首页 > 最新文献

Solid state nuclear magnetic resonance最新文献

英文 中文
Separated quadrupole and shift interactions of 2H NMR spectra in paramagnetic solids by asymmetric pulse sequences 非对称脉冲序列对顺磁固体中2H核磁共振谱分离四极和位移相互作用的研究
IF 3.2 3区 化学 Q1 Physics and Astronomy Pub Date : 2021-04-01 DOI: 10.1016/j.ssnmr.2020.101709
Takahiro Iijima , Shinobu Ohki , Masataka Tansho

Separated pure-quadrupole (PQ) and -shift (PS) spectra of 2H nuclear magnetic resonance (NMR) of paramagnetic solids are obtained and correlated by simple pulse sequences that can acquire the full magnetization under ideal conditions. Two-dimensional NMR signals obtained using an asymmetric π-pulse-inserted quadrupole-echo (APIQE) sequence yielded separated spectra through the skew operation of an affine transform (AT) before a Fourier transform. Modified APIQE sequences that acquire whole echo signals were fabricated, and separated PQ and PS spectra were obtained by applying a combination of AT, such as rotation and skew operations, to the signal data. These methods were demonstrated for diamagnetic Zn(CD3CO2)2⋅2H2O and paramagnetic Nd(CD3CO2)3⋅1.5H2O. Further, the dynamics of the D2O molecule and [Co(D2O)6]2+ ion in paramagnetic CoSiF6⋅6D2O was analyzed based on the temperature dependence of the separated spectra.

分离pure-quadrupole (PQ)和转移(PS)的2 h核磁共振光谱(NMR)顺得到固体和关联的简单的脉冲序列,可以获得理想的条件下充分磁化。利用非对称π-脉冲插入四极回波(APIQE)序列得到的二维核磁共振信号,在进行傅里叶变换前先进行仿射变换(AT)的偏置运算,得到分离谱。制备了获取完整回波信号的改进APIQE序列,并对信号数据进行旋转和倾斜等AT组合处理,得到分离的PQ和PS谱。这些方法分别对抗磁性Zn(CD3CO2)2⋅2H2O和顺磁性Nd(CD3CO2)3⋅1.5H2O进行了验证。基于分离光谱的温度依赖性,分析了顺磁CoSiF6⋅6D2O中D2O分子和[Co(D2O)6]2+离子的动力学。
{"title":"Separated quadrupole and shift interactions of 2H NMR spectra in paramagnetic solids by asymmetric pulse sequences","authors":"Takahiro Iijima ,&nbsp;Shinobu Ohki ,&nbsp;Masataka Tansho","doi":"10.1016/j.ssnmr.2020.101709","DOIUrl":"10.1016/j.ssnmr.2020.101709","url":null,"abstract":"<div><p>Separated pure-quadrupole (PQ) and -shift (PS) spectra of <sup>2</sup><span>H nuclear magnetic resonance (NMR) of paramagnetic solids are obtained and correlated by simple pulse sequences that can acquire the full magnetization under ideal conditions. Two-dimensional NMR signals obtained using an asymmetric </span><em>π</em><span>-pulse-inserted quadrupole-echo (APIQE) sequence yielded separated spectra through the skew operation of an affine transform (AT) before a Fourier transform<span>. Modified APIQE sequences that acquire whole echo signals were fabricated, and separated PQ and PS spectra were obtained by applying a combination of AT, such as rotation and skew operations, to the signal data. These methods were demonstrated for diamagnetic Zn(CD</span></span><sub>3</sub>CO<sub>2</sub>)<sub>2</sub>⋅2H<sub>2</sub>O and paramagnetic Nd(CD<sub>3</sub>CO<sub>2</sub>)<sub>3</sub>⋅1.5H<sub>2</sub>O. Further, the dynamics of the D<sub>2</sub>O molecule and [Co(D<sub>2</sub>O)<sub>6</sub>]<sup>2+</sup><span> ion in paramagnetic CoSiF</span><sub>6</sub>⋅6D<sub>2</sub>O was analyzed based on the temperature dependence of the separated spectra.</p></div>","PeriodicalId":21937,"journal":{"name":"Solid state nuclear magnetic resonance","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.ssnmr.2020.101709","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38864017","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Recent progress in dipolar recoupling techniques under fast MAS in solid-state NMR spectroscopy 固态核磁共振光谱快速MAS下偶极重偶联技术研究进展
IF 3.2 3区 化学 Q1 Physics and Astronomy Pub Date : 2021-04-01 DOI: 10.1016/j.ssnmr.2020.101711
Yi Ji , Lixin Liang , Xinhe Bao , Guangjin Hou

