首页 > 最新文献

Sustainable Materials and Technologies最新文献

英文 中文
Fabrication of V2O5@Co-MOF as a cathode material with excellent rate capability 制备具有优异速率能力的 V2O5@Co-MOF 阴极材料
IF 8.6 2区 工程技术 Q1 ENERGY & FUELS Pub Date : 2024-07-31 DOI: 10.1016/j.susmat.2024.e01072
S. Sanjana , V. Siva , S. Sharmila , A. Murugan , A. Shameem

In recent years, the demand for energy storage devices with high-performance has propelled intense research efforts toward the development of promising supercapacitors. Among various electrode material, vanadium pentoxide (V2O5) has gained significant interest due to its excellent electrochemical properties. For the application of energy storage, V2O5 has intrinsic low electrical conductivity and limited cycle stability, makes its practical application limited. To overcome these challenges, the integration of V2O5 with metal-organic framework (MOF) nanocomposites has emerged as a promising strategy. This study focuses on the synthesis, characterization, and electrochemical analysis of V2O5 with zeolitic imidazolate framework-67 (ZIF-67) nanocomposites for supercapacitor applications. The V2O5@ZIF-67 hybrid material has been prepared by a simple in-situ chemical method. The XRD pattern of V2O5@ZIF 67 nanocomposites illustrate the combination of V2O5 with ZIF 67, as well as the subsequent growth of two phases without any modification to the parent. Within a potential window of 0 to 0.45 V, the synthesised V2O5@ZIF-67 in the three-electrode system exhibits a high specific capacitance of 913.06 F g−1 at a current density of 6 A g−1. The fabricated asymmetric supercapacitor (ASC) device delivers a superior energy density of 9.69 Wh kg−1 and power density of 2187.5 W kg−1.

近年来,对高性能储能设备的需求推动了人们对开发前景广阔的超级电容器的深入研究。在各种电极材料中,五氧化二钒(VO)因其优异的电化学性能而备受关注。对于储能应用而言,五氧化二钒固有的低导电性和有限的循环稳定性使其实际应用受到限制。为了克服这些挑战,VO 与金属有机框架(MOF)纳米复合材料的整合已成为一种很有前景的策略。本研究的重点是用于超级电容器应用的 VO 与沸石咪唑-67(ZIF-67)纳米复合材料的合成、表征和电化学分析。VO@ZIF-67 混合材料是通过简单的化学方法制备的。VO@ZIF-67 纳米复合材料的 XRD 图显示了 VO 与 ZIF-67 的结合,以及随后两相的生长,而母体未发生任何变化。在 0 至 0.45 V 的电位窗口内,三电极系统中合成的 VO@ZIF-67 在 6 A g 的电流密度下显示出 913.06 F g 的高比电容。
{"title":"Fabrication of V2O5@Co-MOF as a cathode material with excellent rate capability","authors":"S. Sanjana ,&nbsp;V. Siva ,&nbsp;S. Sharmila ,&nbsp;A. Murugan ,&nbsp;A. Shameem","doi":"10.1016/j.susmat.2024.e01072","DOIUrl":"10.1016/j.susmat.2024.e01072","url":null,"abstract":"<div><p>In recent years, the demand for energy storage devices with high-performance has propelled intense research efforts toward the development of promising supercapacitors. Among various electrode material, vanadium pentoxide (V<sub>2</sub>O<sub>5</sub>) has gained significant interest due to its excellent electrochemical properties. For the application of energy storage, V<sub>2</sub>O<sub>5</sub> has intrinsic low electrical conductivity and limited cycle stability, makes its practical application limited. To overcome these challenges, the integration of V<sub>2</sub>O<sub>5</sub> with metal-organic framework (MOF) nanocomposites has emerged as a promising strategy. This study focuses on the synthesis, characterization, and electrochemical analysis of V<sub>2</sub>O<sub>5</sub> with zeolitic imidazolate framework-67 (ZIF-67) nanocomposites for supercapacitor applications. The V<sub>2</sub>O<sub>5</sub>@ZIF-67 hybrid material has been prepared by a simple <em>in-situ</em> chemical method. The XRD pattern of V<sub>2</sub>O<sub>5</sub>@ZIF 67 nanocomposites illustrate the combination of V<sub>2</sub>O<sub>5</sub> with ZIF 67, as well as the subsequent growth of two phases without any modification to the parent. Within a potential window of 0 to 0.45 V, the synthesised V<sub>2</sub>O<sub>5</sub>@ZIF-67 in the three-electrode system exhibits a high specific capacitance of 913.06 F g<sup>−1</sup> at a current density of 6 A g<sup>−1</sup>. The fabricated asymmetric supercapacitor (ASC) device delivers a superior energy density of 9.69 Wh kg<sup>−1</sup> and power density of 2187.5 W kg<sup>−1</sup>.</p></div>","PeriodicalId":22097,"journal":{"name":"Sustainable Materials and Technologies","volume":"41 ","pages":"Article e01072"},"PeriodicalIF":8.6,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141929751","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Triple filtration robot (T-robot) based on functionally graded multilayer antiviral environment-friendly (F-MAX) system for pathogen purification in confined space 基于功能分级多层抗病毒环境友好型(F-MAX)系统的三重过滤机器人(T-robot),用于密闭空间的病原体净化
IF 8.6 2区 工程技术 Q1 ENERGY & FUELS Pub Date : 2024-07-30 DOI: 10.1016/j.susmat.2024.e01071
Haotian Fan , Wangcheng Gu , Dongrui Zhou , Song Ge , Pengfeng Xiao , Ping Jiang , Zhongjie Fei

