首页 > 最新文献

Solid state nuclear magnetic resonance最新文献

英文 中文
Determination of the chemical shift tensor anisotropy and asymmetry of strongly dipolar coupled protons under fast MAS 快速MAS下强偶极耦合质子化学位移张量各向异性和不对称性的测定
IF 3.2 3区 化学 Q4 CHEMISTRY, PHYSICAL Pub Date : 2021-08-01 DOI: 10.1016/j.ssnmr.2021.101743
Takeshi Kobayashi , Frédéric A. Perras , Yusuke Nishiyama

Orientationally-dependent interactions such as dipolar coupling, quadrupolar coupling, and chemical shift anisotropy (CSA) contain a wealth of spatial information that can be used to elucidate molecular conformations and dynamics. To determine the sign of the chemical shift tensor anisotropy parameter (δaniso), both the |m| ​= ​1 and |m| ​= ​2 components of the CSA need to be symmetry allowed, while the recoupling of the |m| ​= ​1 term is accompanied with the reintroduction of homonuclear dipolar coupling components. Therefore, previously suggested sequences which solely recouple the |m| ​= ​2 term cannot determine the sign a 1H's δaniso in a densely-coupled network. In this study, we demonstrate the CSA recoupling of strongly dipolar coupled 1H spins using the Cnn1(9003601805400360180900) sequence. This pulse scheme recouples both the |m| ​= ​1 and |m| ​= ​2 CSA terms but the scaling factors for the homonuclear dipolar coupling terms are zeroed. Consequently, the sequence is sensitive to the sign of δaniso but is not influenced by homonuclear dipolar interactions.

取向依赖的相互作用,如偶极耦合、四极耦合和化学位移各向异性(CSA)包含丰富的空间信息,可用于阐明分子构象和动力学。为了确定化学位移张量各向异性参数(δaniso)的符号,CSA的|m| = 1和|m| = 2分量都需要是对称的,而|m| = 1项的重耦合伴随着同核偶极耦合分量的重新引入。因此,先前提出的仅重新耦合|m| = 2项的序列不能确定在密耦合网络中1H的δaniso的标志。在这项研究中,我们利用Cnn1(9003601805400360180900)序列证明了强偶极耦合1H自旋的CSA重耦合。该脉冲方案将|m| = 1和|m| = 2 CSA项重新耦合,但同核偶极耦合项的标度因子为零。因此,该序列对δaniso符号敏感,但不受同核偶极相互作用的影响。
{"title":"Determination of the chemical shift tensor anisotropy and asymmetry of strongly dipolar coupled protons under fast MAS","authors":"Takeshi Kobayashi ,&nbsp;Frédéric A. Perras ,&nbsp;Yusuke Nishiyama","doi":"10.1016/j.ssnmr.2021.101743","DOIUrl":"10.1016/j.ssnmr.2021.101743","url":null,"abstract":"<div><p><span><span><span>Orientationally-dependent interactions such as dipolar coupling, quadrupolar coupling, and </span>chemical shift anisotropy (CSA) contain a wealth of spatial information that can be used to elucidate </span>molecular conformations and dynamics. To determine the sign of the chemical shift tensor anisotropy parameter (</span><em>δ</em><sub>aniso</sub>), both the |<em>m</em>| ​= ​1 and |<em>m</em>| ​= ​2 components of the CSA need to be symmetry allowed, while the recoupling of the |<em>m</em>| ​= ​1 term is accompanied with the reintroduction of homonuclear dipolar coupling components. Therefore, previously suggested sequences which solely recouple the |<em>m</em>| ​= ​2 term cannot determine the sign a <sup>1</sup>H's <em>δ</em><sub>aniso</sub> in a densely-coupled network. In this study, we demonstrate the CSA recoupling of strongly dipolar coupled <sup>1</sup>H spins using the <span><math><mrow><mi>C</mi><msubsup><mi>n</mi><mi>n</mi><mn>1</mn></msubsup><mrow><mo>(</mo><mrow><msub><mn>90</mn><mn>0</mn></msub><msub><mn>360</mn><mn>180</mn></msub><msub><mn>540</mn><mn>0</mn></msub><msub><mn>360</mn><mn>180</mn></msub><msub><mn>90</mn><mn>0</mn></msub></mrow><mo>)</mo></mrow></mrow></math></span> sequence. This pulse scheme recouples both the |<em>m</em>| ​= ​1 and |<em>m</em>| ​= ​2 CSA terms but the scaling factors for the homonuclear dipolar coupling terms are zeroed. Consequently, the sequence is sensitive to the sign of <em>δ</em><sub>aniso</sub><span> but is not influenced by homonuclear dipolar interactions.</span></p></div>","PeriodicalId":21937,"journal":{"name":"Solid state nuclear magnetic resonance","volume":"114 ","pages":"Article 101743"},"PeriodicalIF":3.2,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.ssnmr.2021.101743","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39253050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
Efficient symmetry-based γ-encoded DQ recoupling sequences for suppression of t1-noise in solid-state NMR spectroscopy at fast MAS 基于对称性的γ编码DQ重组序列在快速MAS下抑制固态NMR光谱中的t1噪声
IF 3.2 3区 化学 Q4 CHEMISTRY, PHYSICAL Pub Date : 2021-08-01 DOI: 10.1016/j.ssnmr.2021.101734
Yusuke Nishiyama , Vipin Agarwal , Rongchun Zhang

