to demonstrate typical photosystem structures and photochemical reactions. By contrast, in non-model plants, atypical photosystem structures and compositions have been reported. These structures are generally important to adapt to stress conditions or specific niches. In this review, we elucidate the mechanisms of acclimation of barley photosystems to Fe deficiency and provide an overview of the modulations in the photosystems of other plants under various stress conditions.","PeriodicalId":21852,"journal":{"name":"Soil Science and Plant Nutrition","volume":"16 1","pages":"505 - 513"},"PeriodicalIF":2.0,"publicationDate":"2022-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91271027","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Relationship between soil phosphorus dynamics and low-phosphorus responses at specific root locations of white lupine 白羽扇豆特定根部土壤磷动态与低磷响应的关系
IF 2 4区 农林科学 Q3 ENVIRONMENTAL SCIENCES Pub Date : 2022-07-27 DOI: 10.1080/00380768.2022.2104103
Ayane Kan, Hayato Maruyama, Nao Aoyama, J. Wasaki, Y. Tateishi, Toshihiro Watanabe, T. Shinano
ABSTRACT Phosphorus (P) is an essential element for crop production; however, availability tends to be low due to slow diffusion and high fixation in soils. To cope with phosphate deficiency, white lupines (Lupinus albus L.) form unique root structures called cluster roots. The objective of this study was to elucidate detailed spatial differences of the mechanisms under low-P condition in the root system using rhizoboxes. We cultivated plants in rhizoboxes with P-deficient soil for 33 days. We then harvested roots and the adjacent soil from 128 compartments by dividing 2 × 2 cm squares in the rhizoboxes. We investigated relative expression levels of several genes that encode proteins assumed to be involved in P solubilization or translocation. Additionally, we analyzed fractionated P, soluble metal cations (Fe, Al, and Mn), and enzyme activities in the soil of each compartment. We observed a significant positive correlation between one of the MATE (multidrug and toxic compound extrusion/detoxification) genes, LaMATE6, and soluble metal cations, suggesting the secretion of citric acid into the rhizosphere via MATE proteins increased soluble metal cation concentrations. Furthermore, we demonstrated that roots in the same developmental stages were likely to have different influences on the mobilization of fractionated P in the rhizosphere soil. Our findings highlight the importance of investigating the relationship between soil chemical properties and root functions at a high spatial resolution to elucidate the detailed mechanisms of P mobilization by plants.
磷(P)是作物生产的必需元素;然而,由于土壤的扩散缓慢和高度固定,有效度往往较低。为了应对磷酸盐缺乏,白色羽豆(Lupinus albus L.)形成独特的根结构,称为簇根。本研究的目的是利用根箱详细阐明低磷条件下根系代谢机制的空间差异。在缺磷土壤根箱中栽培植株33天。然后,我们通过在根箱中划分2 × 2厘米的正方形,从128个隔间中收获根和邻近的土壤。我们研究了几个基因的相对表达水平,这些基因编码的蛋白质被认为参与磷的溶解或易位。此外,我们还分析了每个隔室土壤中的分离磷、可溶性金属阳离子(铁、铝和锰)和酶活性。我们观察到MATE(多药和有毒化合物挤出/解毒)基因之一LaMATE6与可溶性金属阳离子之间存在显著的正相关,这表明柠檬酸通过MATE蛋白分泌到根际增加了可溶性金属阳离子的浓度。此外,我们还证明了处于相同发育阶段的根系对根际土壤中分馏磷的动员可能有不同的影响。我们的研究结果强调了在高空间分辨率下研究土壤化学性质与根系功能之间的关系对于阐明植物动员磷的详细机制的重要性。
{"title":"Relationship between soil phosphorus dynamics and low-phosphorus responses at specific root locations of white lupine","authors":"Ayane Kan, Hayato Maruyama, Nao Aoyama, J. Wasaki, Y. Tateishi, Toshihiro Watanabe, T. Shinano","doi":"10.1080/00380768.2022.2104103","DOIUrl":"https://doi.org/10.1080/00380768.2022.2104103","url":null,"abstract":"ABSTRACT Phosphorus (P) is an essential element for crop production; however, availability tends to be low due to slow diffusion and high fixation in soils. To cope with phosphate deficiency, white lupines (Lupinus albus L.) form unique root structures called cluster roots. The objective of this study was to elucidate detailed spatial differences of the mechanisms under low-P condition in the root system using rhizoboxes. We cultivated plants in rhizoboxes with P-deficient soil for 33 days. We then harvested roots and the adjacent soil from 128 compartments by dividing 2 × 2 cm squares in the rhizoboxes. We investigated relative expression levels of several genes that encode proteins assumed to be involved in P solubilization or translocation. Additionally, we analyzed fractionated P, soluble metal cations (Fe, Al, and Mn), and enzyme activities in the soil of each compartment. We observed a significant positive correlation between one of the MATE (multidrug and toxic compound extrusion/detoxification) genes, LaMATE6, and soluble metal cations, suggesting