With the recent advances in NMR hardware and probe design technology, magic-angle spinning (MAS) rates over 100 ​kHz are accessible now, even on commercial solid NMR probes. Under such fast MAS conditions, excellent spectral resolution has been achieved by efficient suppression of anisotropic interactions, which also opens an avenue to the proton-detected NMR experiments in solids. Numerous methods have been developed to take full advantage of fast MAS during the last decades. Among them, dipolar recoupling techniques under fast MAS play vital roles in the determination of the molecular structure and dynamics, and are also key elements in multi-dimensional correlation NMR experiments. Herein, we review the dipolar recoupling techniques, especially those developed in the past two decades for fast-to-ultrafast MAS conditions. A major focus for our discussion is the ratio of RF field strength (in frequency) to MAS frequency, ν1/νr, in different pulse sequences, which determines whether these dipolar recoupling techniques are suitable for NMR experiments under fast MAS conditions. Systematic comparisons are made among both heteronuclear and homonuclear dipolar recoupling schemes. In addition, the schemes developed specially for proton-detection NMR experiments under ultrafast MAS conditions are highlighted as well.

随着核磁共振硬件和探针设计技术的最新进展,现在甚至在商业固体核磁共振探针上也可以实现超过100 kHz的魔角旋转(MAS)速率。在这种快速的MAS条件下,通过有效地抑制各向异性相互作用,获得了优异的光谱分辨率,这也为固体中质子探测核磁共振实验开辟了一条途径。在过去的几十年里,已经开发了许多方法来充分利用快速MAS。其中,快速MAS下的偶极重耦合技术在分子结构和动力学的测定中起着至关重要的作用,也是多维相关核磁共振实验的关键要素。在此,我们回顾了偶极重耦合技术,特别是在过去二十年中开发的用于快速到超快MAS条件的技术。我们讨论的主要焦点是不同脉冲序列中射频场强(频率)与MAS频率的比值ν1/νr,这决定了这些偶极重耦合技术是否适用于快速MAS条件下的核磁共振实验。系统地比较了异核和同核偶极重耦合方案。此外,还重点介绍了超快MAS条件下质子探测核磁共振实验的方案。
{"title":"Recent progress in dipolar recoupling techniques under fast MAS in solid-state NMR spectroscopy","authors":"Yi Ji ,&nbsp;Lixin Liang ,&nbsp;Xinhe Bao ,&nbsp;Guangjin Hou","doi":"10.1016/j.ssnmr.2020.101711","DOIUrl":"10.1016/j.ssnmr.2020.101711","url":null,"abstract":"<div><p><span><span>With the recent advances in NMR hardware and probe design technology, magic-angle spinning (MAS) rates over 100 ​kHz are accessible now, even on commercial solid NMR probes. Under such fast MAS conditions, excellent spectral resolution has been achieved by efficient suppression of anisotropic interactions, which also opens an avenue to the proton-detected NMR experiments in solids. Numerous methods have been developed to take full advantage of fast MAS during the last decades. Among them, dipolar recoupling<span> techniques under fast MAS play vital roles in the determination of the molecular structure and dynamics, and are also key elements in multi-dimensional correlation NMR experiments. Herein, we review the dipolar recoupling techniques, especially those developed in the past two decades for fast-to-ultrafast MAS conditions. A major focus for our discussion is the ratio of RF field </span></span>strength (in frequency) to MAS frequency, </span><span><math><mrow><msub><mi>ν</mi><mn>1</mn></msub></mrow></math></span>/<span><math><mrow><msub><mi>ν</mi><mi>r</mi></msub></mrow></math></span>, in different pulse sequences, which determines whether these dipolar recoupling techniques are suitable for NMR experiments under fast MAS conditions. Systematic comparisons are made among both heteronuclear and homonuclear dipolar recoupling schemes. In addition, the schemes developed specially for proton-detection NMR experiments under ultrafast MAS conditions are highlighted as well.</p></div>","PeriodicalId":21937,"journal":{"name":"Solid state nuclear magnetic resonance","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.ssnmr.2020.101711","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38872026","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 14
Recent developments in deuterium solid-state NMR for the detection of slow motions in proteins 用于检测蛋白质慢运动的氘固态核磁共振的最新进展
IF 3.2 3区 化学 Q1 Physics and Astronomy Pub Date : 2021-02-01 DOI: 10.1016/j.ssnmr.2020.101710
Liliya Vugmeyster