The improved abstract which especially take the suggestions above can be seen as follow:

This study addresses the challenge of pathogen regulation in confined spaces by introducing the T-robot, an innovative air filtration robot featuring the F-MAX multilayer composite plate. Designed to capture a wide range of pollutants, including harmful viruses and bacteria, the T-robot significantly enhances air quality. The experimental setup used magnesium phosphate cement, electrostatically charged melt-blown fabric, and eco-friendly materials such as lithium brine by-product magnesia. Key results include a virus removal rate of 99.99% and an antibacterial rate of 98%.

The F-MAX system combines multiple layers, each targeting specific particles, with features like the self-healing Desert Rose (DR) coating and high-speed air circulation. The T-robot's high filtration efficiency and sustainable design make it superior to traditional methods, suitable for both commercial and residential use. Its durability and advanced filtration capabilities help reduce airborne contaminants, creating healthier living spaces and demonstrating a commitment to a sustainable future.

根据上述建议改进后的摘要如下:
{"title":"Triple filtration robot (T-robot) based on functionally graded multilayer antiviral environment-friendly (F-MAX) system for pathogen purification in confined space","authors":"Haotian Fan ,&nbsp;Wangcheng Gu ,&nbsp;Dongrui Zhou ,&nbsp;Song Ge ,&nbsp;Pengfeng Xiao ,&nbsp;Ping Jiang ,&nbsp;Zhongjie Fei","doi":"10.1016/j.susmat.2024.e01071","DOIUrl":"10.1016/j.susmat.2024.e01071","url":null,"abstract":"<div><p>The improved abstract which especially take the suggestions above can be seen as follow:</p><p>This study addresses the challenge of pathogen regulation in confined spaces by introducing the T-robot, an innovative air filtration robot featuring the F-MAX multilayer composite plate. Designed to capture a wide range of pollutants, including harmful viruses and bacteria, the T-robot significantly enhances air quality. The experimental setup used magnesium phosphate cement, electrostatically charged melt-blown fabric, and eco-friendly materials such as lithium brine by-product magnesia. Key results include a virus removal rate of 99.99% and an antibacterial rate of 98%.</p><p>The F-MAX system combines multiple layers, each targeting specific particles, with features like the self-healing Desert Rose (DR) coating and high-speed air circulation. The T-robot's high filtration efficiency and sustainable design make it superior to traditional methods, suitable for both commercial and residential use. Its durability and advanced filtration capabilities help reduce airborne contaminants, creating healthier living spaces and demonstrating a commitment to a sustainable future.</p></div>","PeriodicalId":22097,"journal":{"name":"Sustainable Materials and Technologies","volume":"41 ","pages":"Article e01071"},"PeriodicalIF":8.6,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141929804","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental study on impact performance of seawater sea-sand concrete with recycled aggregates 含再生骨料的海水海砂混凝土冲击性能实验研究
IF 8.6 2区 工程技术 Q1 ENERGY & FUELS Pub Date : 2024-07-30 DOI: 10.1016/j.susmat.2024.e01060
Ruiqi Guo , Can Ou , Linjian Ma , Zhilin Long , Fu Xu , Changjun Yin