the secretion of citric acid into the rhizosphere via MATE proteins increased soluble metal cation concentrations. Furthermore, we demonstrated that roots in the same developmental stages were likely to have different influences on the mobilization of fractionated P in the rhizosphere soil. Our findings highlight the importance of investigating the relationship between soil chemical properties and root functions at a high spatial resolution to elucidate the detailed mechanisms of P mobilization by plants.","PeriodicalId":21852,"journal":{"name":"Soil Science and Plant Nutrition","volume":"23 1","pages":"526 - 535"},"PeriodicalIF":2.0,"publicationDate":"2022-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82175026","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Induction of citrate transporter gene expression in soybean roots by sulfur application 硫对大豆根系柠檬酸转运体基因表达的诱导作用
IF 2 4区 农林科学 Q3 ENVIRONMENTAL SCIENCES Pub Date : 2022-07-26 DOI: 10.1080/00380768.2022.2104594
Hinako Sugiura, Shunsuke Miyaji, Saki Yamamoto, M. Yasuda, Jean Louise Cocson Damo, María Daniela Artigas Ramírez, Shin-ichiro Agake, Takehiro Kamiya, T. Fujiwara, S. Bellingrath-Kimura, Haruo Tanaka, S. Sugihara, Naoko Ohkama‐Ohtsu
ABSTRACT Organic acid secretion from the roots enables plants to acquire phosphorus (P) which is poorly soluble in soil. We previously reported that when soybeans were cultivated in vermiculite in the presence of insoluble calcium phosphate, as a phosphorus source, sulfur (S) fertilization increased organic acid secretion from the roots and improved P acquisition in soybeans. In the present study, we confirmed that S fertilization increased secretion of organic acids such as citric acid when soybeans were cultivated in Andosols having a strong P fixation capacity. In contrast, concentration of citric acid in soybean roots did not increase by S fertilization. Therefore, the relationship between S nutrition and gene expression of citric acid exporters was investigated to understand the mechanisms of induction of citric acid secretion by S. Further, we verified whether the expression of citric acid transporter genes, GmMATE13 and GmMATE47, is involved in the induction of citric acid secretion from the roots by S fertilization. The expression level of GmMATE13 in roots was significantly increased by S fertilization compared to that without S fertilization. Therefore, our results suggest that S nutrition is involved in inducing GmMATE13 expression and contributes to the excretion of citric acid from the soybean roots.
根系分泌有机酸使植物获得土壤中难溶的磷(P)。我们以前报道过,当大豆在不溶性磷酸钙存在的蛭石中栽培时,作为磷源,硫(S)施肥增加了大豆根部的有机酸分泌,改善了大豆的磷获取。本研究证实,在固磷能力强的土中栽培大豆,施S能增加柠檬酸等有机酸的分泌。施硫后,大豆根系中柠檬酸浓度没有增加。因此,研究S营养与柠檬酸出口植株基因表达之间的关系,了解S诱导柠檬酸分泌的机制。进一步验证S施肥诱导根部分泌柠檬酸的过程中是否参与了柠檬酸转运基因GmMATE13和GmMATE47的表达。施硫处理显著提高了根中GmMATE13的表达量。因此,我们的研究结果表明,S营养参与诱导GmMATE13的表达,并有助于从大豆根部排出柠檬酸。
{"title":"Induction of citrate transporter gene expression in soybean roots by sulfur application","authors":"Hinako Sugiura, Shunsuke Miyaji, Saki Yamamoto, M. Yasuda, Jean Louise Cocson Damo, María Daniela Artigas Ramírez, Shin-ichiro Agake, Takehiro Kamiya, T. Fujiwara, S. Bellingrath-Kimura, Haruo Tanaka, S. Sugihara, Naoko Ohkama‐Ohtsu","doi":"10.1080/00380768.2022.2104594","DOIUrl":"https://doi.org/10.1080/00380768.2022.2104594","url":null,"abstract":"ABSTRACT Organic acid secretion from the roots enables plants to acquire phosphorus (P) which is poorly soluble in soil. We previously reported that when soybeans were cultivated in vermiculite in the presence of insoluble calcium phosphate, as a phosphorus source, sulfur (S) fertilization increased organic acid secretion from the roots and improved P acquisition in soybeans. In the present study, we confirmed that S fertilization increased secretion of organic acids such as citric acid when soybeans were cultivated in Andosols having a strong P fixation capacity. In contrast, concentration of citric acid in soybean roots did not increase by S fertilization. Therefore, the relationship between S nutrition and gene expression of citric acid exporters was investigated to understand the mechanisms of induction of citric acid secretion by S. Further, we verified whether the expression of citric acid transporter genes, GmMATE13 and GmMATE47, is involved in the induction of citric acid secretion from the roots by S fertilization. The expression level of GmMATE13 in roots was significantly increased by S fertilization compared to that without S fertilization. Therefore, our results suggest that S nutrition is involved in inducing GmMATE13 expression and contributes to the excretion of citric acid from the soybean roots.","PeriodicalId":21852,"journal":{"name":"Soil Science and Plant Nutrition","volume":"118 1","pages":"547 - 552"},"PeriodicalIF":2.0,"publicationDate":"2022-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87992559","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Critical reevaluation of an efficient sampling design for assessing soil properties using bootstrap sampling and geostatistical analysis in Japanese large-scale paddy fields 在日本大规模稻田中使用自举抽样和地质统计分析评估土壤性质的有效抽样设计的关键重新评价