Slow timescale dynamics in proteins are essential for a variety of biological functions spanning ligand binding, enzymatic catalysis, protein folding and misfolding regulations, as well as protein–protein and protein–nucleic acid interactions. In this review, we focus on the experimental and theoretical developments of 2H static NMR methods applicable for studies of microsecond to millisecond motional modes in proteins, particularly rotating frame relaxation dispersion (R), quadrupolar Carr–Purcell–Meiboom–Gill (QCPMG) relaxation dispersion, and quadrupolar chemical exchange saturation transfer NMR experiments (Q-CEST). With applications chosen from amyloid-β fibrils, we show the complementarity of these approaches for elucidating the complexities of conformational ensembles in disordered domains in the non-crystalline solid state, with the employment of selective deuterium labels. Combined with recent advances in relaxation dispersion backbone measurements for 15N/13C/1H nuclei, these techniques provide powerful tools for studies of biologically relevant timescale dynamics in disordered domains in the solid state.

蛋白质中的慢时间尺度动力学对于多种生物功能至关重要,包括配体结合、酶催化、蛋白质折叠和错误折叠调节,以及蛋白质-蛋白质和蛋白质-核酸相互作用。本文综述了适用于研究蛋白质微秒至毫秒运动模式的2H静态核磁共振方法的实验和理论进展,特别是旋转框架弛豫色散(R1ρ)、四极性carr - purcell - meiboomm - gill (QCPMG)弛豫色散和四极性化学交换饱和转移核磁共振实验(Q-CEST)。通过选择淀粉样蛋白-β原纤维的应用,我们展示了这些方法的互补性,以阐明非结晶固体中无序结构域的构象集成的复杂性,并使用选择性氘标记。结合15N/13C/1H核弛豫色散骨干测量的最新进展,这些技术为研究固体中无序结构域的生物学相关时间尺度动力学提供了有力的工具。
{"title":"Recent developments in deuterium solid-state NMR for the detection of slow motions in proteins","authors":"Liliya Vugmeyster","doi":"10.1016/j.ssnmr.2020.101710","DOIUrl":"10.1016/j.ssnmr.2020.101710","url":null,"abstract":"<div><p><span><span>Slow timescale dynamics in proteins are essential for a variety of biological functions spanning ligand binding, enzymatic catalysis, </span>protein folding and misfolding regulations, as well as protein–protein and protein–nucleic acid interactions. In this review, we focus on the experimental and theoretical developments of </span><sup>2</sup>H static NMR methods applicable for studies of microsecond to millisecond motional modes in proteins, particularly rotating frame relaxation dispersion (<em>R</em><sub>1ρ</sub><span>), quadrupolar Carr–Purcell–Meiboom–Gill (QCPMG) relaxation dispersion, and quadrupolar chemical exchange saturation transfer<span> NMR experiments (Q-CEST). With applications chosen from amyloid-β fibrils, we show the complementarity of these approaches for elucidating the complexities of conformational ensembles in disordered domains in the non-crystalline solid state, with the employment of selective deuterium labels. Combined with recent advances in relaxation dispersion backbone measurements for </span></span><sup>15</sup>N/<sup>13</sup>C/<sup>1</sup>H nuclei, these techniques provide powerful tools for studies of biologically relevant timescale dynamics in disordered domains in the solid state.</p></div>","PeriodicalId":21937,"journal":{"name":"Solid state nuclear magnetic resonance","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2021-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.ssnmr.2020.101710","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38826956","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
Phase-sensitive γ-encoded recoupling of heteronuclear dipolar interactions and 1H chemical shift anisotropy 异核偶极相互作用的相敏γ编码重耦合和1H化学位移各向异性
IF 3.2 3区 化学 Q1 Physics and Astronomy Pub Date : 2021-02-01 DOI: 10.1016/j.ssnmr.2020.101712
Frédéric A. Perras, Alexander L. Paterson, Takeshi Kobayashi

γ-encoded recoupling sequences are known to produce strong amplitude modulations that lead to sharp doublets when Fourier transformed. These doublets depend very little on the recoupled tensor asymmetry and thus enable for the straightforward determination of dynamic order parameters. It can, however, be difficult to measure small anisotropies, or small order parameters, using such sequences; the resonances from the doublet may overlap with each other, or with the zero-frequency glitch. This limitation has prevented the widespread use of 1H chemical shift anisotropy (CSA) for the measurement of dynamics, particularly for CH protons which typically have CSAs of only a few ppm when immobile. Here, we introduce a simple modification to the traditional 1H CSA and proton-detected local field pulse sequences that enables the acquisition of a hypercomplex dataset and the removal of the uncorrelated magnetization that results in the zero-frequency glitch. These new sequences then yield a frequency shift in the indirect dimension, rather than a splitting, which is easily identifiable even in cases of weak interactions.