On islands distant from the mainland, obtaining raw materials for concrete production is often more challenging. To achieve sustainable development in island reef engineering, using discarded marine concrete and coral waste generated during island construction as recycled aggregates are of considerable significance. The preparation of Recycled Coral Aggregate Concrete (RCAC) for island reef engineering thus holds substantial importance. In this study, RCAC and Natural Aggregate Concrete (NAC), both designed with a compressive strength of C60, were prepared. Initially, the fundamental physical properties of the recycled coarse aggregate, such as apparent density, water absorption, and crushing index, were determined. Subsequently, a comparative analysis of the quasi-static mechanical properties of RCAC with varying proportions of recycled coral coarse aggregate (RCCA) was conducted. Furthermore, the impact compression mechanical properties of different RCAC specimens under various strain rates were examined using the Ф100mm Split Hopkinson Pressure Bar (SHPB) apparatus. The microstructure and long-term drying shrinkage performance of RCAC were also analyzed using Scanning Electron Microscopy (SEM) and a drying shrinkage apparatus. The finding indicated that the 28-day compressive strength of RCAC specimens with 100% coarse aggregate replacement reached a maximum of 62.4 MPa. The quasi-static compressive strength of RCAC specimens with 50% and 100% RCCA replacement was only 11.5% and 14.2% lower than that of NAC, respectively. Under impact loading, the dynamic compressive strength of RCAC specimens increased with the strain rate, with peak stress exhibiting an approximately linear relationship with the strain rate. The energy dissipation of RCAC specimens generally occurred in three stages, with the reflected and absorbed energies of the specimens increasing linearly with strain rate. At the same strain rate, the transmitted energy of RCAC specimens was higher than that of NAC specimens. Microstructural analysis revealed that the morphology of recycled coral aggregate is characterized by its porous and rough surface. The interfacial transition zone between the recycled coral aggregate and the cement mortar was relatively dense. Incorporating recycled coarse aggregate significantly affected the drying shrinkage properties of the concrete, with higher contents of RCCA leading to greater drying shrinkage rates.

在远离大陆的岛屿上,获取生产混凝土的原材料往往更具挑战性。为了实现岛礁工程的可持续发展,利用废弃的海运混凝土和岛屿建设过程中产生的珊瑚废料作为再生骨料具有相当重要的意义。因此,为岛礁工程制备再生珊瑚骨料混凝土(RCAC)具有重要意义。本研究制备了 RCAC 和天然骨料混凝土(NAC),两者的设计抗压强度均为 C60。首先,确定了再生粗骨料的基本物理特性,如表观密度、吸水率和压碎指数。随后,对含有不同比例再生珊瑚粗骨料(RCCA)的 RCAC 的准静态力学性能进行了比较分析。此外,还使用 Ф100mm Split Hopkinson Pressure Bar(SHPB)装置检测了不同 RCAC 试样在不同应变速率下的冲击压缩力学性能。此外,还使用扫描电子显微镜(SEM)和干燥收缩仪分析了 RCAC 的微观结构和长期干燥收缩性能。研究结果表明,粗骨料替代率为 100%的 RCAC 试样的 28 天抗压强度最高可达 62.4 兆帕。粗集料掺量为 50%和 100%的 RCAC 试样的准静态抗压强度分别比 NAC 试样低 11.5%和 14.2%。在冲击荷载下,RCAC 试样的动态抗压强度随应变速率的增加而增加,峰值应力与应变速率呈近似线性关系。RCAC 试样的能量耗散一般分为三个阶段,试样的反射能量和吸收能量随应变速率线性增加。在相同应变速率下,RCAC 试样的传递能量高于 NAC 试样。微观结构分析表明,再生珊瑚骨料的形态特征是表面多孔且粗糙。再生珊瑚骨料与水泥砂浆之间的界面过渡区相对致密。掺入再生粗骨料会显著影响混凝土的干燥收缩性能,RCCA 含量越高,干燥收缩率越大。