IF 2 4区 农林科学 Q3 ENVIRONMENTAL SCIENCES Pub Date : 2022-07-17 DOI: 10.1080/00380768.2022.2101864
Jinyun He, Xinbin Zhou, T. Matsui, Fusheng Li, Takashi S. T. Tanaka
ABSTRACT Soil test is a key step toward providing recommendations for better crop management. Several soil samples have been traditionally assumed to be sufficient for soil tests to represent field-specific values in conventional Japanese small-scale paddy fields. However, rethinking soil sampling design is required, as many small-scale (<0.3 ha) paddy fields have been consolidated into large-scale (>1 ha) paddy fields to enhance the efficiency of crop production. The purpose of this study is to explore an efficient soil sampling design, including sample size for representing field-specific values and sampling distance for representing spatial variations, in central Japan using bootstrap sampling and geostatistical analysis. Fourteen soil properties were quantified from 553 samples, which was collected at a distance of 24.4 m on average in large-scale paddy fields with continuous rice cultivation and rotation of rice and upland crops (winter wheat and soybean). The results show that the conventional sampling size (n = 3 for each field) achieved mean estimation within 10% error with 95% confidence intervals only for pH and sand content in almost all fields; thus, an optimization of field-specific uniform liming rate is recommended for reducing cost. Geostatistical analysis shows that the recommended soil sampling distance should be 15–163 m, depending on specific soil properties. The results further show that it was difficult to obtain reliable estimates of exchangeable K and mineralizable N because of the high level of spatial uncertainty with high nugget variance. Thus, practitioners should note that the outcomes from soil tests inherently included fine-scale errors in available nutrient levels which may preclude rationale prescriptions. This study demonstrated that appropriate soil sampling design and the subsequent soil management can differ depending on specific soil properties in the actual farming scale of large-scale paddy fields.
土壤试验是为作物管理提供建议的关键步骤。传统上认为,在日本传统的小规模稻田中,几个土壤样品就足以进行土壤试验,以代表田间特定值。然而,重新思考土壤采样设计是必要的,因为许多小规模(1公顷)水田,以提高作物生产效率。本研究的目的是探索一种有效的土壤采样设计,包括代表特定领域值的样本量和代表空间变化的采样距离,在日本中部使用自举采样和地统计学分析。在水稻连作和旱作作物(冬小麦和大豆)轮作的大规模稻田中,以平均24.4 m的距离采集553个样品,对14个土壤性质进行了定量分析。结果表明,在几乎所有的油田中,常规的采样规模(每个油田n = 3)仅在pH和含沙量的95%置信区间内实现了误差在10%以内的平均估计;因此,为了降低成本,建议对特定领域的均匀石灰速率进行优化。地统计学分析表明,根据土壤的具体性质,建议土壤取样距离为15 ~ 163 m。结果进一步表明,由于高空间不确定性和高金块方差,难以获得可靠的交换态钾和矿化态氮的估计。因此,从业者应该注意到,土壤测试的结果固有地包括可用养分水平的精细尺度误差,这可能会排除基本原理处方。该研究表明,在大规模水田的实际耕作规模中,适当的土壤取样设计和后续的土壤管理可能会因具体的土壤性质而有所不同。
{"title":"Critical reevaluation of an efficient sampling design for assessing soil properties using bootstrap sampling and geostatistical analysis in Japanese large-scale paddy fields","authors":"Jinyun He, Xinbin Zhou, T. Matsui, Fusheng Li, Takashi S. T. Tanaka","doi":"10.1080/00380768.2022.2101864","DOIUrl":"https://doi.org/10.1080/00380768.2022.2101864","url":null,"abstract":"ABSTRACT Soil test is a key step toward providing recommendations for better crop management. Several soil samples have been traditionally assumed to be sufficient for soil tests to represent field-specific values in conventional Japanese small-scale paddy fields. However, rethinking soil sampling design is required, as many small-scale (<0.3 ha) paddy fields have been consolidated into large-scale (>1 ha) paddy fields to enhance the efficiency of crop production. The purpose of this study is to explore an efficient soil sampling design, including sample size for representing field-specific values and sampling distance for representing spatial variations, in central Japan using bootstrap sampling and geostatistical analysis. Fourteen soil properties were quantified from 553 samples, which was collected at a distance of 24.4 m on average