已知γ编码的重耦序列在傅里叶变换时产生强烈的振幅调制,导致尖锐的重偶。这些重态几乎不依赖于重耦张量的不对称性,因此可以直接确定动态序参数。然而,使用这种序列很难测量小的各向异性或小的顺序参数;来自重偶态的共振可能彼此重叠,或者与零频率故障重叠。这一限制阻碍了1H化学位移各向异性(CSA)在动力学测量中的广泛使用,特别是对于固定时CSA通常只有几个ppm的CH质子。在这里,我们对传统的1H CSA和质子检测的局部场脉冲序列进行了简单的修改,从而能够获取超复杂的数据集,并去除导致零频率故障的不相关磁化。这些新的序列在间接维度上产生频移,而不是分裂,即使在弱相互作用的情况下也很容易识别。
{"title":"Phase-sensitive γ-encoded recoupling of heteronuclear dipolar interactions and 1H chemical shift anisotropy","authors":"Frédéric A. Perras,&nbsp;Alexander L. Paterson,&nbsp;Takeshi Kobayashi","doi":"10.1016/j.ssnmr.2020.101712","DOIUrl":"10.1016/j.ssnmr.2020.101712","url":null,"abstract":"<div><p>γ-encoded recoupling sequences are known to produce strong amplitude modulations that lead to sharp doublets when Fourier transformed. These doublets depend very little on the recoupled tensor asymmetry and thus enable for the straightforward determination of dynamic order parameters. It can, however, be difficult to measure small anisotropies, or small order parameters, using such sequences; the resonances from the doublet may overlap with each other, or with the zero-frequency glitch. This limitation has prevented the widespread use of <sup>1</sup><span>H chemical shift anisotropy (CSA) for the measurement of dynamics, particularly for CH protons which typically have CSAs of only a few ppm when immobile. Here, we introduce a simple modification to the traditional </span><sup>1</sup>H CSA and proton-detected local field pulse sequences that enables the acquisition of a hypercomplex dataset and the removal of the uncorrelated magnetization that results in the zero-frequency glitch. These new sequences then yield a frequency shift in the indirect dimension, rather than a splitting, which is easily identifiable even in cases of weak interactions.</p></div>","PeriodicalId":21937,"journal":{"name":"Solid state nuclear magnetic resonance","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2021-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.ssnmr.2020.101712","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38826957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
1H/13C/15N triple-resonance experiments for structure determinaton of membrane proteins by oriented-sample NMR 定向样品核磁共振测定膜蛋白结构的1H/13C/15N三重共振实验
IF 3.2 3区 化学 Q1 Physics and Astronomy Pub Date : 2021-02-01 DOI: 10.1016/j.ssnmr.2020.101701
Joel Lapin, Emmanuel O. Awosanya, Richard J.A. Esteves, Alexander A. Nevzorov

The benefits of triple-resonance experiments for structure determination of macroscopically oriented membrane proteins by solid-state NMR are discussed. While double-resonance 1H/15N experiments are effective for structure elucidation of alpha-helical domains, extension of the method of oriented samples to more complex topologies and assessing side-chain conformations necessitates further development of triple-resonance (1H/13C/15N) NMR pulse sequences. Incorporating additional spectroscopic dimensions involving 13C spin-bearing nuclei, however, introduces essential complications arising from the wide frequency range of the 1H-13C dipolar couplings and 13C CSA (>20 ​kHz), and the presence of the 13C-13C homonuclear dipole-dipole interactions. The recently reported ROULETTE–CAHA pulse sequence, in combination with the selective z-filtering, can be used to evolve the structurally informative 1H-13C dipolar coupling arising from the aliphatic carbons while suppressing the signals from the carbonyl and methyl regions. Proton-mediated magnetization transfer under mismatched Hartman-Hahn conditions (MMHH) can be used to correlate 13C and 15N nuclei in such triple-resonance experiments for the subsequent 15N detection. The recently developed pulse sequences are illustrated for n-acetyl Leucine (NAL) single crystal and doubly labeled Pf1 coat protein reconstituted in magnetically aligned bicelles. An interesting observation is that in the case of 15N-labeled NAL measured at 13C natural abundance, the triple (1H/13C/15N) MMHH scheme predominantly gives rise to long-range intermolecular magnetization transfers from 13C to 15N spins; whereas direct Hartmann-Hahn 13C/15N transfer is entirely intramolecular. The presented developments advance NMR of oriented samples for structure determination of membrane proteins and liquid crystals.

