首页 > 最新文献

Sustainable Materials and Technologies最新文献

英文 中文
Sustainable bamboo charcoal based nanocomposite catalysts for rapid adsorption and photo-Fenton degradation of toxic dyes 基于可持续竹炭的纳米复合催化剂用于快速吸附和光-芬顿降解有毒染料
IF 8.6 2区 工程技术 Q1 ENERGY & FUELS Pub Date : 2024-08-08 DOI: 10.1016/j.susmat.2024.e01080

To efficiently and completely remove organic pollutants from water, developing composite catalysts with both adsorption and photocatalytic/Fenton catalytic degradation is a very feasible solution. Herein, a new CuxO and g-C3N4 codoped bamboo charcoal (BC) composite (Cu-g-C3N4/BC) was prepared by the in-situ pyrolysis of Cu2+/melamine modified bamboo powders in N2 atmosphere. Under the catalysis of Cu-g-C3N4/BC(600)/H2O2 system, the methylene blue (MB) and rhodamine B (RhB) dyes can be completely degraded within 10 min, and the methyl orange (MO) can be degraded within 30 min, indicating a high catalytic efficiency of the catalyst. Electron paramagnetic resonance (EPR) tests and active species trapping experiments suggested that ∙OH was the main active species in the degradation process, while the ·O2 and h+ played a minor role. The synergy of Cu2O, CuO and g-C3N4 active sites in Cu-g-C3N4/BC increases the density of photogenerated electrons and promotes the separation of electron-hole pairs via the heterojunctions. The bamboo charcoal matrix plays an important role in the process of adsorbing the dyes and H2O2, which greatly promotes the activation of H2O2 and the degradation of dyes. In addition, the high conductivity of bamboo charcoal facilitates the charge transfer from the active sites to H2O2. The as-prepared Cu-g-C3N4/BC catalyst exhibits good reusability due to its structural stability. This work offers a promising bamboo charcoal catalyst with multiple active sites for the rapid elimination of persistent organic pollutants.

为了高效、彻底地去除水中的有机污染物,开发兼具吸附和光催化/芬顿催化降解功能的复合催化剂是一个非常可行的解决方案。本文采用 Cu2+/melamine 改性竹粉在 N2 气氛中原位热解的方法,制备了一种新型 CuxO 和 g-C3N4 共掺竹炭(BC)复合材料(Cu-g-C3N4/BC)。在Cu-g-C3N4/BC(600)/H2O2体系催化下,亚甲基蓝(MB)和罗丹明B(RhB)染料可在10分钟内完全降解,甲基橙(MO)可在30分钟内降解,表明催化剂具有较高的催化效率。电子顺磁共振(EPR)测试和活性物种捕获实验表明,∙OH 是降解过程中的主要活性物种,而 -O2- 和 h+ 的作用较小。Cu-g-C3N4/BC 中 Cu2O、CuO 和 g-C3N4 活性位点的协同作用增加了光生电子的密度,并通过异质结促进了电子-空穴对的分离。竹炭基质在吸附染料和 H2O2 的过程中发挥了重要作用,大大促进了 H2O2 的活化和染料的降解。此外,竹炭的高导电性也有利于电荷从活性位点转移到 H2O2。由于结构稳定,制备的 Cu-g-C3N4/BC 催化剂具有良好的重复使用性。这项研究为快速消除持久性有机污染物提供了一种具有多个活性位点的竹炭催化剂。
{"title":"Sustainable bamboo charcoal based nanocomposite catalysts for rapid adsorption and photo-Fenton degradation of toxic dyes","authors":"","doi":"10.1016/j.susmat.2024.e01080","DOIUrl":"10.1016/j.susmat.2024.e01080","url":null,"abstract":"<div><p>To efficiently and completely remove organic pollutants from water, developing composite catalysts with both adsorption and photocatalytic/Fenton catalytic degradation is a very feasible solution. Herein, a new Cu<sub>x</sub>O and g-C<sub>3</sub>N<sub>4</sub> codoped bamboo charcoal (BC) composite (Cu-g-C<sub>3</sub>N<sub>4</sub>/BC) was prepared by the in-situ pyrolysis of Cu<sup>2+</sup>/melamine modified bamboo powders in N<sub>2</sub> atmosphere. Under the catalysis of Cu-g-C<sub>3</sub>N<sub>4</sub>/BC(600)/H<sub>2</sub>O<sub>2</sub> system, the methylene blue (MB) and rhodamine B (RhB) dyes can be completely degraded within 10 min, and the methyl orange (MO) can be degraded within 30 min, indicating a high catalytic efficiency of the catalyst. Electron paramagnetic resonance (EPR) tests and active species trapping experiments suggested that ∙OH was the main active species in the degradation process, while the <strong>·</strong>O<sub>2</sub><sup>−</sup> and h<sup>+</sup> played a minor role. The synergy of Cu<sub>2</sub>O, CuO and g-C<sub>3</sub>N<sub>4</sub> active sites in Cu-g-C<sub>3</sub>N<sub>4</sub>/BC increases the density of photogenerated electrons and promotes the separation of electron-hole pairs via the heterojunctions. The bamboo charcoal matrix plays an important role in the process of adsorbing the dyes and H<sub>2</sub>O<sub>2</sub>, which greatly promotes the activation of H<sub>2</sub>O<sub>2</sub> and the degradation of dyes. In addition, the high conductivity of bamboo charcoal facilitates the charge transfer from the active sites to H<sub>2</sub>O<sub>2</sub>. The as-prepared Cu-g-C<sub>3</sub>N<sub>4</sub>/BC catalyst exhibits good reusability due to its structural stability. This work offers a promising bamboo charcoal catalyst with multiple active sites for the rapid elimination of persistent organic pollutants.</p></div>","PeriodicalId":22097,"journal":{"name":"Sustainable Materials and Technologies","volume":null,"pages":null},"PeriodicalIF":8.6,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141998545","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis of waste derived bimetallic (Fe/Ca) Oxy-iodide (WD-BMOX) encapsulated with PVDF based nanosphere (WD-BMOX-P) as solar active agent: An efficient photodegradation of antibiotic 用聚偏二氟乙烯(PVDF)为基底的纳米球(WD-BMOX-P)封装作为太阳能活性剂的废物衍生双金属(铁/钙)氧碘化物(WD-BMOX)的合成:抗生素的高效光降解
IF 8.6 2区 工程技术 Q1 ENERGY & FUELS Pub Date : 2024-08-08 DOI: 10.1016/j.susmat.2024.e01081

