Pub Date : 2024-11-08DOI: 10.1016/j.surfin.2024.105413
Gang Guo , Yongcheng Chen , Lingyun Mao , Ping Li
In this study, we use first-principles calculations to investigate the structural and optoelectronic properties of DLHS-AlAs/germanene van der Waals heterostructures (vdWHs) with different stacking orders and vertical strain. The AIMD calculations and binding energies demonstrate that all three DLHS-AlAs/germanene vdWHs are thermally and energetically stable. The interesting transitions from semiconductor to metal and type-I to type-II band alignment can be observed in AB stacking vdWH under vertical strain regulation. Meanwhile, the Dirac cone is always well preserved in all vdWHs. The calculated optical absorption spectra indicate that all vdWHs show enhanced light absorption across the ultraviolet to visible light range, compared to their individual components. Besides, the application of vertical strain can result in the weakening or enhancement of ultraviolet light absorption coefficients in different regions of all vdWHs. Of particular interest is the observation that optical adsorption in the visible light region for all vdWHs is almost always enhanced and broadened with increasing vertical compression strain. These excellent and tunable optoelectronic properties suggest that DLHS-AlAs/germanene vdWHs may have favourable potential for use in optoelectronic devices.
{"title":"Stacking order and vertical strain controllable optoelectronic properties of van der Waals heterostructures constructed with germanene and double layer hexagonal structure AlAs","authors":"Gang Guo , Yongcheng Chen , Lingyun Mao , Ping Li","doi":"10.1016/j.surfin.2024.105413","DOIUrl":"10.1016/j.surfin.2024.105413","url":null,"abstract":"<div><div>In this study, we use first-principles calculations to investigate the structural and optoelectronic properties of DLHS-AlAs/germanene van der Waals heterostructures (vdWHs) with different stacking orders and vertical strain. The AIMD calculations and binding energies demonstrate that all three DLHS-AlAs/germanene vdWHs are thermally and energetically stable. The interesting transitions from semiconductor to metal and type-I to type-II band alignment can be observed in AB stacking vdWH under vertical strain regulation. Meanwhile, the Dirac cone is always well preserved in all vdWHs. The calculated optical absorption spectra indicate that all vdWHs show enhanced light absorption across the ultraviolet to visible light range, compared to their individual components. Besides, the application of vertical strain can result in the weakening or enhancement of ultraviolet light absorption coefficients in different regions of all vdWHs. Of particular interest is the observation that optical adsorption in the visible light region for all vdWHs is almost always enhanced and broadened with increasing vertical compression strain. These excellent and tunable optoelectronic properties suggest that DLHS-AlAs/germanene vdWHs may have favourable potential for use in optoelectronic devices.</div></div>","PeriodicalId":22081,"journal":{"name":"Surfaces and Interfaces","volume":"55 ","pages":"Article 105413"},"PeriodicalIF":5.7,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142661078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-08DOI: 10.1016/j.surfin.2024.105380
Bahar Heidari Beni, Abbas Bahrami, Mojtaba Rajabinezhad, Mohammad Saeid Abbasi, Farnaz Heidari Laybidi
This paper aims to investigate the biocompatibility, bioactivity and properties of bioactive glass 58S-xSi3N4 (0 < x < 20 wt.%) nanocomposite coating on AISI 316 L stainless steel substrate, applied by electrophoretic deposition method. The implications of adding Si3N4 nanoparticles up to 20 wt.% to the bioactive glass coating for the structural and biomedical properties of deposited coatings were investigated. The deposited coating samples were characterized by X-ray diffraction (XRD) analysis, field emission scanning electron microscope (FE-SEM), Fourier-transform infrared spectroscopy (FTIR), and energy dispersive X-ray spectroscopy (EDS). For the evaluation of cellular toxicity, the MTT cytotoxicity test with MG63 bone cell was performed. Bioactivity test was also conducted in simulated body fluid (SBF) up to 28 days. Results showed that increase in the Si3N4 content of composite samples is associated with a significant decrease in the average size of composite powder, inferring that Si3N4 additive has become nucleation sites during synthesis. Stereomicroscope images showed that with an increase in deposition time up to 70 min, a uniform coating can be attained. An increase in the Si3N4 content is associated with a significant reduction in surface roughness and non-uniformities of the deposited layer. The addition of Si3N4 in the composite layer slightly increases the wetting angle. The highest cellular toxicity was observed for the AISI 316 L sample at the concentration of 10 micromolar, while the lowest cellular toxicity is attributed to the BG-20 %Si3N4 sample at the concentration of 75 micromolar, exhibiting viability values similar to the control sample. Bioactivity assessment of deposited coatings indicated a remarkable improvement in the bone-forming ability of Si3N4-containing bioactive glass composite.