in large-scale paddy fields with continuous rice cultivation and rotation of rice and upland crops (winter wheat and soybean). The results show that the conventional sampling size (n = 3 for each field) achieved mean estimation within 10% error with 95% confidence intervals only for pH and sand content in almost all fields; thus, an optimization of field-specific uniform liming rate is recommended for reducing cost. Geostatistical analysis shows that the recommended soil sampling distance should be 15–163 m, depending on specific soil properties. The results further show that it was difficult to obtain reliable estimates of exchangeable K and mineralizable N because of the high level of spatial uncertainty with high nugget variance. Thus, practitioners should note that the outcomes from soil tests inherently included fine-scale errors in available nutrient levels which may preclude rationale prescriptions. This study demonstrated that appropriate soil sampling design and the subsequent soil management can differ depending on specific soil properties in the actual farming scale of large-scale paddy fields.","PeriodicalId":21852,"journal":{"name":"Soil Science and Plant Nutrition","volume":"14 1","pages":"536 - 546"},"PeriodicalIF":2.0,"publicationDate":"2022-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81489631","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The changes in the chemical forms of thallium, cobalt and manganese with air-drying of soils 土壤风干后铊、钴和锰化学形态的变化
IF 2 4区 农林科学 Q3 ENVIRONMENTAL SCIENCES Pub Date : 2022-07-04 DOI: 10.1080/00380768.2022.2095529
Takahiko Narukawa, T. Makino, H. Kanno, Toru Hamamoto, K. Kimura, S. Yamasaki
ABSTRACT Thallium (Tl) is a highly toxic metal that induces pathological changes in organs. Many Tl-contaminated soils have been reported worldwide due to the releases of Tl from mineral weathering and mining industry. There is, however, limited information related to the dynamics and analysis of Tl in soil, since Tl is one of the emerging soil contaminants. Tl and cobalt (Co) are specifically adsorbed by manganese (Mn) oxide. On the other hand, air-drying of soils causes the dissolution of Mn oxide and the elution of heavy metals such as Co occluded by Mn oxide. Thus, the Mn oxide dissolution with air-drying is expected to affect the chemical forms of Tl with high sorption affinity to Mn oxide. We conducted the sequential extraction method using moist and air-dried soils. Air-drying caused the increases in Mn and Co in the exchangeable and acid soluble fractions, respectively, and the decreases in those in the Mn oxide occluded fraction, which is consistent with previous reports. Our research revealed that the exchangeable Tl increased and sum of the acid-soluble and Mn oxide occluded Tl decreased due to air-drying. The increments in the exchangeable fraction and the decrements in acid-soluble and Mn oxide occluded fractions were almost the same. Consequently, the increase in exchangeable Tl could be attributed to the other two fractions, indicating that soil Tl is sensitive to the soil drying.
铊(Tl)是一种高毒性金属,可引起器官病理变化。由于矿物风化和采矿业释放的稀土,在世界范围内已报道了许多稀土污染土壤。然而,由于土壤中Tl是一种新兴的土壤污染物,因此与土壤中Tl的动力学和分析有关的信息有限。氧化锰(Mn)对Tl和钴(Co)具有特异性吸附作用。另一方面,土壤的风干导致氧化锰的溶解和氧化锰所封闭的Co等重金属的洗脱。因此,在空气干燥过程中Mn氧化物的溶解有望影响对Mn氧化物具有高吸附亲和力的Tl的化学形态。采用湿法和风干法分别进行了顺序提取。空气干燥导致交换态和酸溶态Mn和Co含量增加,而氧化锰闭塞态Mn和Co含量减少,这与前人的报道一致。我们的研究表明,由于空气干燥,交换性Tl增加,酸溶性Tl和氧化锰的总量减少。交换分数的增加和酸溶分数和氧化锰堵塞分数的减少几乎相同。因此,土壤交换态钾的增加可归因于其他两个部分,说明土壤交换态钾对土壤干燥较为敏感。
{"title":"The changes in the chemical forms of thallium, cobalt and manganese with air-drying of soils","authors":"Takahiko Narukawa, T. Makino, H. Kanno, Toru Hamamoto, K. Kimura, S. Yamasaki","doi":"10.1080/00380768.2022.2095529","DOIUrl":"https://doi.org/10.1080/00380768.2022.2095529","url":null,"abstract":"ABSTRACT Thallium (Tl) is a highly toxic metal that induces pathological changes in organs. Many Tl-contaminated soils have been reported worldwide due to the releases of Tl from mineral weathering and mining industry. There is, however, limited information related to the dynamics and analysis of Tl in soil, since Tl is one of the emerging soil contaminants. Tl and cobalt (Co) are specifically adsorbed by manganese (Mn) oxide. On the other hand, air-drying of soils causes the dissolution of Mn oxide and the elution of heavy metals such as Co occluded by Mn oxide. Thus, the Mn oxide dissolution with air-drying is expected to affect the chemical forms of Tl with high sorption affinity to Mn oxide. We conducted the sequential