Tetracycline (TC) pharmaceutical compound is the third most used antibiotic after penicillin and quinolones, which developed bacterial resistance against them and environmental toxicity due to partially metabolized within humans and animals. At the same time, waste products (WPs) including food, agriculture, and plastic waste significantly increased day-by-day with the growing population. Therefore, there is a pleading requirement to develop a solar active agent that effectively degrades environmental pollution as well as reduces the burden of WPs. In this context, the present works focus on the development of waste-derived bimetallic (Fe/Ca) Oxy-iodide (WD-BMOX) encapsulated with PVDF-based nanosphere (WD-BMOX-P) as a solar active agent for the degradation of TC antibiotics. The band gap values of the synthesized WD-BMOX-P-based nanosphere are easily altered by changing the ratio of Fe/Ca. The lowest band gap values were observed to be ∼1.95 eV of the WD-BMOX-P-1:2, whereas upon increasing the Ca within the nanosphere band gap value significantly increases. The incorporation of PVDF polymer within the WD-BMOX-P aided advantages to formed nanosphere and improved oxygen vacancy, thereby high degradation efficiency. The highest degradation of TC antibiotics ∼96.8% and ∼ 69% was observed using WD-BMOX-P-1:2 nanosphere at 1 mg/L and 10 mg/L, of TC antibiotics within 60 min of solar irradiation, respectively. Moreover, ∼88% and 100% photodegradation of TC antibiotics was observed at pH 10 and the presence of H2O2 at 10 mg/L, respectively. The data indicate that the synthesized WD-BMOX-P-based nanosphere might be promising solar active agents, which effectively degrade TC antibiotics from water.

四环素(TC)药物化合物是仅次于青霉素和喹诺酮类药物的第三大抗生素,由于在人类和动物体内部分代谢,细菌对其产生了抗药性和环境毒性。与此同时,随着人口的增长,包括食品、农业和塑料废弃物在内的废物(WPs)也与日俱增。因此,人们迫切需要开发一种能有效降解环境污染并减轻 WPs 负担的太阳能活性剂。在此背景下,本研究重点开发了由废物衍生的双金属(铁/钙)氧化-碘(WD-BMOX)与基于 PVDF 的纳米球(WD-BMOX-P)封装在一起,作为降解 TC 抗生素的太阳能活性剂。通过改变铁/钙的比例,很容易改变合成的基于 WD-BMOX-P 的纳米圈的带隙值。据观察,WD-BMOX-P-1:2 的最低带隙值为 1.95 eV,而当纳米球中的 Ca 增加时,带隙值明显增加。在 WD-BMOX-P 中加入 PVDF 聚合物有助于形成纳米球,改善氧空位,从而提高降解效率。使用 WD-BMOX-P-1:2 纳米球时,在太阳光照射 60 分钟内,1 mg/L 和 10 mg/L TC 抗生素的降解率分别为 96.8%和 69%。此外,在 pH 值为 10 和 H2O2 为 10 mg/L 的条件下,TC 抗生素的光降解率分别为 88% 和 100%。这些数据表明,合成的基于 WD-BMOX-P 的纳米球可能是一种很有前景的太阳能活性剂,能有效降解水中的 TC 抗生素。
{"title":"Synthesis of waste derived bimetallic (Fe/Ca) Oxy-iodide (WD-BMOX) encapsulated with PVDF based nanosphere (WD-BMOX-P) as solar active agent: An efficient photodegradation of antibiotic","authors":"","doi":"10.1016/j.susmat.2024.e01081","DOIUrl":"10.1016/j.susmat.2024.e01081","url":null,"abstract":"<div><p>Tetracycline (TC) pharmaceutical compound is the third most used antibiotic after penicillin and quinolones, which developed bacterial resistance against them and environmental toxicity due to partially metabolized within humans and animals. At the same time, waste products (WPs) including food, agriculture, and plastic waste significantly increased day-by-day with the growing population. Therefore, there is a pleading requirement to develop a solar active agent that effectively degrades environmental pollution as well as reduces the burden of WPs. In this context, the present works focus on the development of waste-derived bimetallic (Fe/Ca) Oxy-iodide (WD-BMOX) encapsulated with PVDF-based nanosphere (WD-BMOX-P) as a solar active agent for the degradation of TC antibiotics. The band gap values of the synthesized WD-BMOX-P-based nanosphere are easily altered by changing the ratio of Fe/Ca. The lowest band gap values were observed to be ∼1.95 eV of the WD-BMOX-P-1:2, whereas upon increasing the Ca within the nanosphere band gap value significantly increases. The incorporation of PVDF polymer within the WD-BMOX-P aided advantages to formed nanosphere and improved oxygen vacancy, thereby high degradation efficiency. The highest degradation of TC antibiotics ∼96.8% and ∼ 69% was observed using WD-BMOX-P-1:2 nanosphere at 1 mg/L and 10 mg/L, of TC antibiotics within 60 min of solar irradiation, respectively. Moreover, ∼88% and 100% photodegradation of TC antibiotics was observed at pH 10 and the presence of H<sub>2</sub>O<sub>2</sub> at 10 mg/L, respectively. The data indicate that the synthesized WD-BMOX-P-based nanosphere might be promising solar active agents, which effectively degrade TC antibiotics from water.</p></div>","PeriodicalId":22097,"journal":{"name":"Sustainable Materials and Technologies","volume":null,"pages":null},"PeriodicalIF":8.6,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141978669","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Solid electrolytes based on i-carrageenan and different ionic liquids for sustainable electrochromic devices 基于卡拉胶和不同离子液体的固体电解质用于可持续电致变色设备
IF 8.6 2区 工程技术 Q1 ENERGY & FUELS Pub Date : 2024-08-07 DOI: 10.1016/j.susmat.2024.e01076