本文旨在研究采用电泳沉积法在 AISI 316 L 不锈钢基底上涂覆生物活性玻璃 58S-xSi3N4(0 < x < 20 wt.%)纳米复合涂层的生物相容性、生物活性和性能。研究了在生物活性玻璃涂层中添加 20 wt.% 的 Si3N4 纳米粒子对沉积涂层的结构和生物医学性能的影响。通过 X 射线衍射(XRD)分析、场发射扫描电子显微镜(FE-SEM)、傅立叶变换红外光谱(FTIR)和能量色散 X 射线光谱(EDS)对沉积涂层样品进行了表征。为了评估细胞毒性,对 MG63 骨细胞进行了 MTT 细胞毒性测试。此外,还在模拟体液(SBF)中进行了长达 28 天的生物活性测试。结果表明,复合材料样品中 Si3N4 含量的增加与复合材料粉末平均粒径的显著减小有关,推断 Si3N4 添加剂在合成过程中成为成核点。立体显微镜图像显示,随着沉积时间延长至 70 分钟,可获得均匀的涂层。随着 Si3N4 含量的增加,沉积层的表面粗糙度和不均匀性显著降低。在复合层中添加 Si3N4 会略微增加润湿角。浓度为 10 微摩尔的 AISI 316 L 样品的细胞毒性最高,而浓度为 75 微摩尔的 BG-20 %Si3N4 样品的细胞毒性最低,其活力值与对照样品相似。沉积涂层的生物活性评估表明,含 Si3N4 的生物活性玻璃复合材料的成骨能力显著提高。
{"title":"Electrophoretic deposition of bioactive glass 58S- xSi3N4 (0 < x < 20 wt.%) nanocomposite coating on AISI 316L stainless steel substrate for biomedical applications","authors":"Bahar Heidari Beni, Abbas Bahrami, Mojtaba Rajabinezhad, Mohammad Saeid Abbasi, Farnaz Heidari Laybidi","doi":"10.1016/j.surfin.2024.105380","DOIUrl":"10.1016/j.surfin.2024.105380","url":null,"abstract":"<div><div>This paper aims to investigate the biocompatibility, bioactivity and properties of bioactive glass 58S-<em>x</em>Si<sub>3</sub>N<sub>4</sub> (0 < <em>x</em> < 20 wt.%) nanocomposite coating on AISI 316 L stainless steel substrate, applied by electrophoretic deposition method. The implications of adding Si<sub>3</sub>N<sub>4</sub> nanoparticles up to 20 wt.% to the bioactive glass coating for the structural and biomedical properties of deposited coatings were investigated. The deposited coating samples were characterized by X-ray diffraction (XRD) analysis, field emission scanning electron microscope (FE-SEM), Fourier-transform infrared spectroscopy (FTIR), and energy dispersive X-ray spectroscopy (EDS). For the evaluation of cellular toxicity, the MTT cytotoxicity test with MG63 bone cell was performed. Bioactivity test was also conducted in simulated body fluid (SBF) up to 28 days. Results showed that increase in the Si<sub>3</sub>N<sub>4</sub> content of composite samples is associated with a significant decrease in the average size of composite powder, inferring that Si<sub>3</sub>N<sub>4</sub> additive has become nucleation sites during synthesis. Stereomicroscope images showed that with an increase in deposition time up to 70 min, a uniform coating can be attained. An increase in the Si<sub>3</sub>N<sub>4</sub> content is associated with a significant reduction in surface roughness and non-uniformities of the deposited layer. The addition of Si<sub>3</sub>N<sub>4</sub> in the composite layer slightly increases the wetting angle. The highest cellular toxicity was observed for the AISI 316 L sample at the concentration of 10 micromolar, while the lowest cellular toxicity is attributed to the BG-20 %Si<sub>3</sub>N<sub>4</sub> sample at the concentration of 75 micromolar, exhibiting viability values similar to the control sample. Bioactivity assessment of deposited coatings indicated a remarkable improvement in the bone-forming ability of Si<sub>3</sub>N<sub>4</sub>-containing bioactive glass composite.</div></div>","PeriodicalId":22081,"journal":{"name":"Surfaces and Interfaces","volume":"55 ","pages":"Article 105380"},"PeriodicalIF":5.7,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142661076","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-08DOI: 10.1016/j.surfin.2024.105414
Qi Wang , Bingwei Zhong , Kang Hou , Jianmin Liang , Xiaoqian Zhao , Lu Wang , Hanxi Chen , Qiyu He , Yan Qu , Yaxuan Zheng , Huabing Tan , Yaqing Liu , You Zeng
The interaction with the matrix and the dispersion within the matrix hinder the realization of graphene's potential as an anti-corrosive filler. Herein, a -NH2 modified graphene-based filler (PS-PVP@NH2-rGO) was designed to simultaneously address these issues in the fluorocarbon resin (FEVE) coating. Reinforing FEVE coating with PS-PVP@NH2-rGO, the wear rate and the lowest-frequency impedance modulus after a 7-day immersion were found to be 0.35 times and 177.3 times those of FEVE coating respectively. Ultraviolet-Visible spectra confirmed the excellent dispersibility of PS-PVP@NH2-rGO. The designed differential scanning calorimeter experiment demonstrated the close interaction between PS-PVP@NH2-rGO and the FEVE matrix. Due to this close interaction, PS-PVP@NH2-rGO exhibited a high degree of dispersion within the FEVE matrix rather than self-aggregation, then concentrated the stress outside, absorbed energy produced during the friction process, and enhanced the coating's wear resistance. A complicated “labyrinth” was also created by the fillers. With chemical interactions, the fillers and the surrounding FEVE matrix formed an integrated whole, making the “obstacles” created by the fillers more significant. Consequently, the strong barrier effect resulted in superior anti-corrosion performances of PS-PVP@NH2-rGO/FEVE coating. Introducing -NH2 groups in was proven to effectively complete the coating, improve coating's quality and barrier effect, and finally prevent corrosive media. This study aims to provide design ideas and theoretical supports for high-performance heavy-duty anti-corrosive coatings.