{"title":"Experimental study on impact performance of seawater sea-sand concrete with recycled aggregates","authors":"Ruiqi Guo ,&nbsp;Can Ou ,&nbsp;Linjian Ma ,&nbsp;Zhilin Long ,&nbsp;Fu Xu ,&nbsp;Changjun Yin","doi":"10.1016/j.susmat.2024.e01060","DOIUrl":"10.1016/j.susmat.2024.e01060","url":null,"abstract":"<div><p>On islands distant from the mainland, obtaining raw materials for concrete production is often more challenging. To achieve sustainable development in island reef engineering, using discarded marine concrete and coral waste generated during island construction as recycled aggregates are of considerable significance. The preparation of Recycled Coral Aggregate Concrete (RCAC) for island reef engineering thus holds substantial importance. In this study, RCAC and Natural Aggregate Concrete (NAC), both designed with a compressive strength of C60, were prepared. Initially, the fundamental physical properties of the recycled coarse aggregate, such as apparent density, water absorption, and crushing index, were determined. Subsequently, a comparative analysis of the quasi-static mechanical properties of RCAC with varying proportions of recycled coral coarse aggregate (RCCA) was conducted. Furthermore, the impact compression mechanical properties of different RCAC specimens under various strain rates were examined using the Ф100mm Split Hopkinson Pressure Bar (SHPB) apparatus. The microstructure and long-term drying shrinkage performance of RCAC were also analyzed using Scanning Electron Microscopy (SEM) and a drying shrinkage apparatus. The finding indicated that the 28-day compressive strength of RCAC specimens with 100% coarse aggregate replacement reached a maximum of 62.4 MPa. The quasi-static compressive strength of RCAC specimens with 50% and 100% RCCA replacement was only 11.5% and 14.2% lower than that of NAC, respectively. Under impact loading, the dynamic compressive strength of RCAC specimens increased with the strain rate, with peak stress exhibiting an approximately linear relationship with the strain rate. The energy dissipation of RCAC specimens generally occurred in three stages, with the reflected and absorbed energies of the specimens increasing linearly with strain rate. At the same strain rate, the transmitted energy of RCAC specimens was higher than that of NAC specimens. Microstructural analysis revealed that the morphology of recycled coral aggregate is characterized by its porous and rough surface. The interfacial transition zone between the recycled coral aggregate and the cement mortar was relatively dense. Incorporating recycled coarse aggregate significantly affected the drying shrinkage properties of the concrete, with higher contents of RCCA leading to greater drying shrinkage rates.</p></div>","PeriodicalId":22097,"journal":{"name":"Sustainable Materials and Technologies","volume":"41 ","pages":"Article e01060"},"PeriodicalIF":8.6,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141929750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phosphonitrile hybrid metal-polyphenol network: An effective strategy for developing functional PVA composites with flame retardancy, antibacterial and UV resistance 磷腈杂化金属-多酚网络:开发阻燃、抗菌和抗紫外线功能性 PVA 复合材料的有效策略
IF 8.6 2区 工程技术 Q1 ENERGY & FUELS Pub Date : 2024-07-29 DOI: 10.1016/j.susmat.2024.e01070
Wei Tan , Chunlong Zuo , Yin Tian , Lu Bai , Lina Jiang , Jieyun Zhao , Xiaoyu Liu , Yuanlin Ren , Xiaohui Liu