extraction method using moist and air-dried soils. Air-drying caused the increases in Mn and Co in the exchangeable and acid soluble fractions, respectively, and the decreases in those in the Mn oxide occluded fraction, which is consistent with previous reports. Our research revealed that the exchangeable Tl increased and sum of the acid-soluble and Mn oxide occluded Tl decreased due to air-drying. The increments in the exchangeable fraction and the decrements in acid-soluble and Mn oxide occluded fractions were almost the same. Consequently, the increase in exchangeable Tl could be attributed to the other two fractions, indicating that soil Tl is sensitive to the soil drying.","PeriodicalId":21852,"journal":{"name":"Soil Science and Plant Nutrition","volume":"17 1 1","pages":"429 - 433"},"PeriodicalIF":2.0,"publicationDate":"2022-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77912003","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nitrous oxide and carbon dioxide emissions from two soils amended with different manure composts in aerobic incubation tests 在有氧培养试验中,两种土壤经不同粪肥堆肥改良后的氧化亚氮和二氧化碳排放
IF 2 4区 农林科学 Q3 ENVIRONMENTAL SCIENCES Pub Date : 2022-07-04 DOI: 10.1080/00380768.2022.2095669
Thanuja Deepani Panangala Liyanage, M. Maeda, H. Somura, N. Thuong, M. Mori, T. Fujiwara
ABSTRACT Identification of nitrous oxide (N2O) and carbon dioxide (CO2) emissions from soils amended with different types of compost is needed for appropriate use of manure in agriculture. This study aimed at investigating the interaction effects of compost type and soil properties and effects of moisture contents on N2O and CO2 emissions, with identification of relative abundances of functional ammonia-oxidizing genes. Laboratory tests were conducted using cattle manure compost (CC) or mixed compost (MC) (cattle, poultry, and swine manure) amended Kochi (from a greenhouse) or Ushimado (from a paddy field) soils (3% by weight) with controls (no compost). Initial moisture contents were adjusted to 60% water-holding capacity (WHC) for Kochi soil and 70% WHC for both soils. The samples were aerobically incubated at 25°C. Emissions of N2O and CO2 and contents of ammonium N (NH4 +-N) and nitrate N in soils were measured continuously until day 42. The abundances of ammonia-oxidizing bacteria (AOB) and archaea genes were estimated to evaluate nitrifying activities. Cumulative N2O and CO2 emissions were significantly higher (p < 0.05) in MC than those in CC treatments probably due to higher NH4 +-N content and lower C/N ratio, which facilitated faster N mineralization and C decomposition. Emissions of N2O and CO2 were higher in compost-amended Kochi soil (70% WHC) with high total C and N, mineral N, and clay contents than those in less fertile Ushimado soil. Interestingly, interactions of compost type and soil properties on N2O emissions were significant (p < 0.05) only in Kochi soil because the addition of decomposition resistant CC increased N2O emissions only from this soil with high C and N contents. Higher soil moisture contents increased N2O and CO2 emissions significantly (p < 0.05) in Kochi soil. Emissions of N2O until day 15 were mainly due to activities of AOB amoA genes (R2 = 0.91). This study suggests that N2O emissions are increased by high NH4 +-N contents and a low C/N ratio in compost and high total C and N, mineral N, and clay contents in soil. The application of compost with less decomposable C increases N2O emissions only from nutrient-rich soil.
摘要鉴定不同类型堆肥改良土壤的氧化亚氮(N2O)和二氧化碳(CO2)排放是农业肥料合理利用的必要条件。本研究旨在探讨堆肥类型与土壤性质的交互作用以及水分含量对N2O和CO2排放的影响,并确定功能性氨氧化基因的相对丰度。实验室试验使用牛粪堆肥(CC)或混合堆肥(MC)(牛、家禽和猪粪)与对照(不添加堆肥)一起,对Kochi(来自温室)或ushima(来自稻田)土壤(按重量计3%)进行改良。高知土壤初始含水量调整为持水能力的60%,两种土壤的持水能力调整为70%。样品在25°C有氧孵育。连续测定土壤中N2O和CO2的排放量以及铵态氮(NH4 +-N)和硝态氮的含量,直至第42天。测定了氨氧化菌(AOB)和古细菌基因的丰度,评价了硝化活性。MC处理的累积N2O和CO2排放量显著高于CC处理(p < 0.05),这可能是由于MC处理的NH4 +-N含量较高,C/N比值较低,有利于N矿化和C分解。高知土壤(70% WHC)改良后总碳氮、矿质氮和粘土含量较高,N2O和CO2的排放量高于土岛岛土壤。有趣的是,堆肥类型和土壤性质对N2O排放的交互作用仅在高知土壤中显著(p < 0.05),因为添加抗分解CC只增加了高C和N含量土壤的N2O排放。土壤含水量的增加显著提高了高知土壤N2O和CO2的排放(p < 0.05)。第15天前的N2O排放主要受AOB amoA基因活性的影响(R2 = 0.91)。研究表明,堆肥中较高的NH4 +-N含量和较低的C/N比以及土壤中较高的总碳氮、矿质氮和粘土含量增加了N2O排放。施用可分解碳较少的堆肥只会增加养分丰富的土壤中N2O的排放。