The increase in electronic waste (e-waste) is a significant global concern due to fast technological development in which products rapidly become obsolete. To mitigate this problem in the field of electrochromic devices, four different types of solid polymer electrolytes (SPEs) were developed based on iota-carrageenan, a water-soluble biopolymer, and 40 wt% concentration of different ionic liquids (ILs): 1-butyl-3-methyl-imidazolium thiocyanate ([BMIM][SCN]), 1-ethyl-3-methyl-imidazolium thiocyanate ([EMIM][SCN]), 1-butyl-3-methyl-imidazolium dicyanamide ([BMIM][N(CN)2)]), and 1-ethyl-3-methyl-imidazolium dicyanamide ([EMIM][N(CN)2)]). The resulting composites present a uniform and compact morphology, with a good distribution of the ILs within the polymer matrix, thermal stability up to ∼100 °C, and suitable mechanical properties. Their ionic conductivity at room temperature is in the range of ∼10−4 S.cm−1 in the solid state and around ∼10−3 S.cm−1 in the liquid state. Each of the developed electrolytes was integrated on a printed electrochromic device (ECD) fabricated with poly(3,4-ethylenedioxythiophene) polystyrenesulfonate (PEDOT:PSS) as a working electrode and their performance was evaluated using spectroelectrochemical techniques. All four ECDs operate at voltages between -1 V and 1 V, providing coloration efficiencies between 253 and 571 cm2.C−1 for the oxidation process and between −435 and − 847 cm2.C−1 for the reduction process at 98% full contrast, and presenting switching times between the bleached and colored states around 3.2–4.8 s at 98% full contrast. These low-cost SPEs provide a suitable approach for the development of high-performance sustainable ECDs.

由于技术的快速发展,产品很快就会被淘汰,电子垃圾(e-waste)的增加是全球关注的一个重要问题。为了缓解电致变色设备领域的这一问题,我们开发了四种不同类型的固体聚合物电解质(SPEs),分别基于水溶性生物聚合物 iota-carrageenan 和 40 wt% 浓度的不同离子液体(ILs):1-丁基-3-甲基-咪唑鎓硫氰酸盐([BMIM][SCN])、1-乙基-3-甲基-咪唑鎓硫氰酸盐([EMIM][SCN])、1-丁基-3-甲基-咪唑鎓二氰胺([BMIM][N(CN)2)])和 1-乙基-3-甲基-咪唑鎓二氰胺([EMIM][N(CN)2)])。所制备的复合材料形态均匀紧凑,IL 在聚合物基体中分布良好,热稳定性高达 ∼ 100 °C,并具有合适的机械性能。它们在室温下的固态离子电导率为 ∼10-4 S.cm-1,液态离子电导率约为∼10-3 S.cm-1。所开发的每种电解质都被集成到了以聚(3,4-乙烯二氧噻吩)聚苯乙烯磺酸盐(PEDOT:PSS)为工作电极的印刷型电致变色器件(ECD)上,并利用光谱电化学技术对其性能进行了评估。所有四种 ECD 的工作电压都在 -1 V 和 1 V 之间,在 98% 的完全对比度下,氧化过程的着色效率在 253 和 571 cm2.C-1 之间,还原过程的着色效率在 -435 和 -847 cm2.C-1 之间,在 98% 的完全对比度下,漂白状态和着色状态之间的切换时间约为 3.2-4.8 s。这些低成本的固相萃取剂为开发高性能的可持续 ECD 提供了合适的方法。
{"title":"Solid electrolytes based on i-carrageenan and different ionic liquids for sustainable electrochromic devices","authors":"","doi":"10.1016/j.susmat.2024.e01076","DOIUrl":"10.1016/j.susmat.2024.e01076","url":null,"abstract":"<div><p>The increase in electronic waste (e-waste) is a significant global concern due to fast technological development in which products rapidly become obsolete. To mitigate this problem in the field of electrochromic devices, four different types of solid polymer electrolytes (SPEs) were developed based on iota-carrageenan, a water-soluble biopolymer, and 40 wt% concentration of different ionic liquids (ILs): 1-butyl-3-methyl-imidazolium thiocyanate ([BMIM][SCN]), 1-ethyl-3-methyl-imidazolium thiocyanate ([EMIM][SCN]), 1-butyl-3-methyl-imidazolium dicyanamide ([BMIM][N(CN)<sub>2</sub>)]), and 1-ethyl-3-methyl-imidazolium dicyanamide ([EMIM][N(CN)<sub>2</sub>)]). The resulting composites present a uniform and compact morphology, with a good distribution of the ILs within the polymer matrix, thermal stability up to ∼100 °C, and suitable mechanical properties. Their ionic conductivity at room temperature is in the range of ∼10<sup>−4</sup> S.cm<sup>−1</sup> in the solid state and around ∼10<sup>−3</sup> S.cm<sup>−1</sup> in the liquid state. Each of the developed electrolytes was integrated on a printed electrochromic device (ECD) fabricated with poly(3,4-ethylenedioxythiophene) polystyrenesulfonate (PEDOT:PSS) as a working electrode and their performance was evaluated using spectroelectrochemical techniques. All four ECDs operate at voltages between -1 <em>V</em> and 1 V, providing coloration efficiencies between 253 and 571 cm<sup>2</sup>.C<sup>−1</sup> for the oxidation process and between −435 and − 847 cm<sup>2</sup>.C<sup>−1</sup> for the reduction process at 98% full contrast, and presenting switching times between the bleached and colored states around 3.2–4.8 s at 98% full contrast. These low-cost SPEs provide a suitable approach for the development of high-performance sustainable ECDs.</p></div>","PeriodicalId":22097,"journal":{"name":"Sustainable Materials and Technologies","volume":null,"pages":null},"PeriodicalIF":8.6,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214993724002562/pdfft?md5=bd58c68e5d260cd9bc7efc49446faec3&pid=1-s2.0-S2214993724002562-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141978670","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hierarchical α-Ni(OH)2 with tunable by interlayer anion exchange for degradation of hydroxypropyl guar gum synergistic H2O2 可通过层间阴离子交换调节的分层 α-Ni(OH)2 协同 H2O2 降解羟丙基瓜尔胶
IF 8.6 2区 工程技术 Q1 ENERGY & FUELS Pub Date : 2024-08-06 DOI: 10.1016/j.susmat.2024.e01075