The white pollution caused by non-degradable plastics poses a serious threat to human society and the environment, thus developing biodegradable material is urgent. In this work, a novel phosphonitrile hybrid metal-polyphenol network was constructed and used for the preparation of flame retardant, UV resistant and antibacterial multifunctional polyvinyl alcohol composite (PVA@HCPD-Ag). The limiting oxygen index (LOI) value of PVA@HCPD-Ag was improved to 33.5%, while the peak heat release rate (PHRR) and total heat release (THR) decreased by 35.62% and 47.76%. Besides, the ultraviolet protection factor (UPF) value of PVA@HCPD-Ag was significantly improved from 4.63 of the original PVA to 482.79, while the tensile strength was increased by 10.23%. Furthermore, the inhibition efficacy of PVA@HCPD-Ag for E. coli and S. aureus was up to 98.12% and 99.99%. This work explored the synergistic flame retardant effect of in-situ reduced Ag0 and phosphonitrile crosslinked polyphenol network and proposed an advanced strategy for developing high value-added functionalized PVA materials.

不可降解塑料造成的白色污染对人类社会和环境构成了严重威胁,因此开发可生物降解材料迫在眉睫。本研究构建了一种新型磷腈杂化金属-多酚网络,并将其用于制备阻燃、抗紫外线和抗菌的多功能聚乙烯醇复合材料(PVA@HCPD-Ag)。PVA@HCPD-Ag的极限氧指数(LOI)值提高到33.5%,峰值热释放率(PRR)和总热释放率(THR)分别降低了35.62%和47.76%。此外,PVA@HCPD-Ag 的紫外线防护系数(UPF)值由原来 PVA 的 4.63 显著提高到 482.79,抗拉强度提高了 10.23%。此外,PVA@HCPD-Ag 对 和 的阻燃率分别高达 98.12% 和 99.99%。该研究探讨了原位还原Ag与膦腈交联多酚网络的协同阻燃效应,为开发高附加值的功能化PVA材料提出了一种先进的策略。
{"title":"Phosphonitrile hybrid metal-polyphenol network: An effective strategy for developing functional PVA composites with flame retardancy, antibacterial and UV resistance","authors":"Wei Tan ,&nbsp;Chunlong Zuo ,&nbsp;Yin Tian ,&nbsp;Lu Bai ,&nbsp;Lina Jiang ,&nbsp;Jieyun Zhao ,&nbsp;Xiaoyu Liu ,&nbsp;Yuanlin Ren ,&nbsp;Xiaohui Liu","doi":"10.1016/j.susmat.2024.e01070","DOIUrl":"10.1016/j.susmat.2024.e01070","url":null,"abstract":"<div><p>The white pollution caused by non-degradable plastics poses a serious threat to human society and the environment, thus developing biodegradable material is urgent. In this work, a novel phosphonitrile hybrid metal-polyphenol network was constructed and used for the preparation of flame retardant, UV resistant and antibacterial multifunctional polyvinyl alcohol composite (PVA@HCPD-Ag). The limiting oxygen index (LOI) value of PVA@HCPD-Ag was improved to 33.5%, while the peak heat release rate (PHRR) and total heat release (THR) decreased by 35.62% and 47.76%. Besides, the ultraviolet protection factor (UPF) value of PVA@HCPD-Ag was significantly improved from 4.63 of the original PVA to 482.79, while the tensile strength was increased by 10.23%. Furthermore, the inhibition efficacy of PVA@HCPD-Ag for <em>E. coli</em> and <em>S. aureus</em> was up to 98.12% and 99.99%. This work explored the synergistic flame retardant effect of in-situ reduced Ag<sup>0</sup> and phosphonitrile crosslinked polyphenol network and proposed an advanced strategy for developing high value-added functionalized PVA materials.</p></div>","PeriodicalId":22097,"journal":{"name":"Sustainable Materials and Technologies","volume":"41 ","pages":"Article e01070"},"PeriodicalIF":8.6,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141929753","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparative degradation behavior of polybutylene succinate (PBS), used PBS, and PBS/Polyhydroxyalkanoates (PHA) blend fibers in compost and marine–sediment interfaces 聚丁二酸丁二醇酯 (PBS)、使用过的 PBS 和 PBS/聚羟基烷酸酯 (PHA) 混合物纤维在堆肥和海洋沉积物界面中的降解行为比较
IF 8.6 2区 工程技术 Q1 ENERGY & FUELS Pub Date : 2024-07-29 DOI: 10.1016/j.susmat.2024.e01065
Jungkyu Kim , Heecheol Yun , Sungwook Won , Donggil Lee , Suyeon Baek , Gyeom Heo , Subong Park , Hyoung-Joon Jin , Hyo Won Kwak