讨论了三共振实验在固体核磁共振测定宏观定向膜蛋白结构中的优势。虽然双共振1H/15N实验对α -螺旋结构域的结构解析是有效的,但将定向样品的方法扩展到更复杂的拓扑结构和评估侧链构象需要进一步开发三共振(1H/13C/15N) NMR脉冲序列。然而,纳入涉及13C自旋核的额外光谱维度,由于1H-13C偶极耦合和13C CSA (> 20khz)的宽频率范围以及13C-13C同核偶极子-偶极子相互作用的存在,引入了基本的复杂性。最近报道的ROULETTE-CAHA脉冲序列,结合选择性z滤波,可以用来进化由脂肪碳产生的结构信息h - 13c偶极偶联,同时抑制羰基和甲基区的信号。在错配哈特曼-哈恩条件下,质子介导的磁化转移可以用来在这种三共振实验中关联13C和15N原子核,从而进行后续的15N探测。最近开发的脉冲序列显示了n-乙酰亮氨酸(NAL)单晶和双标记的Pf1外壳蛋白在磁排列的小束中重组。一个有趣的观察结果是,在以13C自然丰度测量的15N标记NAL的情况下,三重(1H/13C/15N) MMHH方案主要引起从13C到15N自旋的远程分子间磁化转移;而直接的Hartmann-Hahn 13C/15N转移完全是分子内的。本文的研究进展为定向样品的核磁共振技术用于膜蛋白和液晶的结构测定提供了新的思路。
{"title":"1H/13C/15N triple-resonance experiments for structure determinaton of membrane proteins by oriented-sample NMR","authors":"Joel Lapin,&nbsp;Emmanuel O. Awosanya,&nbsp;Richard J.A. Esteves,&nbsp;Alexander A. Nevzorov","doi":"10.1016/j.ssnmr.2020.101701","DOIUrl":"10.1016/j.ssnmr.2020.101701","url":null,"abstract":"<div><p>The benefits of triple-resonance experiments for structure determination of macroscopically oriented membrane proteins by solid-state NMR are discussed. While double-resonance <sup>1</sup>H/<sup>15</sup><span>N experiments are effective for structure elucidation of alpha-helical domains, extension of the method of oriented samples to more complex topologies and assessing side-chain conformations necessitates further development of triple-resonance (</span><sup>1</sup>H/<sup>13</sup>C/<sup>15</sup>N) NMR pulse sequences. Incorporating additional spectroscopic dimensions involving <sup>13</sup>C spin-bearing nuclei, however, introduces essential complications arising from the wide frequency range of the <sup>1</sup>H-<sup>13</sup><span>C dipolar couplings and </span><sup>13</sup><span>C CSA (&gt;20 ​kHz), and the presence of the </span><sup>13</sup>C-<sup>13</sup>C homonuclear dipole-dipole interactions. The recently reported ROULETTE–CAHA pulse sequence, in combination with the selective z-filtering, can be used to evolve the structurally informative <sup>1</sup>H-<sup>13</sup><span>C dipolar coupling arising from the aliphatic carbons while suppressing the signals from the carbonyl and methyl regions. Proton-mediated magnetization transfer under mismatched Hartman-Hahn conditions (MMHH) can be used to correlate </span><sup>13</sup>C and <sup>15</sup>N nuclei in such triple-resonance experiments for the subsequent <sup>15</sup><span>N detection. The recently developed pulse sequences are illustrated for n-acetyl Leucine<span> (NAL) single crystal and doubly labeled Pf1 coat protein reconstituted in magnetically aligned bicelles. An interesting observation is that in the case of </span></span><sup>15</sup>N-labeled NAL measured at <sup>13</sup>C natural abundance, the triple (<sup>1</sup>H/<sup>13</sup>C/<sup>15</sup>N) MMHH scheme predominantly gives rise to long-range intermolecular magnetization transfers from <sup>13</sup>C to <sup>15</sup>N spins; whereas direct Hartmann-Hahn <sup>13</sup>C/<sup>15</sup>N transfer is entirely intramolecular. The presented developments advance NMR of oriented samples for structure determination of membrane proteins and liquid crystals.</p></div>","PeriodicalId":21937,"journal":{"name":"Solid state nuclear magnetic resonance","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2021-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.ssnmr.2020.101701","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38661792","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Hyperpolarisation techniques Hyperpolarisation技术
IF 3.2 3区 化学 Q1 Physics and Astronomy Pub Date : 2021-01-01 DOI: 10.1039/9781839164965-00151
Ryan E. Mewis
{"title":"Hyperpolarisation techniques","authors":"Ryan E. Mewis","doi":"10.1039/9781839164965-00151","DOIUrl":"https://doi.org/10.1039/9781839164965-00151","url":null,"abstract":"","PeriodicalId":21937,"journal":{"name":"Solid state nuclear magnetic resonance","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86793160","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Applications of solid-state NMR spectroscopy in environmental science 固体核磁共振波谱在环境科学中的应用
IF 3.2 3区 化学 Q1 Physics and Astronomy Pub Date : 2020-12-01 DOI: 10.1016/j.ssnmr.2020.101698
Qian Wang, Ulla Gro Nielsen