Hydraulic fracturing for oil and gas production generates a substantial amount of wastewater, and photocatalysis is a potential method for treating fracture flowback fluids due to its low cost and efficiency. This study utilized the hydrothermal method to synthesize layered α-Ni(OH)2 with a controllable microstructure by substituting various nickel sources, including Cl, SO42−, OAc, and NO3 interlayer ions, to focus on the photocatalytic degradation of hydroxypropyl guanidine gum, the primary constituent of fracturing fluid. The results indicate that α-Ni(OH)2/OAc exhibits the most effective photocatalytic activity under optimal experimental conditions. The stability of the catalyst was confirmed through cycling studies. Possible degradation mechanisms were hypothesized based on DFT adsorption energy calculations and capture tests. The field performance of the application demonstrates that this work offers novel perspectives on the photocatalytic degradation of fracturing fluids.

油气生产的水力压裂过程会产生大量废水,光催化因其低成本和高效率而成为处理压裂回流液的一种潜在方法。本研究利用水热法合成了具有可控微观结构的层状α-Ni(OH),通过取代不同的镍源,包括层间的Cl、SO、OAc和NO离子,重点研究了压裂液的主要成分羟丙基胍胶的光催化降解。结果表明,在最佳实验条件下,α-Ni(OH)/OAc 表现出最有效的光催化活性。通过循环研究证实了催化剂的稳定性。根据 DFT 吸附能计算和捕获测试,假设了可能的降解机制。现场应用的性能表明,这项工作为压裂液的光催化降解提供了新的视角。
{"title":"Hierarchical α-Ni(OH)2 with tunable by interlayer anion exchange for degradation of hydroxypropyl guar gum synergistic H2O2","authors":"","doi":"10.1016/j.susmat.2024.e01075","DOIUrl":"10.1016/j.susmat.2024.e01075","url":null,"abstract":"<div><p>Hydraulic fracturing for oil and gas production generates a substantial amount of wastewater, and photocatalysis is a potential method for treating fracture flowback fluids due to its low cost and efficiency. This study utilized the hydrothermal method to synthesize layered α-Ni(OH)<sub>2</sub> with a controllable microstructure by substituting various nickel sources, including Cl<sup>−</sup>, SO<sub>4</sub><sup>2−</sup>, OAc<sup>−</sup>, and NO<sub>3</sub><sup>−</sup> interlayer ions, to focus on the photocatalytic degradation of hydroxypropyl guanidine gum, the primary constituent of fracturing fluid. The results indicate that α-Ni(OH)<sub>2</sub>/OAc<sup>−</sup> exhibits the most effective photocatalytic activity under optimal experimental conditions. The stability of the catalyst was confirmed through cycling studies. Possible degradation mechanisms were hypothesized based on DFT adsorption energy calculations and capture tests. The field performance of the application demonstrates that this work offers novel perspectives on the photocatalytic degradation of fracturing fluids.</p></div>","PeriodicalId":22097,"journal":{"name":"Sustainable Materials and Technologies","volume":null,"pages":null},"PeriodicalIF":8.6,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141929748","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A hypothetical approach toward laser-induced high-density polyethylene pyrolysis: a review 激光诱导高密度聚乙烯热解的假设方法:综述
IF 8.6 2区 工程技术 Q1 ENERGY & FUELS Pub Date : 2024-08-02 DOI: 10.1016/j.susmat.2024.e01074

Laser-induced breakdown spectroscopy (LIBS) is a commonly employed technique in commercial plastic recycling for purposes including classification, sorting, identification, and elemental analysis. However, understanding the molecular-level kinetics, thermodynamic interactions, bonding cleavage, and process parameter impacts is crucial for identifying necessary modifications to enhance plastic recycling. A review of the literature revealed that LIBS can also facilitate plastic pyrolysis, a significant research area that remains largely unexplored. Based on theoretical hypotheses, it can be concluded that laser-induced pyrolysis may offer advantages over traditional pyrolysis, which requires understanding the chemistry of plastic bond-breaking during degradation, identifying resistant bonds, and uncovering the root causes of these challenges. This approach is described in detail in sections 9 and 10, focusing on high-density polyethylene (HDPE) under controlled conditions. The identified research gaps could be further investigated, and advancements could be made toward establishing efficient plastic recycling and designing laser-induced pyrolysis reactors.