Amid increasing concerns over microplastic pollution and the persistence of nonbiodegradable polymers in the ocean, this study evaluates the biodegradability of polybutylene succinate (PBS)-based fishing gear under different conditions: pristine PBS fibers, PBS fibers utilized in fishing (PBS_used), and PBS fibers blended with 10% polyhydroxyalkanoate (PHA). By simulating compost and marine–sediment interface environments with reference to ISO 14855 and ISO 19679 standards, respectively, we aimed not only to assess the degradation performance of these fibers but also to examine the physical and chemical property changes pre and postdegradation. PBS, PBS_used, and PBS/PHA (9:1) fibers exhibited degradation rates of 31.9%, 35.5%, and 39.5% in compost environments, and 20.3%, 22.1%, and 25.9% at the seawater–sediment interface, respectively. Through comprehensive physicochemical analyses involving molecular weight measurement, field emission–scanning electron microscope, Fourier transform infrared spectroscopy, tensile property evaluation, and thermogravimetric analysis, the degradation behavior of PBS-based fibers depending on the degradation environment was compared. This study suggests that PBS-based fishing gear can biodegrade under various conditions encountered in the actual fishing sector, thereby preventing ghost fishing and mitigating the issue of abandoned, lost, or otherwise discarded fishing gear.

随着人们对海洋中的微塑料污染和不可生物降解聚合物的持久性日益关注,本研究评估了基于聚丁二酸丁二醇酯(PBS)的渔具在不同条件下的生物降解性:原始的 PBS 纤维、捕鱼时使用的 PBS 纤维(PBS_used)以及与 10% 聚羟基烷酸酯(PHA)混合的 PBS 纤维。通过分别参照 ISO 14855 和 ISO 19679 标准模拟堆肥和海洋-沉积物界面环境,我们不仅要评估这些纤维的降解性能,还要考察降解前后的物理和化学特性变化。PBS、PBS_used 和 PBS/PHA (9:1) 纤维在堆肥环境中的降解率分别为 31.9%、35.5% 和 39.5%,在海水-沉积物界面的降解率分别为 20.3%、22.1% 和 25.9%。通过分子量测量、场发射扫描电子显微镜、傅立叶变换红外光谱、拉伸性能评估和热重分析等综合理化分析,比较了基于 PBS 的纤维在不同降解环境下的降解行为。这项研究表明,基于 PBS 的渔具可以在实际捕鱼过程中遇到的各种条件下进行生物降解,从而防止幽灵捕鱼,并减轻遗弃、丢失或以其他方式丢弃渔具的问题。
{"title":"Comparative degradation behavior of polybutylene succinate (PBS), used PBS, and PBS/Polyhydroxyalkanoates (PHA) blend fibers in compost and marine–sediment interfaces","authors":"Jungkyu Kim ,&nbsp;Heecheol Yun ,&nbsp;Sungwook Won ,&nbsp;Donggil Lee ,&nbsp;Suyeon Baek ,&nbsp;Gyeom Heo ,&nbsp;Subong Park ,&nbsp;Hyoung-Joon Jin ,&nbsp;Hyo Won Kwak","doi":"10.1016/j.susmat.2024.e01065","DOIUrl":"10.1016/j.susmat.2024.e01065","url":null,"abstract":"<div><p>Amid increasing concerns over microplastic pollution and the persistence of nonbiodegradable polymers in the ocean, this study evaluates the biodegradability of polybutylene succinate (PBS)-based fishing gear under different conditions: pristine PBS fibers, PBS fibers utilized in fishing (PBS_used), and PBS fibers blended with 10% polyhydroxyalkanoate (PHA). By simulating compost and marine–sediment interface environments with reference to ISO 14855 and ISO 19679 standards, respectively, we aimed not only to assess the degradation performance of these fibers but also to examine the physical and chemical property changes pre and postdegradation. PBS, PBS_used, and PBS/PHA (9:1) fibers exhibited degradation rates of 31.9%, 35.5%, and 39.5% in compost environments, and 20.3%, 22.1%, and 25.9% at the seawater–sediment interface, respectively. Through comprehensive physicochemical analyses involving molecular weight measurement, field emission–scanning electron microscope, Fourier transform infrared spectroscopy, tensile property evaluation, and thermogravimetric analysis, the degradation behavior of PBS-based fibers depending on the degradation environment was compared. This study suggests that PBS-based fishing gear can biodegrade under various conditions encountered in the actual fishing sector, thereby preventing ghost fishing and mitigating the issue of abandoned, lost, or otherwise discarded fishing gear.</p></div>","PeriodicalId":22097,"journal":{"name":"Sustainable Materials and Technologies","volume":"41 ","pages":"Article e01065"},"PeriodicalIF":8.6,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141929754","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electronic modulation optimizes intermediate adsorption on Ni sites via coupling NiCo alloy in N-doped carbon dodecahedrons toward efficient hydrogen evolution reaction 通过掺杂 N 的十二面体碳中的镍钴合金耦合,电子调制优化了镍位点上的中间体吸附,从而实现高效的氢进化反应
IF 8.6 2区 工程技术 Q1 ENERGY & FUELS Pub Date : 2024-07-29 DOI: 10.1016/j.susmat.2024.e01073
Bin Wang, Qian Zhou, Xiyue Han, Hongyan Pan, Wan Wang, Guangtao Mao, Qingmei Wang

Developing efficient, stable, and low-cost metal electrocatalysts for hydrogen evolution reaction (HER) is significant for clean energy conversion technology. Regulating the adsorption energy of H intermediates by modulating the electronic structure of the active sites of the electrocatalyst for approximating the equilibrium potential is of primality importance to overcoming the kinetic sluggishness of the HER, yet still represents a great challenge. Herein, we have reported a NiCo alloy electrocatalyst supported by an N-doped carbon dodecahedral substrate with a strong electron coupling between the NiCo alloy and NC to improve the obstacles of both activity and stability for HER. Benefiting from the above electron coupling effect, the Ni1Co2/NC catalyst exhibits enhanced HER activity and stability in an acid electrolyte. Specifically, the Ni1Co2/NC exhibits enhanced acid HER activity with a low overpotential of 114.7 mV at 10 mA cm−2 and robust stability with negligible activity decay after 5000 cycles, which are superior to its counterpart. Theoretical calculations revealed that the electron coupling between the NiCo alloy and NC could effectively moderate the electronic states of NiCo alloy, dramatically decreasing the free energy for H adsorption and leading to optimal adsorption/desorption of *H, thereby promoting the overall HER kinetics. This study provides a new perspective on constructing catalysts of HER with low-cost, well-designed structures and superior performance for clean energy conversion technology.