{"title":"Impressive reinforcement on the anti-corrosion ability of the commercial fluorocarbon paint via an amino groups modified graphene","authors":"Qi Wang , Bingwei Zhong , Kang Hou , Jianmin Liang , Xiaoqian Zhao , Lu Wang , Hanxi Chen , Qiyu He , Yan Qu , Yaxuan Zheng , Huabing Tan , Yaqing Liu , You Zeng","doi":"10.1016/j.surfin.2024.105414","DOIUrl":"10.1016/j.surfin.2024.105414","url":null,"abstract":"<div><div>The interaction with the matrix and the dispersion within the matrix hinder the realization of graphene's potential as an anti-corrosive filler. Herein, a -NH<sub>2</sub> modified graphene-based filler (PS-PVP@NH<sub>2</sub>-rGO) was designed to simultaneously address these issues in the fluorocarbon resin (FEVE) coating. Reinforing FEVE coating with PS-PVP@NH<sub>2</sub>-rGO, the wear rate and the lowest-frequency impedance modulus after a 7-day immersion were found to be 0.35 times and 177.3 times those of FEVE coating respectively. Ultraviolet-Visible spectra confirmed the excellent dispersibility of PS-PVP@NH<sub>2</sub>-rGO. The designed differential scanning calorimeter experiment demonstrated the close interaction between PS-PVP@NH<sub>2</sub>-rGO and the FEVE matrix. Due to this close interaction, PS-PVP@NH<sub>2</sub>-rGO exhibited a high degree of dispersion within the FEVE matrix rather than self-aggregation, then concentrated the stress outside, absorbed energy produced during the friction process, and enhanced the coating's wear resistance. A complicated “labyrinth” was also created by the fillers. With chemical interactions, the fillers and the surrounding FEVE matrix formed an integrated whole, making the “obstacles” created by the fillers more significant. Consequently, the strong barrier effect resulted in superior anti-corrosion performances of PS-PVP@NH<sub>2</sub>-rGO/FEVE coating. Introducing -NH<sub>2</sub> groups in was proven to effectively complete the coating, improve coating's quality and barrier effect, and finally prevent corrosive media. This study aims to provide design ideas and theoretical supports for high-performance heavy-duty anti-corrosive coatings.</div></div>","PeriodicalId":22081,"journal":{"name":"Surfaces and Interfaces","volume":"55 ","pages":"Article 105414"},"PeriodicalIF":5.7,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142660618","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-07DOI: 10.1016/j.surfin.2024.105407
Zhifei Jian , Wenhua Li , Xingui Tang , Yongxi Liang , Renkai Zhao , Jiayu Tang , Yanping Jiang , Xiaobin Guo , Guowu Tang , Kai Yan
With the rapid advancement of artificial intelligence and machine learning, the demand for neuromorphic computing systems has intensified. High-performance artificial synaptic devices are crucial to achieving this objective. Ferroelectric diode artificial synaptic devices were prepared using aluminum-doped BaTiO3 (BTAO) thin films by a low-cost sol-gel method. These devices mimic the basic properties of biological synapses, such as long-term plasticity (LTP) and short-term plasticity (STP), under electrical stimulation. Additionally, the devices exhibit an excellent UV light response, enabling the transition from STP to LTP by adjusting the light pulse intensity, width, and number of pulses. Aluminum doping significantly enhances the ferroelectricity of BaTiO3 films, increasing the Pr from 2.31 µC/cm² to 9.08 µC/cm². By modulating the Schottky barrier through polarization, the BTAO films exhibit a switchable diode effect, which facilitates fine-tuning of the synaptic connection strength while maintaining synaptic stability. Recognition accuracies of 97.32 % for the MNIST dataset and 87.48 % for the Fashion-MNIST dataset were achieved by convolutional neural network simulations. These results suggest new possibilities for brain-like processing with ferroelectric diodes.