{"title":"Nitrous oxide and carbon dioxide emissions from two soils amended with different manure composts in aerobic incubation tests","authors":"Thanuja Deepani Panangala Liyanage, M. Maeda, H. Somura, N. Thuong, M. Mori, T. Fujiwara","doi":"10.1080/00380768.2022.2095669","DOIUrl":"https://doi.org/10.1080/00380768.2022.2095669","url":null,"abstract":"ABSTRACT Identification of nitrous oxide (N2O) and carbon dioxide (CO2) emissions from soils amended with different types of compost is needed for appropriate use of manure in agriculture. This study aimed at investigating the interaction effects of compost type and soil properties and effects of moisture contents on N2O and CO2 emissions, with identification of relative abundances of functional ammonia-oxidizing genes. Laboratory tests were conducted using cattle manure compost (CC) or mixed compost (MC) (cattle, poultry, and swine manure) amended Kochi (from a greenhouse) or Ushimado (from a paddy field) soils (3% by weight) with controls (no compost). Initial moisture contents were adjusted to 60% water-holding capacity (WHC) for Kochi soil and 70% WHC for both soils. The samples were aerobically incubated at 25°C. Emissions of N2O and CO2 and contents of ammonium N (NH4 +-N) and nitrate N in soils were measured continuously until day 42. The abundances of ammonia-oxidizing bacteria (AOB) and archaea genes were estimated to evaluate nitrifying activities. Cumulative N2O and CO2 emissions were significantly higher (p < 0.05) in MC than those in CC treatments probably due to higher NH4 +-N content and lower C/N ratio, which facilitated faster N mineralization and C decomposition. Emissions of N2O and CO2 were higher in compost-amended Kochi soil (70% WHC) with high total C and N, mineral N, and clay contents than those in less fertile Ushimado soil. Interestingly, interactions of compost type and soil properties on N2O emissions were significant (p < 0.05) only in Kochi soil because the addition of decomposition resistant CC increased N2O emissions only from this soil with high C and N contents. Higher soil moisture contents increased N2O and CO2 emissions significantly (p < 0.05) in Kochi soil. Emissions of N2O until day 15 were mainly due to activities of AOB amoA genes (R2 = 0.91). This study suggests that N2O emissions are increased by high NH4 +-N contents and a low C/N ratio in compost and high total C and N, mineral N, and clay contents in soil. The application of compost with less decomposable C increases N2O emissions only from nutrient-rich soil.","PeriodicalId":21852,"journal":{"name":"Soil Science and Plant Nutrition","volume":"42 1","pages":"491 - 504"},"PeriodicalIF":2.0,"publicationDate":"2022-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73406691","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Organ specific transcriptome analysis of upland cotton (Gossypium hirsutum) in response to low phosphorus stress during early stage of growth 陆地棉生长早期低磷胁迫下器官特异性转录组分析
IF 2 4区 农林科学 Q3 ENVIRONMENTAL SCIENCES Pub Date : 2022-07-04 DOI: 10.1080/00380768.2022.2098533
K. Lei, Jialong Cheng, Yi An, X. Li, Guoyong An
ABSTRACT In order to systematically identify the critical genes involved in the response to low inorganic phosphorus (Pi) in cotton, we performed RNA sequencing (RNA-seq) analyses of root, stem, and leaf from Gossypium hirsutum seedlings grown under both Pi replete and Pi deplete conditions. In total, 1679, 1611, and 841 differentially expressed genes (DEGs) were observed in the roots, stems, and leaves, respectively. Several Pi-starvation-induced genes homologous to Arabidopsis were identified, such as SPX, PHO1/2, and PHF1, as well as several members of the PHT1 family, which showed different expression levels in specific organs. Subsequently, 25 randomly selected DEGs were validated by quantitative real-time PCR, the result of which was consistent with the RNA sequencing data, indicating the reliability of RNA-seq data. By analyzing the differentially expressed transcription factors, we found that the MYB family was one of the three most abundant transcription factor families in all three tissues. Moreover, some phytohormone-related DEGs were also found in G. hirsutum seedlings in this study. In particular, some auxin-responsive genes, such as IAA24, IAA11/14/16, and IAA4/14/16/29 were differentially expressed in the roots, stems and leaves of G. hirsutum seedlings respectively. Finally, homologous genes for some important phosphatases such as PPCK1 and VTC4 were also found to be differentially expressed. On analyzing the protein interaction network of 121 shared DEGs, five interaction networks – two of which contained 10 and 6 DEGs, respectively – were identified. These findings provided a theoretical basis for studying the gene function of different cotton tissues in response to low Pi stress.