Solid-state NMR spectroscopy has played a significant role in elucidating the structure and dynamics of materials and biological solids at a molecular level for decades. In particular, the 1H double-quantum/single-quantum (DQ/SQ) chemical shift correlation experiment is widely used for probing the proximity of protons, rendering it a powerful tool for elucidating the hydrogen-bonding interactions and molecular packing of various complex molecular systems. Two factors, namely, the DQ filtering efficiency and t1-noise, dictate the quality of the 2D 1H DQ/SQ spectra. Experimentally different recoupling sequences show varied DQ filtering efficiencies and t1-noise. Herein, after a systematic search of symmetry-based DQ recoupling sequences, we report that the symmetry-based γ-encoded RNnν sequences show superior performance to other DQ recoupling sequences, which not only have a higher DQ recoupling efficiency but can also significantly reduce t1-noise. The origin of t1-noise is further discussed in detail via extensive numerical simulations. We envisage that such γ-encoded RNnν sequences are superior candidates for DQ recoupling in proton-based solid-state NMR spectroscopy due to its capability of efficiently exciting DQ coherences and suppressing t1-noise.

几十年来,固态核磁共振波谱在分子水平上阐明材料和生物固体的结构和动力学方面发挥了重要作用。特别是,1H双量子/单量子(DQ/SQ)化学位移相关实验被广泛用于探测质子的接近度,使其成为阐明各种复杂分子系统的氢键相互作用和分子堆积的有力工具。两个因素,即DQ滤波效率和t1噪声,决定了2D 1H DQ/SQ光谱的质量。实验上不同的重新耦合序列显示出不同的DQ滤波效率和t1噪声。本文中,在对基于对称性的DQ重联序列进行系统搜索后,我们发现基于对称性γ编码的RNnΓ序列表现出优于其他DQ重接序列的性能,这些序列不仅具有更高的DQ重联效率,而且可以显著降低t1噪声。通过大量的数值模拟进一步详细讨论了t1噪声的起源。我们设想,由于其有效激发DQ相干和抑制t1噪声的能力,这种γ编码的RNnΓ序列是基于质子的固态NMR光谱中DQ重新结合的优越候选者。
{"title":"Efficient symmetry-based γ-encoded DQ recoupling sequences for suppression of t1-noise in solid-state NMR spectroscopy at fast MAS","authors":"Yusuke Nishiyama ,&nbsp;Vipin Agarwal ,&nbsp;Rongchun Zhang","doi":"10.1016/j.ssnmr.2021.101734","DOIUrl":"https://doi.org/10.1016/j.ssnmr.2021.101734","url":null,"abstract":"<div><p><span>Solid-state NMR spectroscopy has played a significant role in elucidating the structure and dynamics of materials and biological solids at a molecular level for decades. In particular, the </span><sup>1</sup>H double-quantum/single-quantum (DQ/SQ) chemical shift correlation experiment is widely used for probing the proximity of protons, rendering it a powerful tool for elucidating the hydrogen-bonding interactions and molecular packing of various complex molecular systems. Two factors, namely, the DQ filtering efficiency and <em>t</em><sub>1</sub>-noise, dictate the quality of the 2D <sup>1</sup>H DQ/SQ spectra. Experimentally different recoupling sequences show varied DQ filtering efficiencies and <em>t</em><sub>1</sub>-noise. Herein, after a systematic search of symmetry-based DQ recoupling sequences, we report that the symmetry-based γ-encoded <span><math><mrow><mi>R</mi><msubsup><mi>N</mi><mi>n</mi><mi>ν</mi></msubsup></mrow></math></span> sequences show superior performance to other DQ recoupling sequences, which not only have a higher DQ recoupling efficiency but can also significantly reduce <em>t</em><sub>1</sub>-noise. The origin of <em>t</em><sub>1</sub>-noise is further discussed in detail via extensive numerical simulations. We envisage that such γ-encoded <span><math><mrow><mi>R</mi><msubsup><mi>N</mi><mi>n</mi><mi>ν</mi></msubsup></mrow></math></span> sequences are superior candidates for DQ recoupling in proton-based solid-state NMR spectroscopy due to its capability of efficiently exciting DQ coherences and suppressing <em>t</em><sub>1</sub>-noise.</p></div>","PeriodicalId":21937,"journal":{"name":"Solid state nuclear magnetic resonance","volume":"114 ","pages":"Article 101734"},"PeriodicalIF":3.2,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.ssnmr.2021.101734","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72249281","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 13
Operando NMR characterization of a metal-air battery using a double-compartment cell design 采用双室电池设计的金属-空气电池的核磁共振特性
IF 3.2 3区 化学 Q4 CHEMISTRY, PHYSICAL Pub Date : 2021-06-01 DOI: 10.1016/j.ssnmr.2021.101731
Magali Gauthier, Minh Hoang Nguyen , Lucie Blondeau, Eddy Foy, Alan Wong

Applying operando investigations is becoming essential for acquiring fundamental insights into the reaction mechanisms and phenomena at stake in batteries currently under development. The capability of a real-time characterization of the charge/discharge electrochemical pathways and the reactivity of the electrolyte is critical to decipher the underlying chemistries and improve the battery performance. Yet, adapting operando techniques for new chemistries such as metal-oxygen (i.e. metal-air) batteries introduces challenges in the cell design due notably to the requirements of an oxygen gas supply at the cathode. Herein a simple operando cell is presented with a two-compartment cylindrical cell design for NMR spectroscopy. The design is discussed and evaluated. Operando 7Li static NMR characterization on a Li–O2 battery was performed as a proof-of-concept. The productions of Li2O2, mossy Li/Li dendrites and other irreversible parasitic lithium compounds were captured in the charge/discharge processes, demonstrating the capability of tracking the evolution of the anodic and cathodic chemistry in metal-oxygen batteries.