{"title":"Artificial photoelectric synaptic devices with ferroelectric diode effect for high-performance neuromorphic computing","authors":"Zhifei Jian , Wenhua Li , Xingui Tang , Yongxi Liang , Renkai Zhao , Jiayu Tang , Yanping Jiang , Xiaobin Guo , Guowu Tang , Kai Yan","doi":"10.1016/j.surfin.2024.105407","DOIUrl":"10.1016/j.surfin.2024.105407","url":null,"abstract":"<div><div>With the rapid advancement of artificial intelligence and machine learning, the demand for neuromorphic computing systems has intensified. High-performance artificial synaptic devices are crucial to achieving this objective. Ferroelectric diode artificial synaptic devices were prepared using aluminum-doped BaTiO<sub>3</sub> (BTAO) thin films by a low-cost sol-gel method. These devices mimic the basic properties of biological synapses, such as long-term plasticity (LTP) and short-term plasticity (STP), under electrical stimulation. Additionally, the devices exhibit an excellent UV light response, enabling the transition from STP to LTP by adjusting the light pulse intensity, width, and number of pulses. Aluminum doping significantly enhances the ferroelectricity of BaTiO<sub>3</sub> films, increasing the <em>P<sub>r</sub></em> from 2.31 µC/cm² to 9.08 µC/cm². By modulating the Schottky barrier through polarization, the BTAO films exhibit a switchable diode effect, which facilitates fine-tuning of the synaptic connection strength while maintaining synaptic stability. Recognition accuracies of 97.32 % for the MNIST dataset and 87.48 % for the Fashion-MNIST dataset were achieved by convolutional neural network simulations. These results suggest new possibilities for brain-like processing with ferroelectric diodes.</div></div>","PeriodicalId":22081,"journal":{"name":"Surfaces and Interfaces","volume":"55 ","pages":"Article 105407"},"PeriodicalIF":5.7,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142660617","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-07DOI: 10.1016/j.surfin.2024.105411
Ali Koçhan , Mehmet Şakir Ece , Sabit Horoz , Sinan Kutluay , Ömer Şahin
This research focuses on the synthesis, characterization, and evaluation of Fe3O4, Fe3O4@SiO2, and Fe3O4@SiO2@3,4-DABP magnetic nanocatalysts (MNCs) for their potential use as sensors within the intricate architectures of solar cell devices. Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDS), transmission electron microscopy (TEM), vibrating sample magnetometry (VSM), X-ray diffraction (XRD), thermogravimetric analysis (TGA) and Brunauer-Emmett-Teller (BET) surface area measurements were carried out to characterize the structural, morphological and magnetic properties of the MNCs. The MNCs exhibit an average particle size of approximately 10 nm. Fe3O4, Fe3O4@SiO2, and Fe3O4@SiO2@3,4-DABP MNCs have saturation magnetization values of 61.64 emu/g, 37.31 emu/g, and 20.13 emu/g, respectively. Thermal analysis reveals mass change losses of 6.5%, 12% and 28.1%, respectively, indicating different thermal stability profiles. It confirms that their crystal structure is face-centered cubic spinel, with type IV hysteresis loops and H3 loops indicating a mesoporous structure according to the IUPAC classification. Efficiency tests of Fe3O4, Fe3O4@SiO2 and Fe3O4@SiO2@3,4-DABP MNCs in solar cell devices show efficiencies of 1.49%, 1.77% and 2.15%, respectively. As the hierarchical modification of the MNCs increases, the efficiency of the solar cell devices increases. These results highlight the potential of Fe3O4, Fe3O4@SiO2 and Fe3O4@SiO2@3,4-DABP as promising sensitizers in solar cell technology. Fe3O4@SiO2@3,4-DABP MNCs have high catalytic activity, chemical stability, electronic conductivity and low cost. This study also marks the first demonstration of the effectiveness of environmentally friendly Fe3O4@SiO2@3,4-DABP MNCs in enhancing solar cell performance, prepared via a cost-effective, simple and eco-friendly approach.