Environmental science is an interdisciplinary field, which integrates chemical, physical, and biological sciences to study environmental problems and human impact on the environment. This article highlights the use of solid-state NMR spectroscopy (SSNMR) in studies of environmental processes and remediation with examples from both laboratory studies and samples collected in the field. The contemporary topics presented include soil chemistry, environmental remediation (e.g., heavy metals and radionuclides removal, carbon dioxide mineralization), and phosphorus recovery. SSNMR is a powerful technique, which provides atomic-level information about speciation in complex environmental samples as well as the interactions between pollutants and minerals/organic matter on different environmental interfaces. The challenges in the application of SSNMR in environmental science (e.g., measurement of paramagnetic nuclei and low-gamma nuclei) are also discussed, and perspectives are provided for the future research efforts.

环境科学是一门交叉学科,它综合了化学、物理和生物科学,研究环境问题和人类对环境的影响。本文重点介绍了固体核磁共振波谱(SSNMR)在环境过程和修复研究中的应用,并举例说明了实验室研究和现场收集的样本。提出的当代主题包括土壤化学,环境修复(例如,重金属和放射性核素去除,二氧化碳矿化)和磷回收。SSNMR是一项强大的技术,它提供了复杂环境样品中物种形成的原子水平信息,以及污染物与矿物/有机物在不同环境界面上的相互作用。讨论了SSNMR在环境科学应用中的挑战(如顺磁核和低伽马核的测量),并对未来的研究工作提出了展望。
{"title":"Applications of solid-state NMR spectroscopy in environmental science","authors":"Qian Wang,&nbsp;Ulla Gro Nielsen","doi":"10.1016/j.ssnmr.2020.101698","DOIUrl":"10.1016/j.ssnmr.2020.101698","url":null,"abstract":"<div><p><span><span>Environmental science is an interdisciplinary field, which integrates chemical, physical, and biological sciences to study environmental problems and human impact on the environment. This article highlights the use of solid-state NMR spectroscopy (SSNMR) in studies of environmental processes and remediation with examples from both laboratory studies and samples collected in the field. The contemporary topics presented include soil </span>chemistry, environmental remediation (e.g., heavy metals and </span>radionuclides removal, carbon dioxide mineralization), and phosphorus recovery. SSNMR is a powerful technique, which provides atomic-level information about speciation in complex environmental samples as well as the interactions between pollutants and minerals/organic matter on different environmental interfaces. The challenges in the application of SSNMR in environmental science (e.g., measurement of paramagnetic nuclei and low-gamma nuclei) are also discussed, and perspectives are provided for the future research efforts.</p></div>","PeriodicalId":21937,"journal":{"name":"Solid state nuclear magnetic resonance","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.ssnmr.2020.101698","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38558086","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Structural and functional synthesis of the continuous wave NQR temperature sensor with increased conversion linearity 增加转换线性度的连续波NQR温度传感器的结构和功能合成
IF 3.2 3区 化学 Q1 Physics and Astronomy Pub Date : 2020-12-01 DOI: 10.1016/j.ssnmr.2020.101700
A. Samila , I. Safronov , O. Hotra

The paper describes development of the detailed structure and circuit diagrams of the continuous wave NQR temperature sensor with increased conversion linearity. It is experimentally established that at amplitude modulation of 40% and change of input voltage in the range of 20–1000 ​mV, the circuit of a symmetric marginal oscillator with a linear active demodulator provides better linearity of transfer characteristic than the circuits of asymmetric marginal oscillators with JFET or diode detectors. As a thermometric substance of the proposed NQR sensor, copper oxide Cu2O was used, which is characterized by a strong temperature dependence of the resonance frequency of 63Cu NQR. In contrast to 35Cl NQR in KClO3, for cuprous oxide the temperature dependence of 63Сu NQR frequency in the frequency range 26.621–25.658 ​MHz is linear in the temperature range 100–390 ​K. It is experimentally confirmed that the use of a low mass sample (less than 200 ​mg) as a thermometric substance of the proposed NQR sensor is quite sufficient for successfully observation of the resonance line at the SNR equal to 9.1 ​dB.