激光诱导击穿光谱(LIBS)是商业塑料回收中常用的一种技术,用于分类、分拣、鉴定和元素分析。然而,了解分子级动力学、热力学相互作用、键的裂解以及工艺参数的影响对于确定必要的修改以加强塑料回收利用至关重要。文献综述显示,LIBS 还能促进塑料热解,这是一个重要的研究领域,但在很大程度上尚未得到开发。基于理论假设,可以得出结论:激光诱导热解可能比传统热解更有优势,这就需要了解降解过程中塑料断键的化学反应,识别抗性键,并揭示这些难题的根源。第 9 节和第 10 节将详细介绍这种方法,重点是受控条件下的高密度聚乙烯 (HDPE)。可以进一步调查已确定的研究差距,并在建立高效塑料回收和设计激光诱导热解反应器方面取得进展。
{"title":"A hypothetical approach toward laser-induced high-density polyethylene pyrolysis: a review","authors":"","doi":"10.1016/j.susmat.2024.e01074","DOIUrl":"10.1016/j.susmat.2024.e01074","url":null,"abstract":"<div><p>Laser-induced breakdown spectroscopy (LIBS) is a commonly employed technique in commercial plastic recycling for purposes including classification, sorting, identification, and elemental analysis. However, understanding the molecular-level kinetics, thermodynamic interactions, bonding cleavage, and process parameter impacts is crucial for identifying necessary modifications to enhance plastic recycling. A review of the literature revealed that LIBS can also facilitate plastic pyrolysis, a significant research area that remains largely unexplored. Based on theoretical hypotheses, it can be concluded that laser-induced pyrolysis may offer advantages over traditional pyrolysis, which requires understanding the chemistry of plastic bond-breaking during degradation, identifying resistant bonds, and uncovering the root causes of these challenges. This approach is described in detail in sections 9 and 10, focusing on high-density polyethylene (HDPE) under controlled conditions. The identified research gaps could be further investigated, and advancements could be made toward establishing efficient plastic recycling and designing laser-induced pyrolysis reactors.</p></div>","PeriodicalId":22097,"journal":{"name":"Sustainable Materials and Technologies","volume":null,"pages":null},"PeriodicalIF":8.6,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141929749","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fabrication of V2O5@Co-MOF as a cathode material with excellent rate capability 制备具有优异速率能力的 V2O5@Co-MOF 阴极材料
IF 8.6 2区 工程技术 Q1 ENERGY & FUELS Pub Date : 2024-07-31 DOI: 10.1016/j.susmat.2024.e01072

In recent years, the demand for energy storage devices with high-performance has propelled intense research efforts toward the development of promising supercapacitors. Among various electrode material, vanadium pentoxide (V2O5) has gained significant interest due to its excellent electrochemical properties. For the application of energy storage, V2O5 has intrinsic low electrical conductivity and limited cycle stability, makes its practical application limited. To overcome these challenges, the integration of V2O5 with metal-organic framework (MOF) nanocomposites has emerged as a promising strategy. This study focuses on the synthesis, characterization, and electrochemical analysis of V2O5 with zeolitic imidazolate framework-67 (ZIF-67) nanocomposites for supercapacitor applications. The V2O5@ZIF-67 hybrid material has been prepared by a simple in-situ chemical method. The XRD pattern of V2O5@ZIF 67 nanocomposites illustrate the combination of V2O5 with ZIF 67, as well as the subsequent growth of two phases without any modification to the parent. Within a potential window of 0 to 0.45 V, the synthesised V2O5@ZIF-67 in the three-electrode system exhibits a high specific capacitance of 913.06 F g−1 at a current density of 6 A g−1. The fabricated asymmetric supercapacitor (ASC) device delivers a superior energy density of 9.69 Wh kg−1 and power density of 2187.5 W kg−1.

近年来,对高性能储能设备的需求推动了人们对开发前景广阔的超级电容器的深入研究。在各种电极材料中,五氧化二钒(VO)因其优异的电化学性能而备受关注。对于储能应用而言,五氧化二钒固有的低导电性和有限的循环稳定性使其实际应用受到限制。为了克服这些挑战,VO 与金属有机框架(MOF)纳米复合材料的整合已成为一种很有前景的策略。本研究的重点是用于超级电容器应用的 VO 与沸石咪唑-67(ZIF-67)纳米复合材料的合成、表征和电化学分析。VO@ZIF-67 混合材料是通过简单的化学方法制备的。VO@ZIF-67 纳米复合材料的 XRD 图显示了 VO 与 ZIF-67 的结合,以及随后两相的生长,而母体未发生任何变化。在 0 至 0.45 V 的电位窗口内,三电极系统中合成的 VO@ZIF-67 在 6 A g 的电流密度下显示出 913.06 F g 的高比电容。
{"title":"Fabrication of V2O5@Co-MOF as a cathode material with excellent rate capability","authors":"","doi":"10.1016/j.susmat.2024.e01072","DOIUrl":"10.1016/j.susmat.2024.e01072","url":null,"abstract":"<div><p>In recent years, the demand for energy storage devices with high-performance has propelled intense research efforts toward the development of promising supercapacitors. Among various electrode material, vanadium pentoxide (V<sub>2</sub>O<sub>5</sub>) has gained significant interest due to its excellent electrochemical properties. For the application of energy storage, V<sub>2</sub>O<sub>5</sub> has intrinsic low electrical conductivity and limited cycle stability, makes its practical application limited. To overcome these challenges, the integration of V<sub>2</sub>O<sub>5</sub> with metal-organic framework (MOF) nanocomposites has emerged as a promising strategy. This study focuses on the synthesis, characterization, and electrochemical analysis of V<sub>2</sub>O<sub>5</sub> with zeolitic imidazolate framework-67 (ZIF-67) nanocomposites for supercapacitor applications. The V<sub>2</sub>O<sub>5</sub>@ZIF-67 hybrid material has been prepared by a simple <em>in-situ</em> chemical method. The XRD pattern of V<sub>2</sub>O<sub>5</sub>@ZIF 67 nanocomposites illustrate the combination of V<sub>2</sub>O<sub>5</sub> with ZIF 67, as well as the subsequent growth of two phases without any modification to the parent. Within a potential window of 0 to 0.45 V, the synthesised V<sub>2</sub>O<sub>5</sub>@ZIF-67 in the three-electrode system exhibits a high specific capacitance of 913.06 F g<sup>−1</sup> at a current density of 6 A g<sup>−1</sup>. The fabricated asymmetric supercapacitor (ASC) device delivers a superior energy density of 9.69 Wh kg<sup>−1</sup> and power density of 2187.5 W kg<sup>−1</sup>.</p></div>","PeriodicalId":22097,"journal":{"name":"Sustainable Materials and Technologies","volume":null,"pages":null},"PeriodicalIF":8.6,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141929751","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Triple filtration robot (T-robot) based on functionally graded multilayer antiviral environment-friendly (F-MAX) system for pathogen purification in confined space 基于功能分级多层抗病毒环境友好型(F-MAX)系统的三重过滤机器人(T-robot),用于密闭空间的病原体净化
IF 8.6 2区 工程技术 Q1 ENERGY & FUELS Pub Date : 2024-07-30 DOI: 10.1016/j.susmat.2024.e01071

The improved abstract which especially take the suggestions above can be seen as follow:

This study addresses the challenge of pathogen regulation in confined spaces by introducing the T-robot, an innovative air filtration robot featuring the F-MAX multilayer composite plate. Designed to capture a wide range of pollutants, including harmful viruses and bacteria, the T-robot significantly enhances air quality. The experimental setup used magnesium phosphate cement, electrostatically charged melt-blown fabric, and eco-friendly materials such as lithium brine by-product magnesia. Key results include a virus removal rate of 99.99% and an antibacterial rate of 98%.