应用operando研究对于获得当前正在开发的电池的反应机制和危险现象的基本见解变得至关重要。实时表征充电/放电电化学途径和电解质反应性的能力对于破译潜在的化学成分和提高电池性能至关重要。然而,将operando技术应用于金属-氧气(即金属-空气)电池等新化学物质,会给电池设计带来挑战,主要是因为阴极需要氧气供应。本文提出了一种简单的双室圆柱形核磁共振波谱池设计。对设计进行了讨论和评价。在锂氧电池上进行了Operando 7Li静态核磁共振表征,作为概念验证。在充放电过程中捕获了Li2O2、苔藓状Li/Li枝晶和其他不可逆寄生锂化合物的生成,证明了跟踪金属氧电池阳极和阴极化学演变的能力。
{"title":"Operando NMR characterization of a metal-air battery using a double-compartment cell design","authors":"Magali Gauthier,&nbsp;Minh Hoang Nguyen ,&nbsp;Lucie Blondeau,&nbsp;Eddy Foy,&nbsp;Alan Wong","doi":"10.1016/j.ssnmr.2021.101731","DOIUrl":"10.1016/j.ssnmr.2021.101731","url":null,"abstract":"<div><p>Applying <em>operando</em><span><span> investigations is becoming essential for acquiring fundamental insights into the reaction mechanisms and phenomena at stake in batteries currently under development. The capability of a real-time characterization of the charge/discharge electrochemical pathways and the reactivity of the electrolyte is critical to decipher the underlying </span>chemistries and improve the battery performance. Yet, adapting </span><em>operando</em> techniques for new chemistries such as metal-oxygen (<em>i.e.</em> metal-air) batteries introduces challenges in the cell design due notably to the requirements of an oxygen gas supply at the cathode. Herein a simple <em>operando</em><span> cell is presented with a two-compartment cylindrical cell design for NMR spectroscopy. The design is discussed and evaluated. </span><em>Operando</em> <sup>7</sup>Li static NMR characterization on a Li–O<sub>2</sub> battery was performed as a proof-of-concept. The productions of Li<sub>2</sub>O<sub>2</sub><span>, mossy Li/Li dendrites and other irreversible parasitic lithium compounds were captured in the charge/discharge processes, demonstrating the capability of tracking the evolution of the anodic and cathodic chemistry in metal-oxygen batteries.</span></p></div>","PeriodicalId":21937,"journal":{"name":"Solid state nuclear magnetic resonance","volume":"113 ","pages":"Article 101731"},"PeriodicalIF":3.2,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.ssnmr.2021.101731","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25564712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
A new method to measure the temporal magnetic field instabilities in cryogen-free magnets for magnetic resonance 一种测量无低温磁共振磁体时间磁场不稳定性的新方法
IF 3.2 3区 化学 Q4 CHEMISTRY, PHYSICAL Pub Date : 2021-06-01 DOI: 10.1016/j.ssnmr.2021.101732
Eugeny Kryukov, Miroslaw Owczarkowski, David Phillipps, Angel Joaquin Perez Linde, Stephen Burgess, Jeremy Good

Despite the obvious advantages of cryogen-free magnets for NMR such as independence of liquid helium supply and the possibility to use the same magnet at different fields, the practical application of those magnets remains limited because of temporal magnetic field distortions associated with cryogen-free cold head operation. A new experimental method for the simple and reliable detection of the temporal field distortions is described in this paper. The accuracy of the magnetic field measurements by this method is two orders of magnitude higher than by conventional MetroLab Tesla meter. This has enabled us to make improvements in the design of cryogen-free magnets by reducing the amplitude of such field distortions down to sub ppb level. This then results in cryogen-free magnets that are suitable for MRI and MAS NMR applications.

尽管核磁共振无低温磁体具有明显的优势,如液氦供应的独立性和在不同磁场下使用同一磁体的可能性,但由于无低温冷头操作相关的时间磁场畸变,这些磁体的实际应用仍然受到限制。本文介绍了一种简单可靠的检测时间场畸变的实验方法。用这种方法测量磁场的精度比传统的MetroLab特斯拉计高两个数量级。这使我们能够通过将这种场扭曲的幅度降低到亚ppb水平来改进无低温磁体的设计。这就产生了适用于MRI和MAS NMR应用的无低温磁体。
{"title":"A new method to measure the temporal magnetic field instabilities in cryogen-free magnets for magnetic resonance","authors":"Eugeny Kryukov,&nbsp;Miroslaw Owczarkowski,&nbsp;David Phillipps,&nbsp;Angel Joaquin Perez Linde,&nbsp;Stephen Burgess,&nbsp;Jeremy Good","doi":"10.1016/j.ssnmr.2021.101732","DOIUrl":"10.1016/j.ssnmr.2021.101732","url":null,"abstract":"<div><p>Despite the obvious advantages of cryogen-free magnets for NMR such as independence of liquid helium supply and the possibility to use the same magnet at different fields, the practical application of those magnets remains limited because of temporal magnetic field distortions associated with cryogen-free cold head operation. A new experimental method for the simple and reliable detection of the temporal field distortions is described in this paper. The accuracy of the magnetic field measurements by this method is two orders of magnitude higher than by conventional MetroLab Tesla meter. This has enabled us to make improvements in the design of cryogen-free magnets by reducing the amplitude of such field distortions down to sub ppb level. This then results in cryogen-free magnets that are suitable for MRI and MAS NMR applications.</p></div>","PeriodicalId":21937,"journal":{"name":"Solid state nuclear magnetic resonance","volume":"113 ","pages":"Article 101732"},"PeriodicalIF":3.2,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.ssnmr.2021.101732","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38892003","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Dipolar dephasing for structure determination in a paramagnetic environment 在顺磁环境中用于结构测定的偶极脱相
IF 3.2 3区 化学 Q4 CHEMISTRY, PHYSICAL Pub Date : 2021-06-01 DOI: 10.1016/j.ssnmr.2021.101728
Rubin Dasgupta, Karthick B.S.S. Gupta, Derek Elam , Marcellus Ubbink, Huub J.M. de Groot