{"title":"Design of superparamagnetic Fe3O4@SiO2@3,4-DABP nanocatalysts, fabrication by co-precipitation and sol-gel methods, characterization of detailed surface texture properties and investigation of solar cell performance","authors":"Ali Koçhan , Mehmet Şakir Ece , Sabit Horoz , Sinan Kutluay , Ömer Şahin","doi":"10.1016/j.surfin.2024.105411","DOIUrl":"10.1016/j.surfin.2024.105411","url":null,"abstract":"<div><div>This research focuses on the synthesis, characterization, and evaluation of Fe<sub>3</sub>O<sub>4</sub>, Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>, and Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>@3,4-DABP magnetic nanocatalysts (MNCs) for their potential use as sensors within the intricate architectures of solar cell devices. Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDS), transmission electron microscopy (TEM), vibrating sample magnetometry (VSM), X-ray diffraction (XRD), thermogravimetric analysis (TGA) and Brunauer-Emmett-Teller (BET) surface area measurements were carried out to characterize the structural, morphological and magnetic properties of the MNCs. The MNCs exhibit an average particle size of approximately 10 nm. Fe<sub>3</sub>O<sub>4</sub>, Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>, and Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>@3,4-DABP MNCs have saturation magnetization values of 61.64 emu/g, 37.31 emu/g, and 20.13 emu/g, respectively. Thermal analysis reveals mass change losses of 6.5%, 12% and 28.1%, respectively, indicating different thermal stability profiles. It confirms that their crystal structure is face-centered cubic spinel, with type IV hysteresis loops and H3 loops indicating a mesoporous structure according to the IUPAC classification. Efficiency tests of Fe<sub>3</sub>O<sub>4</sub>, Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub> and Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>@3,4-DABP MNCs in solar cell devices show efficiencies of 1.49%, 1.77% and 2.15%, respectively. As the hierarchical modification of the MNCs increases, the efficiency of the solar cell devices increases. These results highlight the potential of Fe<sub>3</sub>O<sub>4</sub>, Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub> and Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>@3,4-DABP as promising sensitizers in solar cell technology. Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>@3,4-DABP MNCs have high catalytic activity, chemical stability, electronic conductivity and low cost. This study also marks the first demonstration of the effectiveness of environmentally friendly Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>@3,4-DABP MNCs in enhancing solar cell performance, prepared via a cost-effective, simple and eco-friendly approach.</div></div>","PeriodicalId":22081,"journal":{"name":"Surfaces and Interfaces","volume":"55 ","pages":"Article 105411"},"PeriodicalIF":5.7,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142660722","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-07DOI: 10.1016/j.surfin.2024.105311
Aleksandra Seweryn , Bartlomiej S. Witkowski , Wojciech Wozniak , Krystyna Lawniczak-Jablonska , Anna Wolska , Marcin T. Klepka , Krzysztof Marycz , Marek Godlewski
The research explored the spontaneous formation of the BAp precursor on surfaces of HfO2 films obtained by Atomic Layer Deposition (ALD). It has been found that a careful selection of ALD growth conditions, followed by rapid thermal annealing (RTP) is crucial to achieve bioactivity of the films. Simulated Body Fluid experiment was used as a reliable test of the film's functionality as bone implant coating. SEM, XRD and XPS investigations proved that amorphous calcium orthophosphate structures were formed on the HfO2 films. These structures are of importance for biomineralization of bones. Physical and chemical characterization of the films was an integral part of the research. Such approach allowed us to achieve biomaterial functionality while maintaining the films’ quality. The finding has significance for future progress in personalized traumatological medicine.