The F-MAX system combines multiple layers, each targeting specific particles, with features like the self-healing Desert Rose (DR) coating and high-speed air circulation. The T-robot's high filtration efficiency and sustainable design make it superior to traditional methods, suitable for both commercial and residential use. Its durability and advanced filtration capabilities help reduce airborne contaminants, creating healthier living spaces and demonstrating a commitment to a sustainable future.

根据上述建议改进后的摘要如下:
{"title":"Triple filtration robot (T-robot) based on functionally graded multilayer antiviral environment-friendly (F-MAX) system for pathogen purification in confined space","authors":"","doi":"10.1016/j.susmat.2024.e01071","DOIUrl":"10.1016/j.susmat.2024.e01071","url":null,"abstract":"<div><p>The improved abstract which especially take the suggestions above can be seen as follow:</p><p>This study addresses the challenge of pathogen regulation in confined spaces by introducing the T-robot, an innovative air filtration robot featuring the F-MAX multilayer composite plate. Designed to capture a wide range of pollutants, including harmful viruses and bacteria, the T-robot significantly enhances air quality. The experimental setup used magnesium phosphate cement, electrostatically charged melt-blown fabric, and eco-friendly materials such as lithium brine by-product magnesia. Key results include a virus removal rate of 99.99% and an antibacterial rate of 98%.</p><p>The F-MAX system combines multiple layers, each targeting specific particles, with features like the self-healing Desert Rose (DR) coating and high-speed air circulation. The T-robot's high filtration efficiency and sustainable design make it superior to traditional methods, suitable for both commercial and residential use. Its durability and advanced filtration capabilities help reduce airborne contaminants, creating healthier living spaces and demonstrating a commitment to a sustainable future.</p></div>","PeriodicalId":22097,"journal":{"name":"Sustainable Materials and Technologies","volume":null,"pages":null},"PeriodicalIF":8.6,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141929804","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental study on impact performance of seawater sea-sand concrete with recycled aggregates 含再生骨料的海水海砂混凝土冲击性能实验研究
IF 8.6 2区 工程技术 Q1 ENERGY & FUELS Pub Date : 2024-07-30 DOI: 10.1016/j.susmat.2024.e01060

On islands distant from the mainland, obtaining raw materials for concrete production is often more challenging. To achieve sustainable development in island reef engineering, using discarded marine concrete and coral waste generated during island construction as recycled aggregates are of considerable significance. The preparation of Recycled Coral Aggregate Concrete (RCAC) for island reef engineering thus holds substantial importance. In this study, RCAC and Natural Aggregate Concrete (NAC), both designed with a compressive strength of C60, were prepared. Initially, the fundamental physical properties of the recycled coarse aggregate, such as apparent density, water absorption, and crushing index, were determined. Subsequently, a comparative analysis of the quasi-static mechanical properties of RCAC with varying proportions of recycled coral coarse aggregate (RCCA) was conducted. Furthermore, the impact compression mechanical properties of different RCAC specimens under various strain rates were examined using the Ф100mm Split Hopkinson Pressure Bar (SHPB) apparatus. The microstructure and long-term drying shrinkage performance of RCAC were also analyzed using Scanning Electron Microscopy (SEM) and a drying shrinkage apparatus. The finding indicated that the 28-day compressive strength of RCAC specimens with 100% coarse aggregate replacement reached a maximum of 62.4 MPa. The quasi-static compressive strength of RCAC specimens with 50% and 100% RCCA replacement was only 11.5% and 14.2% lower than that of NAC, respectively. Under impact loading, the dynamic compressive strength of RCAC specimens increased with the strain rate, with peak stress exhibiting an approximately linear relationship with the strain rate. The energy dissipation of RCAC specimens generally occurred in three stages, with the reflected and absorbed energies of the specimens increasing linearly with strain rate. At the same strain rate, the transmitted energy of RCAC specimens was higher than that of NAC specimens. Microstructural analysis revealed that the morphology of recycled coral aggregate is characterized by its porous and rough surface. The interfacial transition zone between the recycled coral aggregate and the cement mortar was relatively dense. Incorporating recycled coarse aggregate significantly affected the drying shrinkage properties of the concrete, with higher contents of RCCA leading to greater drying shrinkage rates.