开发高效、稳定、低成本的氢进化反应(HER)金属电催化剂对清洁能源转换技术意义重大。通过调节电催化剂活性位点的电子结构来调节氢中间产物的吸附能,以接近平衡电位,这对于克服氢进化反应的动力学迟滞性至关重要,但仍然是一个巨大的挑战。在此,我们报道了一种由掺杂 N 的十二面体碳基底支撑的镍钴合金电催化剂,镍钴合金与 NC 之间的强电子耦合改善了 HER 的活性和稳定性障碍。得益于上述电子耦合效应,NiCo/NC 催化剂在酸性电解质中表现出更高的 HER 活性和稳定性。具体来说,NiCo/NC 催化剂在酸性电解液中表现出更高的 HER 活性,在 10 mA cm 时过电位低至 114.7 mV,而且稳定性很强,5000 个循环后活性衰减几乎可以忽略不计,这些都优于同类催化剂。理论计算显示,镍钴合金与 NC 之间的电子耦合可有效缓和镍钴合金的电子状态,显著降低 H 吸附的自由能,从而优化 *H 的吸附/解吸,进而促进整个 HER 动力学。这项研究为构建成本低廉、结构设计合理、性能优越的 HER 催化剂提供了新的视角,有助于清洁能源转换技术的发展。
{"title":"Electronic modulation optimizes intermediate adsorption on Ni sites via coupling NiCo alloy in N-doped carbon dodecahedrons toward efficient hydrogen evolution reaction","authors":"Bin Wang,&nbsp;Qian Zhou,&nbsp;Xiyue Han,&nbsp;Hongyan Pan,&nbsp;Wan Wang,&nbsp;Guangtao Mao,&nbsp;Qingmei Wang","doi":"10.1016/j.susmat.2024.e01073","DOIUrl":"10.1016/j.susmat.2024.e01073","url":null,"abstract":"<div><p>Developing efficient, stable, and low-cost metal electrocatalysts for hydrogen evolution reaction (HER) is significant for clean energy conversion technology. Regulating the adsorption energy of H intermediates by modulating the electronic structure of the active sites of the electrocatalyst for approximating the equilibrium potential is of primality importance to overcoming the kinetic sluggishness of the HER, yet still represents a great challenge. Herein, we have reported a NiCo alloy electrocatalyst supported by an N-doped carbon dodecahedral substrate with a strong electron coupling between the NiCo alloy and NC to improve the obstacles of both activity and stability for HER. Benefiting from the above electron coupling effect, the Ni<sub>1</sub>Co<sub>2</sub>/NC catalyst exhibits enhanced HER activity and stability in an acid electrolyte. Specifically, the Ni<sub>1</sub>Co<sub>2</sub>/NC exhibits enhanced acid HER activity with a low overpotential of 114.7 mV at 10 mA cm<sup>−2</sup> and robust stability with negligible activity decay after 5000 cycles, which are superior to its counterpart. Theoretical calculations revealed that the electron coupling between the NiCo alloy and NC could effectively moderate the electronic states of NiCo alloy, dramatically decreasing the free energy for H adsorption and leading to optimal adsorption/desorption of *H, thereby promoting the overall HER kinetics. This study provides a new perspective on constructing catalysts of HER with low-cost, well-designed structures and superior performance for clean energy conversion technology.</p></div>","PeriodicalId":22097,"journal":{"name":"Sustainable Materials and Technologies","volume":"41 ","pages":"Article e01073"},"PeriodicalIF":8.6,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141929752","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing circular economy of waste refrigerants management using deep eutectic solvents 利用深共晶溶剂提高废弃制冷剂管理的循环经济性
IF 8.6 2区 工程技术 Q1 ENERGY & FUELS Pub Date : 2024-07-28 DOI: 10.1016/j.susmat.2024.e01062
D. Clijnk, V. Codera, J.O. Pou, J. Fernandez-Garcia, R. Gonzalez-Olmos

The use of fluorinated gases (F-Gases) in the refrigeration industry is subjected to increasingly restricted laws, such as the F-Gas regulation 517/2014 in Europe, due to their high global warming potential (GWP). Currently, there is a lack of standardized recovery technologies, so most of the F-gases used to be incinerated at the end of their life cycle. This is contrary to the principles of circular economy and development of sustainable processes, which should consider the recycling of these gases. The difficult separation of F-Gases blends might have a solution on the use of Deep Eutectic Solvents (DES) as green absorbents. In this work, the performance of a DES was assessed for the recovery of pentafluoroethane (R-125) and difluoromethane (R-32) from the commercial refrigerant R-410A combining a dual approach based on the experimental measurement of the F-Gases absorption in the DES and on process simulation using Aspen Plus. The environmental impacts of the designed recovery process (circular economy scenario) were examined using a life cycle assessment (LCA) approach and it was compared to the environmental impacts of the industrial manufacture of R-125 (lineal economy scenario). In comparison to the conventional R-125 production, the results of the proposed recovery process revealed a significant reduction in the environmental impacts between 92 and 99% with a recovery of R-125 of 76.7%, acceptable for its further reuse (purity of 98% w/w). The results of this work could pave the way for developing innovative F-Gases recovery technologies using DES, which can contribute to reduce the environmental impacts of these compounds via circular economy strategies.