摘要:为了系统地鉴定棉花对低无机磷(Pi)响应的关键基因,我们对在补磷和缺磷条件下生长的棉花(Gossypium hirsutum)幼苗的根、茎和叶进行了RNA测序(RNA-seq)分析。在根、茎和叶中分别检测到1679、1611和841个差异表达基因(deg)。鉴定出几个与拟南芥同源的pi -饥饿诱导基因,如SPX、PHO1/2和PHF1,以及PHT1家族的几个成员,在特定器官中表现出不同的表达水平。随后,随机选取25个deg进行实时荧光定量PCR验证,结果与RNA测序数据一致,说明RNA-seq数据的可靠性。通过分析差异表达的转录因子,我们发现MYB家族是三种组织中最丰富的三个转录因子家族之一。此外,本研究还发现了一些与植物激素相关的deg。其中,生长素响应基因IAA24、IAA11/14/16、IAA4/14/16/29分别在毛竹幼苗的根、茎、叶中有差异表达。最后,一些重要的磷酸酶如PPCK1和VTC4的同源基因也被发现存在差异表达。通过对121个共享DEGs的蛋白质相互作用网络的分析,鉴定出5个相互作用网络,其中2个分别含有10个和6个DEGs。这些发现为研究棉花不同组织对低磷胁迫的基因功能提供了理论依据。
{"title":"Organ specific transcriptome analysis of upland cotton (Gossypium hirsutum) in response to low phosphorus stress during early stage of growth","authors":"K. Lei, Jialong Cheng, Yi An, X. Li, Guoyong An","doi":"10.1080/00380768.2022.2098533","DOIUrl":"https://doi.org/10.1080/00380768.2022.2098533","url":null,"abstract":"ABSTRACT In order to systematically identify the critical genes involved in the response to low inorganic phosphorus (Pi) in cotton, we performed RNA sequencing (RNA-seq) analyses of root, stem, and leaf from Gossypium hirsutum seedlings grown under both Pi replete and Pi deplete conditions. In total, 1679, 1611, and 841 differentially expressed genes (DEGs) were observed in the roots, stems, and leaves, respectively. Several Pi-starvation-induced genes homologous to Arabidopsis were identified, such as SPX, PHO1/2, and PHF1, as well as several members of the PHT1 family, which showed different expression levels in specific organs. Subsequently, 25 randomly selected DEGs were validated by quantitative real-time PCR, the result of which was consistent with the RNA sequencing data, indicating the reliability of RNA-seq data. By analyzing the differentially expressed transcription factors, we found that the MYB family was one of the three most abundant transcription factor families in all three tissues. Moreover, some phytohormone-related DEGs were also found in G. hirsutum seedlings in this study. In particular, some auxin-responsive genes, such as IAA24, IAA11/14/16, and IAA4/14/16/29 were differentially expressed in the roots, stems and leaves of G. hirsutum seedlings respectively. Finally, homologous genes for some important phosphatases such as PPCK1 and VTC4 were also found to be differentially expressed. On analyzing the protein interaction network of 121 shared DEGs, five interaction networks – two of which contained 10 and 6 DEGs, respectively – were identified. These findings provided a theoretical basis for studying the gene function of different cotton tissues in response to low Pi stress.","PeriodicalId":21852,"journal":{"name":"Soil Science and Plant Nutrition","volume":"49 1","pages":"463 - 472"},"PeriodicalIF":2.0,"publicationDate":"2022-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84761327","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Application of phosphate solubilizing fungi and lime altered the soil inorganic phosphorus fractions in an Ultisol of north-eastern India 磷增溶真菌和石灰的施用改变了印度东北部土壤中无机磷的组分
IF 2 4区 农林科学 Q3 ENVIRONMENTAL SCIENCES Pub Date : 2022-06-29 DOI: 10.1080/00380768.2022.2094204
K. Alam, M. Barman, S. Datta, K. Annapurna, L. Shukla, P. Ray
ABSTRACT The gradually dwindling reserves of rock phosphate, the primary material used in the manufacturing of phosphatic fertilizers, encourages researchers to look for ways to exploit the accumulated fixed P pool in soil. Phosphate solubilizing microorganisms (PSM) could be a viable option for addressing the problem at a lower cost. Keeping these in mind, the present study was undertaken to evaluate the changes in the distribution of P in soil as affected by P fertilization, phosphate solubilizing fungi (PSF) and liming vis-à-vis the contribution of these fractions toward P nutrition of a test crop soybean (Glycine max L.). A bulk surface soil sample (0–15 cm) was obtained from Negheriting tea estate of Golaghat district of Assam, India (Ultisol, pH = 4.23) and after processing, three levels of P [0, 50, and 100% of recommended dose of P (RDP)], two levels of lime [No lime, 1/10th of Lime Requirement (LR)] and two levels of PSF (No-PSF, PSF) were applied in a completely randomized design with three replications. Sequential P fractionation was done in the post-harvest soil. On an average, the abundance of different P fractions in the soil, expressed as % of total P, followed the order: residual P (67.5%)> Fe bound P (12.1%)> reductant soluble P (8.85%)> Al bound P (4.04%)> occluded P (3.79%)> Ca bound P (3.11%)> soluble and loosely bound P (0.46%). All the inorganic P fractions except the residual P, increased significantly with P fertilization. Either liming or PSF application significantly increased the soluble and loosely bound P fraction and decreased the Al bound and Fe bound P fractions in soil. Positive growth response of soybean was obtained due to the application of P, lime, and PSF. Liming increased the P uptake by 30.4% and dry matter yield of soybean by 18.5% over no liming. On the other hand, PSF inoculation increased the P uptake by 16.7% and dry matter yield by 7.77% over no inoculation. So, it is evident that in short term, either liming or PSF was able to solubilize the native soil P. Phosphorus×lime and lime×PSF interactions should also be exploited in future endeavors.