在远离大陆的岛屿上,获取生产混凝土的原材料往往更具挑战性。为了实现岛礁工程的可持续发展,利用废弃的海运混凝土和岛屿建设过程中产生的珊瑚废料作为再生骨料具有相当重要的意义。因此,为岛礁工程制备再生珊瑚骨料混凝土(RCAC)具有重要意义。本研究制备了 RCAC 和天然骨料混凝土(NAC),两者的设计抗压强度均为 C60。首先,确定了再生粗骨料的基本物理特性,如表观密度、吸水率和压碎指数。随后,对含有不同比例再生珊瑚粗骨料(RCCA)的 RCAC 的准静态力学性能进行了比较分析。此外,还使用 Ф100mm Split Hopkinson Pressure Bar(SHPB)装置检测了不同 RCAC 试样在不同应变速率下的冲击压缩力学性能。此外,还使用扫描电子显微镜(SEM)和干燥收缩仪分析了 RCAC 的微观结构和长期干燥收缩性能。研究结果表明,粗骨料替代率为 100%的 RCAC 试样的 28 天抗压强度最高可达 62.4 兆帕。粗集料掺量为 50%和 100%的 RCAC 试样的准静态抗压强度分别比 NAC 试样低 11.5%和 14.2%。在冲击荷载下,RCAC 试样的动态抗压强度随应变速率的增加而增加,峰值应力与应变速率呈近似线性关系。RCAC 试样的能量耗散一般分为三个阶段,试样的反射能量和吸收能量随应变速率线性增加。在相同应变速率下,RCAC 试样的传递能量高于 NAC 试样。微观结构分析表明,再生珊瑚骨料的形态特征是表面多孔且粗糙。再生珊瑚骨料与水泥砂浆之间的界面过渡区相对致密。掺入再生粗骨料会显著影响混凝土的干燥收缩性能,RCCA 含量越高,干燥收缩率越大。
{"title":"Experimental study on impact performance of seawater sea-sand concrete with recycled aggregates","authors":"","doi":"10.1016/j.susmat.2024.e01060","DOIUrl":"10.1016/j.susmat.2024.e01060","url":null,"abstract":"<div><p>On islands distant from the mainland, obtaining raw materials for concrete production is often more challenging. To achieve sustainable development in island reef engineering, using discarded marine concrete and coral waste generated during island construction as recycled aggregates are of considerable significance. The preparation of Recycled Coral Aggregate Concrete (RCAC) for island reef engineering thus holds substantial importance. In this study, RCAC and Natural Aggregate Concrete (NAC), both designed with a compressive strength of C60, were prepared. Initially, the fundamental physical properties of the recycled coarse aggregate, such as apparent density, water absorption, and crushing index, were determined. Subsequently, a comparative analysis of the quasi-static mechanical properties of RCAC with varying proportions of recycled coral coarse aggregate (RCCA) was conducted. Furthermore, the impact compression mechanical properties of different RCAC specimens under various strain rates were examined using the Ф100mm Split Hopkinson Pressure Bar (SHPB) apparatus. The microstructure and long-term drying shrinkage performance of RCAC were also analyzed using Scanning Electron Microscopy (SEM) and a drying shrinkage apparatus. The finding indicated that the 28-day compressive strength of RCAC specimens with 100% coarse aggregate replacement reached a maximum of 62.4 MPa. The quasi-static compressive strength of RCAC specimens with 50% and 100% RCCA replacement was only 11.5% and 14.2% lower than that of NAC, respectively. Under impact loading, the dynamic compressive strength of RCAC specimens increased with the strain rate, with peak stress exhibiting an approximately linear relationship with the strain rate. The energy dissipation of RCAC specimens generally occurred in three stages, with the reflected and absorbed energies of the specimens increasing linearly with strain rate. At the same strain rate, the transmitted energy of RCAC specimens was higher than that of NAC specimens. Microstructural analysis revealed that the morphology of recycled coral aggregate is characterized by its porous and rough surface. The interfacial transition zone between the recycled coral aggregate and the cement mortar was relatively dense. Incorporating recycled coarse aggregate significantly affected the drying shrinkage properties of the concrete, with higher contents of RCCA leading to greater drying shrinkage rates.</p></div>","PeriodicalId":22097,"journal":{"name":"Sustainable Materials and Technologies","volume":null,"pages":null},"PeriodicalIF":8.6,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141929750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phosphonitrile hybrid metal-polyphenol network: An effective strategy for developing functional PVA composites with flame retardancy, antibacterial and UV resistance 磷腈杂化金属-多酚网络:开发阻燃、抗菌和抗紫外线功能性 PVA 复合材料的有效策略
IF 8.6 2区 工程技术 Q1 ENERGY & FUELS Pub Date : 2024-07-29 DOI: 10.1016/j.susmat.2024.e01070

The white pollution caused by non-degradable plastics poses a serious threat to human society and the environment, thus developing biodegradable material is urgent. In this work, a novel phosphonitrile hybrid metal-polyphenol network was constructed and used for the preparation of flame retardant, UV resistant and antibacterial multifunctional polyvinyl alcohol composite (PVA@HCPD-Ag). The limiting oxygen index (LOI) value of PVA@HCPD-Ag was improved to 33.5%, while the peak heat release rate (PHRR) and total heat release (THR) decreased by 35.62% and 47.76%. Besides, the ultraviolet protection factor (UPF) value of PVA@HCPD-Ag was significantly improved from 4.63 of the original PVA to 482.79, while the tensile strength was increased by 10.23%. Furthermore, the inhibition efficacy of PVA@HCPD-Ag for E. coli and S. aureus was up to 98.12% and 99.99%. This work explored the synergistic flame retardant effect of in-situ reduced Ag0 and phosphonitrile crosslinked polyphenol network and proposed an advanced strategy for developing high value-added functionalized PVA materials.