We demonstrate the efficacy of the REDOR-type sequences in determining dipolar coupling strength in a paramagnetic environment. Utilizing paramagnetic effects of enhanced relaxation rates and rapid electronic fluctuations in Cu(II)-(DL-Ala)2.H2O, the dipolar coupling for the methyl C–H that is 4.20 ​Å (methyl carbon) away from the Cu2+ ion, was estimated to be 8.8 ​± ​0.6 ​kHz. This coupling is scaled by a factor of ~0.3 in comparison to the rigid limit value of ~32 ​kHz, in line with partial averaging of the dipolar interaction by rotational motion of the methyl group. Limited variation in the scaling factor of the dipolar coupling strength at different temperatures is observed. The C–H internuclear distance derived from the size of the dipolar coupling is similar to that observed in the crystal structure. The errors in the dipolar coupling strength observed in the REDOR-type experiments are similar to those reported for diamagnetic systems. Increase in resolution due to the Fermi contact shifts, coupled with MAS frequencies of 30–35 ​kHz allowed to estimate the hyperfine coupling strengths for protons and carbons from the temperature dependence of the chemical shift and obtain a high resolution 1H–1H spin diffusion spectrum. This study shows the utility of REDOR-type sequences in obtaining reliable structural and dynamical information from a paramagnetic complex. We believe that this can help in studying the active site of paramagnetic metalloproteins at high resolution.

我们证明了redor型序列在确定顺磁环境中偶极耦合强度方面的有效性。利用Cu(II)-(DL-Ala)2中增强弛豫速率和快速电子波动的顺磁效应。甲基C-H与Cu2+离子的偶极偶联距离为4.20 Å(甲基碳),估计为8.8±0.6 kHz。与~32 kHz的刚性极限值相比,这种耦合按~0.3的系数进行缩放,符合甲基旋转运动对偶极相互作用的部分平均。在不同温度下,偶极耦合强度的比例因子变化有限。由偶极耦合的大小得到的C-H核间距离与在晶体结构中观察到的相似。在redor型实验中观察到的偶极耦合强度误差与报道的抗磁系统相似。由于费米接触位移增加了分辨率,再加上30-35 kHz的MAS频率,可以从化学位移的温度依赖性中估计质子和碳的超精细耦合强度,并获得高分辨率的1H-1H自旋扩散谱。本研究显示了redor型序列在顺磁络合物中获得可靠的结构和动力学信息的实用性。我们相信这有助于顺磁性金属蛋白活性位点的高分辨率研究。
{"title":"Dipolar dephasing for structure determination in a paramagnetic environment","authors":"Rubin Dasgupta,&nbsp;Karthick B.S.S. Gupta,&nbsp;Derek Elam ,&nbsp;Marcellus Ubbink,&nbsp;Huub J.M. de Groot","doi":"10.1016/j.ssnmr.2021.101728","DOIUrl":"10.1016/j.ssnmr.2021.101728","url":null,"abstract":"<div><p>We demonstrate the efficacy of the REDOR-type sequences in determining dipolar coupling strength in a paramagnetic environment. Utilizing paramagnetic effects of enhanced relaxation rates and rapid electronic fluctuations in Cu(II)-(DL-Ala)<sub>2</sub>.H<sub>2</sub>O, the dipolar coupling for the methyl C–H that is 4.20 ​Å (methyl carbon) away from the Cu<sup>2+</sup> ion, was estimated to be 8.8 ​± ​0.6 ​kHz. This coupling is scaled by a factor of ~0.3 in comparison to the rigid limit value of ~32 ​kHz, in line with partial averaging of the dipolar interaction by rotational motion of the methyl group. Limited variation in the scaling factor of the dipolar coupling strength at different temperatures is observed. The C–H internuclear distance derived from the size of the dipolar coupling is similar to that observed in the crystal structure. The errors in the dipolar coupling strength observed in the REDOR-type experiments are similar to those reported for diamagnetic systems. Increase in resolution due to the Fermi contact shifts, coupled with MAS frequencies of 30–35 ​kHz allowed to estimate the hyperfine coupling strengths for protons and carbons from the temperature dependence of the chemical shift and obtain a high resolution <sup>1</sup>H–<sup>1</sup>H spin diffusion spectrum. This study shows the utility of REDOR-type sequences in obtaining reliable structural and dynamical information from a paramagnetic complex. We believe that this can help in studying the active site of paramagnetic metalloproteins at high resolution.</p></div>","PeriodicalId":21937,"journal":{"name":"Solid state nuclear magnetic resonance","volume":"113 ","pages":"Article 101728"},"PeriodicalIF":3.2,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.ssnmr.2021.101728","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25498679","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Separated quadrupole and shift interactions of 2H NMR spectra in paramagnetic solids by asymmetric pulse sequences 非对称脉冲序列对顺磁固体中2H核磁共振谱分离四极和位移相互作用的研究
IF 3.2 3区 化学 Q4 CHEMISTRY, PHYSICAL Pub Date : 2021-04-01 DOI: 10.1016/j.ssnmr.2020.101709
Takahiro Iijima , Shinobu Ohki , Masataka Tansho