{"title":"Hafnium dioxide obtained by atomic layer deposition possesses the ability to induce the formation of biological apatite","authors":"Aleksandra Seweryn , Bartlomiej S. Witkowski , Wojciech Wozniak , Krystyna Lawniczak-Jablonska , Anna Wolska , Marcin T. Klepka , Krzysztof Marycz , Marek Godlewski","doi":"10.1016/j.surfin.2024.105311","DOIUrl":"10.1016/j.surfin.2024.105311","url":null,"abstract":"<div><div>The research explored the spontaneous formation of the BAp precursor on surfaces of HfO<sub>2</sub> films obtained by Atomic Layer Deposition (ALD). It has been found that a careful selection of ALD growth conditions, followed by rapid thermal annealing (RTP) is crucial to achieve bioactivity of the films. Simulated Body Fluid experiment was used as a reliable test of the film's functionality as bone implant coating. SEM, XRD and XPS investigations proved that amorphous calcium orthophosphate structures were formed on the HfO<sub>2</sub> films. These structures are of importance for biomineralization of bones. Physical and chemical characterization of the films was an integral part of the research. Such approach allowed us to achieve biomaterial functionality while maintaining the films’ quality. The finding has significance for future progress in personalized traumatological medicine.</div></div>","PeriodicalId":22081,"journal":{"name":"Surfaces and Interfaces","volume":"55 ","pages":"Article 105311"},"PeriodicalIF":5.7,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142661083","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-07DOI: 10.1016/j.surfin.2024.105404
Tinglu Song , Huaqiang Zhu , Chunlin Zhang , Yan Chen , Fan Xu , Mengzhan Ge , Zhaoyu Xue , Xiaodong Li , Meishuai Zou
The urgent demand for electricity requires more safe energy transportation. AgI-based weather modification agents are commonly employed to facilitate ice nucleation and remove the undesirable glaze icing to suppress the negative effects of natural disasters. However, the intrinsic nucleation potency of AgI strictly limits its further improvement. Here, a hexagonal BiI3 was added in AgI-based agents. The chemical interactions of BiI3 and precursors optimize the crystallization of the polymer composite, leading to an oriented composite network. In addition, BiI3 could alter the structure and morphology of the combustion products, therefore creating more possible heterogeneous nuclei sites. The resultant BiI3-modified AgI-based weather modification agent exhibits an ice nucleation ∼ 1014, which is nearly ten times higher than the sample without AgI-BiI3, leading to a 71.21 % enhancement of deicing efficiency compared to AgI sample. Our results indicate the effectiveness of BiI3 dopant to improve both nucleation and deicing performance for weather modification applications.
{"title":"Improved composite network via bismuth iodide for efficient ice-nucleating application","authors":"Tinglu Song , Huaqiang Zhu , Chunlin Zhang , Yan Chen , Fan Xu , Mengzhan Ge , Zhaoyu Xue , Xiaodong Li , Meishuai Zou","doi":"10.1016/j.surfin.2024.105404","DOIUrl":"10.1016/j.surfin.2024.105404","url":null,"abstract":"<div><div>The urgent demand for electricity requires more safe energy transportation. AgI-based weather modification agents are commonly employed to facilitate ice nucleation and remove the undesirable glaze icing to suppress the negative effects of natural disasters. However, the intrinsic nucleation potency of AgI strictly limits its further improvement. Here, a hexagonal BiI<sub>3</sub> was added in AgI-based agents. The chemical interactions of BiI<sub>3</sub> and precursors optimize the crystallization of the polymer composite, leading to an oriented composite network. In addition, BiI<sub>3</sub> could alter the structure and morphology of the combustion products, therefore creating more possible heterogeneous nuclei sites. The resultant BiI<sub>3</sub>-modified AgI-based weather modification agent exhibits an ice nucleation ∼ 10<sup>14</sup>, which is nearly ten times higher than the sample without AgI-BiI<sub>3</sub>, leading to a 71.21 % enhancement of deicing efficiency compared to AgI sample. Our results indicate the effectiveness of BiI<sub>3</sub> dopant to improve both nucleation and deicing performance for weather modification applications.</div></div>","PeriodicalId":22081,"journal":{"name":"Surfaces and Interfaces","volume":"55 ","pages":"Article 105404"},"PeriodicalIF":5.7,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142660721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-07DOI: 10.1016/j.surfin.2024.105408
Cong Wang , Jingwei Li , Qingqing Wang , Jinze Cao , Jianjun Li , Liuyang Chen , Haibao Lu , Xiaodong He
The microscopic characteristics of carbon nanotube play a fundamental role in determining the macroscopic features. This research focuses on synthetic studies toward the structural evolution and microwave absorption enhancement of carbon nanotubes from biomass-based citric acid small organic molecules reaction system. When Co/Fe dual metal catalysts are used, self-entangled carbon nanotube networks in all three dimensions like instant noodles form. Polydimethylsiloxane (PDMS) is introduced inspired by “growth-from-template” strategy, the green hair algae-like morphology with bamboo-like structure is revealed in the carbon nanotubes. Twisted carbon nanotube yarn structure together with quaternary structure of protein-like carbon nanotube are both observed. Carbon microstructural evolution is investigated in bagasse-based ultralight composite. Toward the incident microwaves, in-situ synthesized CNTs-rGO composite has substantially enhanced reflection loss performance. The strongest reflection loss is -44.9 dB at 12.6 GHz with the absorber thickness of only 2 mm. And the effective microwave absorption bandwidth can reach 6.1 GHz covering a frequency range of 11.5–17.6 with the absorber thickness of only 1.6 mm.