不可降解塑料造成的白色污染对人类社会和环境构成了严重威胁,因此开发可生物降解材料迫在眉睫。本研究构建了一种新型磷腈杂化金属-多酚网络,并将其用于制备阻燃、抗紫外线和抗菌的多功能聚乙烯醇复合材料(PVA@HCPD-Ag)。PVA@HCPD-Ag的极限氧指数(LOI)值提高到33.5%,峰值热释放率(PRR)和总热释放率(THR)分别降低了35.62%和47.76%。此外,PVA@HCPD-Ag 的紫外线防护系数(UPF)值由原来 PVA 的 4.63 显著提高到 482.79,抗拉强度提高了 10.23%。此外,PVA@HCPD-Ag 对 和 的阻燃率分别高达 98.12% 和 99.99%。该研究探讨了原位还原Ag与膦腈交联多酚网络的协同阻燃效应,为开发高附加值的功能化PVA材料提出了一种先进的策略。
{"title":"Phosphonitrile hybrid metal-polyphenol network: An effective strategy for developing functional PVA composites with flame retardancy, antibacterial and UV resistance","authors":"","doi":"10.1016/j.susmat.2024.e01070","DOIUrl":"10.1016/j.susmat.2024.e01070","url":null,"abstract":"<div><p>The white pollution caused by non-degradable plastics poses a serious threat to human society and the environment, thus developing biodegradable material is urgent. In this work, a novel phosphonitrile hybrid metal-polyphenol network was constructed and used for the preparation of flame retardant, UV resistant and antibacterial multifunctional polyvinyl alcohol composite (PVA@HCPD-Ag). The limiting oxygen index (LOI) value of PVA@HCPD-Ag was improved to 33.5%, while the peak heat release rate (PHRR) and total heat release (THR) decreased by 35.62% and 47.76%. Besides, the ultraviolet protection factor (UPF) value of PVA@HCPD-Ag was significantly improved from 4.63 of the original PVA to 482.79, while the tensile strength was increased by 10.23%. Furthermore, the inhibition efficacy of PVA@HCPD-Ag for <em>E. coli</em> and <em>S. aureus</em> was up to 98.12% and 99.99%. This work explored the synergistic flame retardant effect of in-situ reduced Ag<sup>0</sup> and phosphonitrile crosslinked polyphenol network and proposed an advanced strategy for developing high value-added functionalized PVA materials.</p></div>","PeriodicalId":22097,"journal":{"name":"Sustainable Materials and Technologies","volume":null,"pages":null},"PeriodicalIF":8.6,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141929753","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparative degradation behavior of polybutylene succinate (PBS), used PBS, and PBS/Polyhydroxyalkanoates (PHA) blend fibers in compost and marine–sediment interfaces 聚丁二酸丁二醇酯 (PBS)、使用过的 PBS 和 PBS/聚羟基烷酸酯 (PHA) 混合物纤维在堆肥和海洋沉积物界面中的降解行为比较
IF 8.6 2区 工程技术 Q1 ENERGY & FUELS Pub Date : 2024-07-29 DOI: 10.1016/j.susmat.2024.e01065

Amid increasing concerns over microplastic pollution and the persistence of nonbiodegradable polymers in the ocean, this study evaluates the biodegradability of polybutylene succinate (PBS)-based fishing gear under different conditions: pristine PBS fibers, PBS fibers utilized in fishing (PBS_used), and PBS fibers blended with 10% polyhydroxyalkanoate (PHA). By simulating compost and marine–sediment interface environments with reference to ISO 14855 and ISO 19679 standards, respectively, we aimed not only to assess the degradation performance of these fibers but also to examine the physical and chemical property changes pre and postdegradation. PBS, PBS_used, and PBS/PHA (9:1) fibers exhibited degradation rates of 31.9%, 35.5%, and 39.5% in compost environments, and 20.3%, 22.1%, and 25.9% at the seawater–sediment interface, respectively. Through comprehensive physicochemical analyses involving molecular weight measurement, field emission–scanning electron microscope, Fourier transform infrared spectroscopy, tensile property evaluation, and thermogravimetric analysis, the degradation behavior of PBS-based fibers depending on the degradation environment was compared. This study suggests that PBS-based fishing gear can biodegrade under various conditions encountered in the actual fishing sector, thereby preventing ghost fishing and mitigating the issue of abandoned, lost, or otherwise discarded fishing gear.

随着人们对海洋中的微塑料污染和不可生物降解聚合物的持久性日益关注,本研究评估了基于聚丁二酸丁二醇酯(PBS)的渔具在不同条件下的生物降解性:原始的 PBS 纤维、捕鱼时使用的 PBS 纤维(PBS_used)以及与 10% 聚羟基烷酸酯(PHA)混合的 PBS 纤维。通过分别参照 ISO 14855 和 ISO 19679 标准模拟堆肥和海洋-沉积物界面环境,我们不仅要评估这些纤维的降解性能,还要考察降解前后的物理和化学特性变化。PBS、PBS_used 和 PBS/PHA (9:1) 纤维在堆肥环境中的降解率分别为 31.9%、35.5% 和 39.5%,在海水-沉积物界面的降解率分别为 20.3%、22.1% 和 25.9%。通过分子量测量、场发射扫描电子显微镜、傅立叶变换红外光谱、拉伸性能评估和热重分析等综合理化分析,比较了基于 PBS 的纤维在不同降解环境下的降解行为。这项研究表明,基于 PBS 的渔具可以在实际捕鱼过程中遇到的各种条件下进行生物降解,从而防止幽灵捕鱼,并减轻遗弃、丢失或以其他方式丢弃渔具的问题。
{"title":"Comparative degradation behavior of polybutylene succinate (PBS), used PBS, and PBS/Polyhydroxyalkanoates (PHA) blend fibers in compost and marine–sediment interfaces","authors":"","doi":"10.1016/j.susmat.2024.e01065","DOIUrl":"10.1016/j.susmat.2024.e01065","url":null,"abstract":"<div><p>Amid increasing concerns over microplastic pollution and the persistence of nonbiodegradable polymers in the ocean, this study evaluates the biodegradability of polybutylene succinate (PBS)-based fishing gear under different conditions: pristine PBS fibers, PBS fibers utilized in fishing (PBS_used), and PBS fibers blended with 10% polyhydroxyalkanoate (PHA). By simulating compost and marine–sediment interface environments with reference to ISO 14855 and ISO 19679 standards, respectively, we aimed not only to assess the degradation performance of these fibers but also to examine the physical and chemical property changes pre and postdegradation. PBS, PBS_used, and PBS/PHA (9:1) fibers exhibited degradation rates of 31.9%, 35.5%, and 39.5% in compost environments, and 20.3%, 22.1%, and 25.9% at the seawater–sediment interface, respectively. Through comprehensive physicochemical analyses involving molecular weight measurement, field emission–scanning electron microscope, Fourier transform infrared spectroscopy, tensile property evaluation, and thermogravimetric analysis, the degradation behavior of PBS-based fibers depending on the degradation environment was compared. This study suggests that PBS-based fishing gear can biodegrade under various conditions encountered in the actual fishing sector, thereby preventing ghost fishing and mitigating the issue of abandoned, lost, or otherwise discarded fishing gear.</p></div>","PeriodicalId":22097,"journal":{"name":"Sustainable Materials and Technologies","volume":null,"pages":null},"PeriodicalIF":8.6,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141929754","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Sustainable Materials and Technologies
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1