本文介绍了提高转换线性度的连续波NQR温度传感器的详细结构和电路图的研制。实验证明,在调幅为40%、输入电压变化在20 ~ 1000 mV范围内时,采用线性有源解调器的对称边缘振荡器电路比采用JFET或二极管检波器的非对称边缘振荡器电路具有更好的传递特性线性度。所提出的NQR传感器的测温物质是氧化铜Cu2O,其特点是63Cu NQR的共振频率对温度有很强的依赖性。与KClO3中的35Cl NQR相反,对于氧化亚铜,63Сu NQR频率在26.621-25.658 MHz频率范围内的温度依赖性在100-390 K温度范围内呈线性关系。实验证实,使用低质量样品(小于200 mg)作为所提出的NQR传感器的测温物质,足以在信噪比为9.1 dB的情况下成功地观察到共振线。
{"title":"Structural and functional synthesis of the continuous wave NQR temperature sensor with increased conversion linearity","authors":"A. Samila ,&nbsp;I. Safronov ,&nbsp;O. Hotra","doi":"10.1016/j.ssnmr.2020.101700","DOIUrl":"10.1016/j.ssnmr.2020.101700","url":null,"abstract":"<div><p><span><span><span>The paper describes development of the detailed structure and circuit diagrams of the continuous wave NQR </span>temperature sensor with increased conversion linearity. It is experimentally established that at amplitude modulation of 40% and change of input voltage in the range of 20–1000 ​mV, the circuit of a symmetric marginal </span>oscillator<span> with a linear active demodulator provides better linearity of transfer characteristic than the circuits of asymmetric marginal oscillators with JFET<span> or diode detectors. As a thermometric substance of the proposed NQR sensor, copper oxide Cu</span></span></span><sub>2</sub>O was used, which is characterized by a strong temperature dependence of the resonance frequency of <sup>63</sup>Cu NQR. In contrast to <sup>35</sup>Cl NQR in KClO<sub>3</sub><span>, for cuprous oxide the temperature dependence of </span><sup>63</sup><span>Сu NQR frequency in the frequency range 26.621–25.658 ​MHz is linear in the temperature range 100–390 ​K. It is experimentally confirmed that the use of a low mass sample (less than 200 ​mg) as a thermometric substance of the proposed NQR sensor is quite sufficient for successfully observation of the resonance line at the SNR equal to 9.1 ​dB.</span></p></div>","PeriodicalId":21937,"journal":{"name":"Solid state nuclear magnetic resonance","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.ssnmr.2020.101700","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38620538","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
The 1H T1 dispersion curve of fentanyl citrate to identify NQR parameters 利用枸橼酸芬太尼的1H T1弥散曲线识别NQR参数
IF 3.2 3区 化学 Q1 Physics and Astronomy Pub Date : 2020-12-01 DOI: 10.1016/j.ssnmr.2020.101697
Michael W. Malone , Michelle A. Espy , Sun He , Michael T. Janicke , Robert F. Williams

We report the 1H T1 dispersion curve between 0 and 5 ​MHz for the synthetic opioid fentanyl citrate (C28H36N2O8). The structures in the curve can be used to estimate the 14N nuclear quadrupole resonance (NQR) frequencies of the material. Density functional theory predictions of the NQR parameters of several fentanyl citrate compounds are also reported. The predictions for the aniline nitrogen are consistent with structures in the observed T1 data. To help interpret the fentanyl citrate results the T1 dispersion curve for the explosive ammonium nitrate is also presented.