{"title":"Structural evolution, microwave absorption performance and in-situ compositing of carbon nanotube prepared from biomass-based citric acid and urea","authors":"Cong Wang , Jingwei Li , Qingqing Wang , Jinze Cao , Jianjun Li , Liuyang Chen , Haibao Lu , Xiaodong He","doi":"10.1016/j.surfin.2024.105408","DOIUrl":"10.1016/j.surfin.2024.105408","url":null,"abstract":"<div><div>The microscopic characteristics of carbon nanotube play a fundamental role in determining the macroscopic features. This research focuses on synthetic studies toward the structural evolution and microwave absorption enhancement of carbon nanotubes from biomass-based citric acid small organic molecules reaction system. When Co/Fe dual metal catalysts are used, self-entangled carbon nanotube networks in all three dimensions like instant noodles form. Polydimethylsiloxane (PDMS) is introduced inspired by “growth-from-template” strategy, the green hair algae-like morphology with bamboo-like structure is revealed in the carbon nanotubes. Twisted carbon nanotube yarn structure together with quaternary structure of protein-like carbon nanotube are both observed. Carbon microstructural evolution is investigated in bagasse-based ultralight composite. Toward the incident microwaves, in-situ synthesized CNTs-rGO composite has substantially enhanced reflection loss performance. The strongest reflection loss is -44.9 dB at 12.6 GHz with the absorber thickness of only 2 mm. And the effective microwave absorption bandwidth can reach 6.1 GHz covering a frequency range of 11.5–17.6 with the absorber thickness of only 1.6 mm.</div></div>","PeriodicalId":22081,"journal":{"name":"Surfaces and Interfaces","volume":"55 ","pages":"Article 105408"},"PeriodicalIF":5.7,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142660622","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-06DOI: 10.1016/j.surfin.2024.105399
Seyed Mohammad Hosseini, Vahid Safarifard
In this study, g-C3N4 was successfully synthesized and combined with MIL-88A to form a composite material (g-C3N4@MIL-88A composite, abbreviated as CNM). With the aid of the phase inversion method, CNM-PVDF composite films were synthesized, integrating various functional components. The CNM Z-scheme heterojunction efficiently harvests visible light, enhances interfacial separation, and suppresses the recombination of photogenerated charge carriers, resulting in significant photoreduction of Cr(VI) (94.01%). However, CNM composites in powder form tend to aggregate without stable support, complicating separation and recycling processes. To address this issue, PVDF is used to immobilize the photocatalyst. The results demonstrate that CNM-PVDF films exhibit superior photocatalytic reduction activity towards Cr(VI), achieving an efficiency of 90.4% under optimal conditions: 20 mg/L of Cr(VI), 3% CNM-PVDF, pH 3, and 180 min of irradiation. This study represents a significant advancement in developing and applying composite films, offering excellent photocatalytic performance. Unlike the powder sample (CNM), the CNM-PVDF composite can be easily recovered for four consecutive cycles, effectively overcoming the challenge of secondary pollution.
{"title":"A novel PVDF film containing g-C3N4@MOF composite for efficient photoreduction of Cr(VI) under visible light","authors":"Seyed Mohammad Hosseini, Vahid Safarifard","doi":"10.1016/j.surfin.2024.105399","DOIUrl":"10.1016/j.surfin.2024.105399","url":null,"abstract":"<div><div>In this study, g-C<sub>3</sub>N<sub>4</sub> was successfully synthesized and combined with MIL-88A to form a composite material (g-C<sub>3</sub>N<sub>4</sub>@MIL-88A composite, abbreviated as CNM). With the aid of the phase inversion method, CNM-PVDF composite films were synthesized, integrating various functional components. The CNM Z-scheme heterojunction efficiently harvests visible light, enhances interfacial separation, and suppresses the recombination of photogenerated charge carriers, resulting in significant photoreduction of Cr(VI) (94.01%). However, CNM composites in powder form tend to aggregate without stable support, complicating separation and recycling processes. To address this issue, PVDF is used to immobilize the photocatalyst. The results demonstrate that CNM-PVDF films exhibit superior photocatalytic reduction activity towards Cr(VI), achieving an efficiency of 90.4% under optimal conditions: 20 mg/L of Cr(VI), 3% CNM-PVDF, pH 3, and 180 min of irradiation. This study represents a significant advancement in developing and applying composite films, offering excellent photocatalytic performance. Unlike the powder sample (CNM), the CNM-PVDF composite can be easily recovered for four consecutive cycles, effectively overcoming the challenge of secondary pollution.</div></div>","PeriodicalId":22081,"journal":{"name":"Surfaces and Interfaces","volume":"55 ","pages":"Article 105399"},"PeriodicalIF":5.7,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142660620","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-06DOI: 10.1016/j.surfin.2024.105385