Separated pure-quadrupole (PQ) and -shift (PS) spectra of 2H nuclear magnetic resonance (NMR) of paramagnetic solids are obtained and correlated by simple pulse sequences that can acquire the full magnetization under ideal conditions. Two-dimensional NMR signals obtained using an asymmetric π-pulse-inserted quadrupole-echo (APIQE) sequence yielded separated spectra through the skew operation of an affine transform (AT) before a Fourier transform. Modified APIQE sequences that acquire whole echo signals were fabricated, and separated PQ and PS spectra were obtained by applying a combination of AT, such as rotation and skew operations, to the signal data. These methods were demonstrated for diamagnetic Zn(CD3CO2)2⋅2H2O and paramagnetic Nd(CD3CO2)3⋅1.5H2O. Further, the dynamics of the D2O molecule and [Co(D2O)6]2+ ion in paramagnetic CoSiF6⋅6D2O was analyzed based on the temperature dependence of the separated spectra.

分离pure-quadrupole (PQ)和转移(PS)的2 h核磁共振光谱(NMR)顺得到固体和关联的简单的脉冲序列,可以获得理想的条件下充分磁化。利用非对称π-脉冲插入四极回波(APIQE)序列得到的二维核磁共振信号,在进行傅里叶变换前先进行仿射变换(AT)的偏置运算,得到分离谱。制备了获取完整回波信号的改进APIQE序列,并对信号数据进行旋转和倾斜等AT组合处理,得到分离的PQ和PS谱。这些方法分别对抗磁性Zn(CD3CO2)2⋅2H2O和顺磁性Nd(CD3CO2)3⋅1.5H2O进行了验证。基于分离光谱的温度依赖性,分析了顺磁CoSiF6⋅6D2O中D2O分子和[Co(D2O)6]2+离子的动力学。
{"title":"Separated quadrupole and shift interactions of 2H NMR spectra in paramagnetic solids by asymmetric pulse sequences","authors":"Takahiro Iijima ,&nbsp;Shinobu Ohki ,&nbsp;Masataka Tansho","doi":"10.1016/j.ssnmr.2020.101709","DOIUrl":"10.1016/j.ssnmr.2020.101709","url":null,"abstract":"<div><p>Separated pure-quadrupole (PQ) and -shift (PS) spectra of <sup>2</sup><span>H nuclear magnetic resonance (NMR) of paramagnetic solids are obtained and correlated by simple pulse sequences that can acquire the full magnetization under ideal conditions. Two-dimensional NMR signals obtained using an asymmetric </span><em>π</em><span>-pulse-inserted quadrupole-echo (APIQE) sequence yielded separated spectra through the skew operation of an affine transform (AT) before a Fourier transform<span>. Modified APIQE sequences that acquire whole echo signals were fabricated, and separated PQ and PS spectra were obtained by applying a combination of AT, such as rotation and skew operations, to the signal data. These methods were demonstrated for diamagnetic Zn(CD</span></span><sub>3</sub>CO<sub>2</sub>)<sub>2</sub>⋅2H<sub>2</sub>O and paramagnetic Nd(CD<sub>3</sub>CO<sub>2</sub>)<sub>3</sub>⋅1.5H<sub>2</sub>O. Further, the dynamics of the D<sub>2</sub>O molecule and [Co(D<sub>2</sub>O)<sub>6</sub>]<sup>2+</sup><span> ion in paramagnetic CoSiF</span><sub>6</sub>⋅6D<sub>2</sub>O was analyzed based on the temperature dependence of the separated spectra.</p></div>","PeriodicalId":21937,"journal":{"name":"Solid state nuclear magnetic resonance","volume":"112 ","pages":"Article 101709"},"PeriodicalIF":3.2,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.ssnmr.2020.101709","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38864017","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Recent progress in dipolar recoupling techniques under fast MAS in solid-state NMR spectroscopy 固态核磁共振光谱快速MAS下偶极重偶联技术研究进展
IF 3.2 3区 化学 Q4 CHEMISTRY, PHYSICAL Pub Date : 2021-04-01 DOI: 10.1016/j.ssnmr.2020.101711
Yi Ji , Lixin Liang , Xinhe Bao , Guangjin Hou

With the recent advances in NMR hardware and probe design technology, magic-angle spinning (MAS) rates over 100 ​kHz are accessible now, even on commercial solid NMR probes. Under such fast MAS conditions, excellent spectral resolution has been achieved by efficient suppression of anisotropic interactions, which also opens an avenue to the proton-detected NMR experiments in solids. Numerous methods have been developed to take full advantage of fast MAS during the last decades. Among them, dipolar recoupling techniques under fast MAS play vital roles in the determination of the molecular structure and dynamics, and are also key elements in multi-dimensional correlation NMR experiments. Herein, we review the dipolar recoupling techniques, especially those developed in the past two decades for fast-to-ultrafast MAS conditions. A major focus for our discussion is the ratio of RF field strength (in frequency) to MAS frequency, ν1/νr, in different pulse sequences, which determines whether these dipolar recoupling techniques are suitable for NMR experiments under fast MAS conditions. Systematic comparisons are made among both heteronuclear and homonuclear dipolar recoupling schemes. In addition, the schemes developed specially for proton-detection NMR experiments under ultrafast MAS conditions are highlighted as well.