我们报道了合成阿片类药物柠檬酸芬太尼(C28H36N2O8)在0和5 MHz之间的1H T1色散曲线。曲线中的结构可以用来估计材料的14N核四极共振(NQR)频率。密度泛函理论预测了几种柠檬酸芬太尼化合物的NQR参数。对苯胺氮的预测与T1观测数据的结构一致。为了帮助解释柠檬酸芬太尼的结果,还给出了炸药硝酸铵的T1分散曲线。
{"title":"The 1H T1 dispersion curve of fentanyl citrate to identify NQR parameters","authors":"Michael W. Malone ,&nbsp;Michelle A. Espy ,&nbsp;Sun He ,&nbsp;Michael T. Janicke ,&nbsp;Robert F. Williams","doi":"10.1016/j.ssnmr.2020.101697","DOIUrl":"10.1016/j.ssnmr.2020.101697","url":null,"abstract":"<div><p>We report the <sup>1</sup>H <span><math><mrow><msub><mi>T</mi><mn>1</mn></msub></mrow></math></span> dispersion curve between 0 and 5 ​MHz for the synthetic opioid fentanyl citrate (C<sub>28</sub>H<sub>36</sub>N<sub>2</sub>O<sub>8</sub>). The structures in the curve can be used to estimate the <sup>14</sup><span>N nuclear quadrupole resonance (NQR) frequencies of the material. Density functional theory predictions of the NQR parameters of several fentanyl citrate compounds are also reported. The predictions for the aniline nitrogen are consistent with structures in the observed </span><span><math><mrow><msub><mi>T</mi><mn>1</mn></msub></mrow></math></span> data. To help interpret the fentanyl citrate results the <span><math><mrow><msub><mi>T</mi><mn>1</mn></msub></mrow></math></span><span> dispersion curve for the explosive ammonium nitrate is also presented.</span></p></div>","PeriodicalId":21937,"journal":{"name":"Solid state nuclear magnetic resonance","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.ssnmr.2020.101697","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38504569","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Iterative baseline correction algorithm for dead time truncated one-dimensional solid-state MAS NMR spectra 死时间截断一维固态MAS核磁共振谱的迭代基线校正算法
IF 3.2 3区 化学 Q1 Physics and Astronomy Pub Date : 2020-12-01 DOI: 10.1016/j.ssnmr.2020.101699
Maxime Yon, Franck Fayon, Dominique Massiot, Vincent Sarou-Kanian

We present an algorithm suitable for automatically correcting rolling baseline coming from time-domain truncation induced by the dead time in pulse-acquire one-dimensional MAS NMR spectra. It relies on an iterative estimation of the baseline restricted in the time-domain by the dead time duration combined with a histogram filter allowing adaptive selection of the baseline points. This method does not make any assumption regarding the NMR resonances line shapes or widths and does not modify the acquired free induction decay points. This makes it suitable for accurate deconvolution and quantification of single-pulse MAS NMR spectra. The baseline correction accuracy is evaluated on synthetic solid-state spectra of 19F, 71Ga, and 23Na by comparing the fitted baseline to the theoretical one. The versatility of the algorithm is also exemplified on three additional solid-state spectra of 23Na and 71Ga. The algorithm is made available to the community through a user-friendly standalone Matlab® application.

提出了一种适用于自动校正脉冲采集一维MAS核磁共振谱中死时间引起的时域截断滚动基线的算法。它依赖于对基线的迭代估计,该估计受死时间持续时间的限制,并结合直方图滤波器,允许自适应选择基线点。该方法不对核磁共振谱线的形状和宽度作任何假设,也不修改所获得的自由感应衰减点。这使得它适用于精确反褶积和定量的单脉冲MAS核磁共振光谱。通过将拟合的基线与理论基线进行比较,对19F、71Ga和23Na合成固体光谱的基线校正精度进行了评价。该算法的通用性也在23Na和71Ga的另外三个固态光谱上得到了验证。该算法通过用户友好的独立Matlab®应用程序提供给社区。
{"title":"Iterative baseline correction algorithm for dead time truncated one-dimensional solid-state MAS NMR spectra","authors":"Maxime Yon,&nbsp;Franck Fayon,&nbsp;Dominique Massiot,&nbsp;Vincent Sarou-Kanian","doi":"10.1016/j.ssnmr.2020.101699","DOIUrl":"10.1016/j.ssnmr.2020.101699","url":null,"abstract":"<div><p><span><span>We present an algorithm suitable for automatically correcting rolling baseline coming from time-domain truncation induced by the dead time in pulse-acquire one-dimensional MAS </span>NMR spectra<span>. It relies on an iterative estimation of the baseline restricted in the time-domain by the dead time duration combined with a histogram filter allowing adaptive selection of the baseline points. This method does not make any assumption regarding the NMR resonances line shapes or widths and does not modify the acquired free induction decay points. This makes it suitable for accurate deconvolution and quantification of single-pulse MAS NMR spectra. The baseline correction accuracy is evaluated on synthetic solid-state spectra of </span></span><sup>19</sup>F, <sup>71</sup>Ga, and <sup>23</sup>Na by comparing the fitted baseline to the theoretical one. The versatility of the algorithm is also exemplified on three additional solid-state spectra of <sup>23</sup>Na and <sup>71</sup>Ga. The algorithm is made available to the community through a user-friendly standalone Matlab® application.</p></div>","PeriodicalId":21937,"journal":{"name":"Solid state nuclear magnetic resonance","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.ssnmr.2020.101699","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38601561","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
期刊
Solid state nuclear magnetic resonance
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1