Eman Khalafalla Mahmoud , Hamada M. Mahmoud , Mohamed Taha
Metal-organic frameworks (MOFs) have emerged as a revolutionary class of nanoporous materials due to their highly tunable porosity and functionality. With the vast number of MOFs being discovered, traditional experimental techniques to identify the best candidates for various applications, including water treatment and drug delivery become time-consuming and expensive. This is where computational screening offers a powerful solution. We present a computational screening strategy using Monte Carlo (MC) simulation to identify the promising MOFs among over 14,000 MOFs for efficient absorption, membrane separation, and sustained delivery of antibiotics (e.g., azithromycin, AZ). The MC simulation was used to calculate the loading capacity and isosteric heat of the AZ absorption. These absorption properties were correlated with several structural characteristics of the MOF, including the largest cavity diameter, pore limiting diameter, accessible volume, helium void fraction, etc. Critical evaluation of the correlation results identified the best MOFs for AZ absorption, separation, and delivery. The results recommended a total of 578 MOFs, with 126 identified as suitable for use as AZ adsorbents or drug carriers, and 452 for use as membranes to separate AZ from water. Furthermore, the adsorption mechanism of the top MOF was analyzed using molecular dynamics simulation and non-covalent interactions. The solvation-free energy of AZ was evaluated in various solvents to identify the most effective solvent for extracting AZ from MOFs, thereby facilitating the regeneration of the MOF.
金属有机框架(MOFs)因其高度可调的孔隙度和功能性,已成为一类革命性的纳米多孔材料。随着大量 MOFs 被发现,利用传统实验技术为水处理和药物输送等各种应用确定最佳候选材料变得既耗时又昂贵。这正是计算筛选提供强大解决方案的地方。我们介绍了一种利用蒙特卡洛(Monte Carlo,MC)模拟的计算筛选策略,从超过 14,000 种 MOFs 中筛选出有潜力的 MOFs,用于抗生素(如阿奇霉素,AZ)的高效吸收、膜分离和持续给药。MC 模拟用于计算 AZ 吸收的负载能力和等位热。这些吸收特性与 MOF 的几个结构特征相关联,包括最大空腔直径、孔极限直径、可接触体积、氦空隙率等。对相关结果进行严格评估后,确定了最适合吸收、分离和输送 AZ 的 MOF。结果共推荐了 578 种 MOF,其中 126 种适合用作 AZ 吸附剂或药物载体,452 种适合用作从水中分离 AZ 的膜。此外,还利用分子动力学模拟和非共价相互作用分析了顶层 MOF 的吸附机理。评估了 AZ 在各种溶剂中的无溶解能,以确定从 MOF 中提取 AZ 的最有效溶剂,从而促进 MOF 的再生。
{"title":"Utilizing metal-organic framework porosity for efficient antibiotic separation and sustained release","authors":"Eman Khalafalla Mahmoud , Hamada M. Mahmoud , Mohamed Taha","doi":"10.1016/j.surfin.2024.105385","DOIUrl":"10.1016/j.surfin.2024.105385","url":null,"abstract":"<div><div>Metal-organic frameworks (MOFs) have emerged as a revolutionary class of nanoporous materials due to their highly tunable porosity and functionality. With the vast number of MOFs being discovered, traditional experimental techniques to identify the best candidates for various applications, including water treatment and drug delivery become time-consuming and expensive. This is where computational screening offers a powerful solution. We present a computational screening strategy using Monte Carlo (MC) simulation to identify the promising MOFs among over 14,000 MOFs for efficient absorption, membrane separation, and sustained delivery of antibiotics (e.g., azithromycin, AZ). The MC simulation was used to calculate the loading capacity and isosteric heat of the AZ absorption. These absorption properties were correlated with several structural characteristics of the MOF, including the largest cavity diameter, pore limiting diameter, accessible volume, helium void fraction, etc. Critical evaluation of the correlation results identified the best MOFs for AZ absorption, separation, and delivery. The results recommended a total of 578 MOFs, with 126 identified as suitable for use as AZ adsorbents or drug carriers, and 452 for use as membranes to separate AZ from water. Furthermore, the adsorption mechanism of the top MOF was analyzed using molecular dynamics simulation and non-covalent interactions. The solvation-free energy of AZ was evaluated in various solvents to identify the most effective solvent for extracting AZ from MOFs, thereby facilitating the regeneration of the MOF.</div></div>","PeriodicalId":22081,"journal":{"name":"Surfaces and Interfaces","volume":"55 ","pages":"Article 105385"},"PeriodicalIF":5.7,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142660616","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}