随着核磁共振硬件和探针设计技术的最新进展,现在甚至在商业固体核磁共振探针上也可以实现超过100 kHz的魔角旋转(MAS)速率。在这种快速的MAS条件下,通过有效地抑制各向异性相互作用,获得了优异的光谱分辨率,这也为固体中质子探测核磁共振实验开辟了一条途径。在过去的几十年里,已经开发了许多方法来充分利用快速MAS。其中,快速MAS下的偶极重耦合技术在分子结构和动力学的测定中起着至关重要的作用,也是多维相关核磁共振实验的关键要素。在此,我们回顾了偶极重耦合技术,特别是在过去二十年中开发的用于快速到超快MAS条件的技术。我们讨论的主要焦点是不同脉冲序列中射频场强(频率)与MAS频率的比值ν1/νr,这决定了这些偶极重耦合技术是否适用于快速MAS条件下的核磁共振实验。系统地比较了异核和同核偶极重耦合方案。此外,还重点介绍了超快MAS条件下质子探测核磁共振实验的方案。
{"title":"Recent progress in dipolar recoupling techniques under fast MAS in solid-state NMR spectroscopy","authors":"Yi Ji ,&nbsp;Lixin Liang ,&nbsp;Xinhe Bao ,&nbsp;Guangjin Hou","doi":"10.1016/j.ssnmr.2020.101711","DOIUrl":"10.1016/j.ssnmr.2020.101711","url":null,"abstract":"<div><p><span><span>With the recent advances in NMR hardware and probe design technology, magic-angle spinning (MAS) rates over 100 ​kHz are accessible now, even on commercial solid NMR probes. Under such fast MAS conditions, excellent spectral resolution has been achieved by efficient suppression of anisotropic interactions, which also opens an avenue to the proton-detected NMR experiments in solids. Numerous methods have been developed to take full advantage of fast MAS during the last decades. Among them, dipolar recoupling<span> techniques under fast MAS play vital roles in the determination of the molecular structure and dynamics, and are also key elements in multi-dimensional correlation NMR experiments. Herein, we review the dipolar recoupling techniques, especially those developed in the past two decades for fast-to-ultrafast MAS conditions. A major focus for our discussion is the ratio of RF field </span></span>strength (in frequency) to MAS frequency, </span><span><math><mrow><msub><mi>ν</mi><mn>1</mn></msub></mrow></math></span>/<span><math><mrow><msub><mi>ν</mi><mi>r</mi></msub></mrow></math></span>, in different pulse sequences, which determines whether these dipolar recoupling techniques are suitable for NMR experiments under fast MAS conditions. Systematic comparisons are made among both heteronuclear and homonuclear dipolar recoupling schemes. In addition, the schemes developed specially for proton-detection NMR experiments under ultrafast MAS conditions are highlighted as well.</p></div>","PeriodicalId":21937,"journal":{"name":"Solid state nuclear magnetic resonance","volume":"112 ","pages":"Article 101711"},"PeriodicalIF":3.2,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.ssnmr.2020.101711","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38872026","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 14
Recent developments in deuterium solid-state NMR for the detection of slow motions in proteins 用于检测蛋白质慢运动的氘固态核磁共振的最新进展
IF 3.2 3区 化学 Q4 CHEMISTRY, PHYSICAL Pub Date : 2021-02-01 DOI: 10.1016/j.ssnmr.2020.101710
Liliya Vugmeyster

Slow timescale dynamics in proteins are essential for a variety of biological functions spanning ligand binding, enzymatic catalysis, protein folding and misfolding regulations, as well as protein–protein and protein–nucleic acid interactions. In this review, we focus on the experimental and theoretical developments of 2H static NMR methods applicable for studies of microsecond to millisecond motional modes in proteins, particularly rotating frame relaxation dispersion (R), quadrupolar Carr–Purcell–Meiboom–Gill (QCPMG) relaxation dispersion, and quadrupolar chemical exchange saturation transfer NMR experiments (Q-CEST). With applications chosen from amyloid-β fibrils, we show the complementarity of these approaches for elucidating the complexities of conformational ensembles in disordered domains in the non-crystalline solid state, with the employment of selective deuterium labels. Combined with recent advances in relaxation dispersion backbone measurements for 15N/13C/1H nuclei, these techniques provide powerful tools for studies of biologically relevant timescale dynamics in disordered domains in the solid state.

蛋白质中的慢时间尺度动力学对于多种生物功能至关重要,包括配体结合、酶催化、蛋白质折叠和错误折叠调节,以及蛋白质-蛋白质和蛋白质-核酸相互作用。本文综述了适用于研究蛋白质微秒至毫秒运动模式的2H静态核磁共振方法的实验和理论进展,特别是旋转框架弛豫色散(R1ρ)、四极性carr - purcell - meiboomm - gill (QCPMG)弛豫色散和四极性化学交换饱和转移核磁共振实验(Q-CEST)。通过选择淀粉样蛋白-β原纤维的应用,我们展示了这些方法的互补性,以阐明非结晶固体中无序结构域的构象集成的复杂性,并使用选择性氘标记。结合15N/13C/1H核弛豫色散骨干测量的最新进展,这些技术为研究固体中无序结构域的生物学相关时间尺度动力学提供了有力的工具。
{"title":"Recent developments in deuterium solid-state NMR for the detection of slow motions in proteins","authors":"Liliya Vugmeyster","doi":"10.1016/j.ssnmr.2020.101710","DOIUrl":"10.1016/j.ssnmr.2020.101710","url":null,"abstract":"<div><p><span><span>Slow timescale dynamics in proteins are essential for a variety of biological functions spanning ligand binding, enzymatic catalysis, </span>protein folding and misfolding regulations, as well as protein–protein and protein–nucleic acid interactions. In this review, we focus on the experimental and theoretical developments of </span><sup>2</sup>H static NMR methods applicable for studies of microsecond to millisecond motional modes in proteins, particularly rotating frame relaxation dispersion (<em>R</em><sub>1ρ</sub><span>), quadrupolar Carr–Purcell–Meiboom–Gill (QCPMG) relaxation dispersion, and quadrupolar chemical exchange saturation transfer<span> NMR experiments (Q-CEST). With applications chosen from amyloid-β fibrils, we show the complementarity of these approaches for elucidating the complexities of conformational ensembles in disordered domains in the non-crystalline solid state, with the employment of selective deuterium labels. Combined with recent advances in relaxation dispersion backbone measurements for </span></span><sup>15</sup>N/<sup>13</sup>C/<sup>1</sup>H nuclei, these techniques provide powerful tools for studies of biologically relevant timescale dynamics in disordered domains in the solid state.</p></div>","PeriodicalId":21937,"journal":{"name":"Solid state nuclear magnetic resonance","volume":"111 ","pages":"Article 101710"},"PeriodicalIF":3.2,"publicationDate":"2021-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.ssnmr.2020.101710","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38826956","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
1H/13C/15N triple-resonance experiments for structure determinaton of membrane proteins by oriented-sample NMR 定向样品核磁共振测定膜蛋白结构的1H/13C/15N三重共振实验
IF 3.2 3区 化学 Q4 CHEMISTRY, PHYSICAL Pub Date : 2021-02-01 DOI: 10.1016/j.ssnmr.2020.101701
Joel Lapin, Emmanuel O. Awosanya, Richard J.A. Esteves, Alexander A. Nevzorov