作为制造磷肥的主要原料,磷矿的储量逐渐减少,促使研究人员寻找开发利用土壤中积累的固定磷库的方法。磷酸盐增溶微生物(PSM)可能是一个可行的选择,以较低的成本解决问题。考虑到这些因素,本研究评估了施磷肥、增磷真菌(PSF)和石灰对土壤中磷的分布的影响,并考察了这些组分对试验作物大豆(Glycine max L.)磷营养的贡献。从印度阿萨姆邦Golaghat地区的Negheriting茶园(Ultisol, pH = 4.23)获得了一份0 - 15 cm的土壤样品,处理后,采用完全随机设计,采用3个重复,施用3个水平的P[0、50和100%的P推荐剂量(RDP)], 2个水平的石灰[无石灰,需石灰量(LR)的1/10]和2个水平的PSF(无PSF, PSF)。在收获后土壤中进行序贯磷分馏。平均而言,土壤中不同磷组分的丰度(以占全磷的百分比表示)顺序为:残余磷(67.5%)>铁结合磷(12.1%)>还原剂可溶性磷(8.85%)>铝结合磷(4.04%)>封闭磷(3.79%)>钙结合磷(3.11%)>可溶性和松散结合磷(0.46%)。除残余磷外,其余无机磷组分均随施磷量的增加而显著增加。施用石灰和磷肥均能显著提高土壤中可溶磷和松散结合磷的含量,降低土壤中铝结合磷和铁结合磷的含量。施磷肥、石灰和聚磷肥对大豆的生长有良好的响应。施用石灰比不施用石灰提高了大豆吸磷量30.4%,干物质产量提高了18.5%。另一方面,与未接种相比,接种PSF增加了16.7%的磷吸收量和7.77%的干物质产量。因此,很明显,在短期内,石灰或PSF都能溶解原生土壤P. Phosphorus×lime和lime×PSF的相互作用也应该在未来的努力中加以利用。
{"title":"Application of phosphate solubilizing fungi and lime altered the soil inorganic phosphorus fractions in an Ultisol of north-eastern India","authors":"K. Alam, M. Barman, S. Datta, K. Annapurna, L. Shukla, P. Ray","doi":"10.1080/00380768.2022.2094204","DOIUrl":"https://doi.org/10.1080/00380768.2022.2094204","url":null,"abstract":"ABSTRACT The gradually dwindling reserves of rock phosphate, the primary material used in the manufacturing of phosphatic fertilizers, encourages researchers to look for ways to exploit the accumulated fixed P pool in soil. Phosphate solubilizing microorganisms (PSM) could be a viable option for addressing the problem at a lower cost. Keeping these in mind, the present study was undertaken to evaluate the changes in the distribution of P in soil as affected by P fertilization, phosphate solubilizing fungi (PSF) and liming vis-à-vis the contribution of these fractions toward P nutrition of a test crop soybean (Glycine max L.). A bulk surface soil sample (0–15 cm) was obtained from Negheriting tea estate of Golaghat district of Assam, India (Ultisol, pH = 4.23) and after processing, three levels of P [0, 50, and 100% of recommended dose of P (RDP)], two levels of lime [No lime, 1/10th of Lime Requirement (LR)] and two levels of PSF (No-PSF, PSF) were applied in a completely randomized design with three replications. Sequential P fractionation was done in the post-harvest soil. On an average, the abundance of different P fractions in the soil, expressed as % of total P, followed the order: residual P (67.5%)> Fe bound P (12.1%)> reductant soluble P (8.85%)> Al bound P (4.04%)> occluded P (3.79%)> Ca bound P (3.11%)> soluble and loosely bound P (0.46%). All the inorganic P fractions except the residual P, increased significantly with P fertilization. Either liming or PSF application significantly increased the soluble and loosely bound P fraction and decreased the Al bound and Fe bound P fractions in soil. Positive growth response of soybean was obtained due to the application of P, lime, and PSF. Liming increased the P uptake by 30.4% and dry matter yield of soybean by 18.5% over no liming. On the other hand, PSF inoculation increased the P uptake by 16.7% and dry matter yield by 7.77% over no inoculation. So, it is evident that in short term, either liming or PSF was able to solubilize the native soil P. Phosphorus×lime and lime×PSF interactions should also be exploited in future endeavors.","PeriodicalId":21852,"journal":{"name":"Soil Science and Plant Nutrition","volume":"20 1","pages":"409 - 420"},"PeriodicalIF":2.0,"publicationDate":"2022-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87208953","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
期刊
Soil Science and Plant Nutrition
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1