The benefits of triple-resonance experiments for structure determination of macroscopically oriented membrane proteins by solid-state NMR are discussed. While double-resonance 1H/15N experiments are effective for structure elucidation of alpha-helical domains, extension of the method of oriented samples to more complex topologies and assessing side-chain conformations necessitates further development of triple-resonance (1H/13C/15N) NMR pulse sequences. Incorporating additional spectroscopic dimensions involving 13C spin-bearing nuclei, however, introduces essential complications arising from the wide frequency range of the 1H-13C dipolar couplings and 13C CSA (>20 ​kHz), and the presence of the 13C-13C homonuclear dipole-dipole interactions. The recently reported ROULETTE–CAHA pulse sequence, in combination with the selective z-filtering, can be used to evolve the structurally informative 1H-13C dipolar coupling arising from the aliphatic carbons while suppressing the signals from the carbonyl and methyl regions. Proton-mediated magnetization transfer under mismatched Hartman-Hahn conditions (MMHH) can be used to correlate 13C and 15N nuclei in such triple-resonance experiments for the subsequent 15N detection. The recently developed pulse sequences are illustrated for n-acetyl Leucine (NAL) single crystal and doubly labeled Pf1 coat protein reconstituted in magnetically aligned bicelles. An interesting observation is that in the case of 15N-labeled NAL measured at 13C natural abundance, the triple (1H/13C/15N) MMHH scheme predominantly gives rise to long-range intermolecular magnetization transfers from 13C to 15N spins; whereas direct Hartmann-Hahn 13C/15N transfer is entirely intramolecular. The presented developments advance NMR of oriented samples for structure determination of membrane proteins and liquid crystals.

讨论了三共振实验在固体核磁共振测定宏观定向膜蛋白结构中的优势。虽然双共振1H/15N实验对α -螺旋结构域的结构解析是有效的,但将定向样品的方法扩展到更复杂的拓扑结构和评估侧链构象需要进一步开发三共振(1H/13C/15N) NMR脉冲序列。然而,纳入涉及13C自旋核的额外光谱维度,由于1H-13C偶极耦合和13C CSA (> 20khz)的宽频率范围以及13C-13C同核偶极子-偶极子相互作用的存在,引入了基本的复杂性。最近报道的ROULETTE-CAHA脉冲序列,结合选择性z滤波,可以用来进化由脂肪碳产生的结构信息h - 13c偶极偶联,同时抑制羰基和甲基区的信号。在错配哈特曼-哈恩条件下,质子介导的磁化转移可以用来在这种三共振实验中关联13C和15N原子核,从而进行后续的15N探测。最近开发的脉冲序列显示了n-乙酰亮氨酸(NAL)单晶和双标记的Pf1外壳蛋白在磁排列的小束中重组。一个有趣的观察结果是,在以13C自然丰度测量的15N标记NAL的情况下,三重(1H/13C/15N) MMHH方案主要引起从13C到15N自旋的远程分子间磁化转移;而直接的Hartmann-Hahn 13C/15N转移完全是分子内的。本文的研究进展为定向样品的核磁共振技术用于膜蛋白和液晶的结构测定提供了新的思路。
{"title":"1H/13C/15N triple-resonance experiments for structure determinaton of membrane proteins by oriented-sample NMR","authors":"Joel Lapin,&nbsp;Emmanuel O. Awosanya,&nbsp;Richard J.A. Esteves,&nbsp;Alexander A. Nevzorov","doi":"10.1016/j.ssnmr.2020.101701","DOIUrl":"10.1016/j.ssnmr.2020.101701","url":null,"abstract":"<div><p>The benefits of triple-resonance experiments for structure determination of macroscopically oriented membrane proteins by solid-state NMR are discussed. While double-resonance <sup>1</sup>H/<sup>15</sup><span>N experiments are effective for structure elucidation of alpha-helical domains, extension of the method of oriented samples to more complex topologies and assessing side-chain conformations necessitates further development of triple-resonance (</span><sup>1</sup>H/<sup>13</sup>C/<sup>15</sup>N) NMR pulse sequences. Incorporating additional spectroscopic dimensions involving <sup>13</sup>C spin-bearing nuclei, however, introduces essential complications arising from the wide frequency range of the <sup>1</sup>H-<sup>13</sup><span>C dipolar couplings and </span><sup>13</sup><span>C CSA (&gt;20 ​kHz), and the presence of the </span><sup>13</sup>C-<sup>13</sup>C homonuclear dipole-dipole interactions. The recently reported ROULETTE–CAHA pulse sequence, in combination with the selective z-filtering, can be used to evolve the structurally informative <sup>1</sup>H-<sup>13</sup><span>C dipolar coupling arising from the aliphatic carbons while suppressing the signals from the carbonyl and methyl regions. Proton-mediated magnetization transfer under mismatched Hartman-Hahn conditions (MMHH) can be used to correlate </span><sup>13</sup>C and <sup>15</sup>N nuclei in such triple-resonance experiments for the subsequent <sup>15</sup><span>N detection. The recently developed pulse sequences are illustrated for n-acetyl Leucine<span> (NAL) single crystal and doubly labeled Pf1 coat protein reconstituted in magnetically aligned bicelles. An interesting observation is that in the case of </span></span><sup>15</sup>N-labeled NAL measured at <sup>13</sup>C natural abundance, the triple (<sup>1</sup>H/<sup>13</sup>C/<sup>15</sup>N) MMHH scheme predominantly gives rise to long-range intermolecular magnetization transfers from <sup>13</sup>C to <sup>15</sup>N spins; whereas direct Hartmann-Hahn <sup>13</sup>C/<sup>15</sup>N transfer is entirely intramolecular. The presented developments advance NMR of oriented samples for structure determination of membrane proteins and liquid crystals.</p></div>","PeriodicalId":21937,"journal":{"name":"Solid state nuclear magnetic resonance","volume":"111 ","pages":"Article 101701"},"PeriodicalIF":3.2,"publicationDate":"2021-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.ssnmr.2020.101701","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38661792","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Phase-sensitive γ-encoded recoupling of heteronuclear dipolar interactions and 1H chemical shift anisotropy 异核偶极相互作用的相敏γ编码重耦合和1H化学位移各向异性
IF 3.2 3区 化学 Q4 CHEMISTRY, PHYSICAL Pub Date : 2021-02-01 DOI: 10.1016/j.ssnmr.2020.101712
Frédéric A. Perras, Alexander L. Paterson, Takeshi Kobayashi

γ-encoded recoupling sequences are known to produce strong amplitude modulations that lead to sharp doublets when Fourier transformed. These doublets depend very little on the recoupled tensor asymmetry and thus enable for the straightforward determination of dynamic order parameters. It can, however, be difficult to measure small anisotropies, or small order parameters, using such sequences; the resonances from the doublet may overlap with each other, or with the zero-frequency glitch. This limitation has prevented the widespread use of 1H chemical shift anisotropy (CSA) for the measurement of dynamics, particularly for CH protons which typically have CSAs of only a few ppm when immobile. Here, we introduce a simple modification to the traditional 1H CSA and proton-detected local field pulse sequences that enables the acquisition of a hypercomplex dataset and the removal of the uncorrelated magnetization that results in the zero-frequency glitch. These new sequences then yield a frequency shift in the indirect dimension, rather than a splitting, which is easily identifiable even in cases of weak interactions.

已知γ编码的重耦序列在傅里叶变换时产生强烈的振幅调制,导致尖锐的重偶。这些重态几乎不依赖于重耦张量的不对称性,因此可以直接确定动态序参数。然而,使用这种序列很难测量小的各向异性或小的顺序参数;来自重偶态的共振可能彼此重叠,或者与零频率故障重叠。这一限制阻碍了1H化学位移各向异性(CSA)在动力学测量中的广泛使用,特别是对于固定时CSA通常只有几个ppm的CH质子。在这里,我们对传统的1H CSA和质子检测的局部场脉冲序列进行了简单的修改,从而能够获取超复杂的数据集,并去除导致零频率故障的不相关磁化。这些新的序列在间接维度上产生频移,而不是分裂,即使在弱相互作用的情况下也很容易识别。
{"title":"Phase-sensitive γ-encoded recoupling of heteronuclear dipolar interactions and 1H chemical shift anisotropy","authors":"Frédéric A. Perras,&nbsp;Alexander L. Paterson,&nbsp;Takeshi Kobayashi","doi":"10.1016/j.ssnmr.2020.101712","DOIUrl":"10.1016/j.ssnmr.2020.101712","url":null,"abstract":"<div><p>γ-encoded recoupling sequences are known to produce strong amplitude modulations that lead to sharp doublets when Fourier transformed. These doublets depend very little on the recoupled tensor asymmetry and thus enable for the straightforward determination of dynamic order parameters. It can, however, be difficult to measure small anisotropies, or small order parameters, using such sequences; the resonances from the doublet may overlap with each other, or with the zero-frequency glitch. This limitation has prevented the widespread use of <sup>1</sup><span>H chemical shift anisotropy (CSA) for the measurement of dynamics, particularly for CH protons which typically have CSAs of only a few ppm when immobile. Here, we introduce a simple modification to the traditional </span><sup>1</sup>H CSA and proton-detected local field pulse sequences that enables the acquisition of a hypercomplex dataset and the removal of the uncorrelated magnetization that results in the zero-frequency glitch. These new sequences then yield a frequency shift in the indirect dimension, rather than a splitting, which is easily identifiable even in cases of weak interactions.</p></div>","PeriodicalId":21937,"journal":{"name":"Solid state nuclear magnetic resonance","volume":"111 ","pages":"Article 101712"},"PeriodicalIF":3.2,"publicationDate":"2021-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.ssnmr.2020.101712","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38826957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
Solid state nuclear magnetic resonance
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1