由于氟化气体具有较高的全球升温潜能值(GWP),制冷行业对氟化气体的使用受到越来越多法律的限制,例如欧洲的第 517/2014 号氟化气体法规。目前,由于缺乏标准化的回收技术,大多数含氟温室气体在其生命周期结束时都会被焚烧。这有悖于循环经济和可持续工艺发展的原则,因为循环经济和可持续工艺应考虑这些气体的回收利用。深共晶溶剂(DES)作为绿色吸收剂,可以解决混合含氟温室气体难以分离的问题。在这项工作中,我们评估了 DES 从商用制冷剂 R-410A 中回收五氟乙烷 (R-125) 和二氟甲烷 (R-32) 的性能,结合了基于 DES 中含氟温室气体吸收实验测量和使用 Aspen Plus 进行过程模拟的双重方法。使用生命周期评估(LCA)方法对设计的回收工艺(循环经济方案)对环境的影响进行了研究,并将其与 R-125 工业生产(直线经济方案)对环境的影响进行了比较。与传统的 R-125 生产相比,拟议回收工艺的结果表明,对环境的影响显著减少了 92% 至 99%,R-125 的回收率为 76.7%,可接受进一步再利用(纯度为 98% w/w)。这项工作的成果可以为利用 DES 开发创新的含氟温室气体回收技术铺平道路,从而有助于通过循环经济战略减少这些化合物对环境的影响。
{"title":"Enhancing circular economy of waste refrigerants management using deep eutectic solvents","authors":"D. Clijnk,&nbsp;V. Codera,&nbsp;J.O. Pou,&nbsp;J. Fernandez-Garcia,&nbsp;R. Gonzalez-Olmos","doi":"10.1016/j.susmat.2024.e01062","DOIUrl":"10.1016/j.susmat.2024.e01062","url":null,"abstract":"<div><p>The use of fluorinated gases (F-Gases) in the refrigeration industry is subjected to increasingly restricted laws, such as the F-Gas regulation 517/2014 in Europe, due to their high global warming potential (GWP). Currently, there is a lack of standardized recovery technologies, so most of the F-gases used to be incinerated at the end of their life cycle. This is contrary to the principles of circular economy and development of sustainable processes, which should consider the recycling of these gases. The difficult separation of F-Gases blends might have a solution on the use of Deep Eutectic Solvents (DES) as green absorbents. In this work, the performance of a DES was assessed for the recovery of pentafluoroethane (R-125) and difluoromethane (R-32) from the commercial refrigerant R-410A combining a dual approach based on the experimental measurement of the F-Gases absorption in the DES and on process simulation using Aspen Plus. The environmental impacts of the designed recovery process (circular economy scenario) were examined using a life cycle assessment (LCA) approach and it was compared to the environmental impacts of the industrial manufacture of R-125 (lineal economy scenario). In comparison to the conventional R-125 production, the results of the proposed recovery process revealed a significant reduction in the environmental impacts between 92 and 99% with a recovery of R-125 of 76.7%, acceptable for its further reuse (purity of 98% <em>w</em>/w). The results of this work could pave the way for developing innovative F-Gases recovery technologies using DES, which can contribute to reduce the environmental impacts of these compounds via circular economy strategies.</p></div>","PeriodicalId":22097,"journal":{"name":"Sustainable Materials and Technologies","volume":"41 ","pages":"Article e01062"},"PeriodicalIF":8.6,"publicationDate":"2024-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141849372","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent trends in Photoelectrocatalysts: Types, influencing factors, and versatile applications: A comprehensive review 光电催化剂的最新趋势:光电催化剂的类型、影响因素和广泛应用:全面回顾
IF 8.6 2区 工程技术 Q1 ENERGY & FUELS Pub Date : 2024-07-28 DOI: 10.1016/j.susmat.2024.e01067
Muhammad Yaseen , Khadija Khalid , Shaista Bibi , Abbas Khan , Mustafa Tuzen , Tawfik A. Saleh

Photoelectrocatalyst materials catalyze chemical reactions using solar light and an electric field. They have garnered interest due to their potential for sustainable energy conversion and environmental applications. Photoelectrocatalysts have demonstrated moderate magnetic properties, making them potential candidates for practical applications. This review aims to highlight various methods of synthesis, functionalization, and environmental applications of photoelectrocatalysts. The present work also describes different methods for synthesizing photoelectrocatalysts such as sol-gel, hydrothermal/solvothermal, chemical vapour deposition, electrochemical methods, thermal decomposition, chemical bath deposition, co-precipitation, impregnation, and heat treatment. Furthermore, various characterization techniques such as TEM, SEM, STM, XRD, PL, XPS, ET, EIS, BET, RS, ESR, etc., have been summarized and discussed. To enhance the properties and applications of photoelectrocatalysts, functionalization has also been discussed. Additionally, numerous uses such as water splitting, photocatalysis, environmental remediation, carbon dioxide reduction, energy storage, sensor technology, water purification, biomedical applications, etc., have been explored, covering a broad range of fields, and highlighting the versatility of photoelectrocatalysts across various sectors. Likewise, various experimental factors that affect the structure-property relationship of the materials have also been elaborated. Furthermore, challenges and future suggestions have been discussed in the concluding section to provide guidance for researchers. Given its simplicity and conciseness, it is hoped that this review will be equally helpful for researchers and academics interested in the field of photoelectrocatalysts.

光触媒材料利用太阳光和电场催化化学反应。由于其在可持续能源转换和环境应用方面的潜力,光触媒材料备受关注。光电催化剂具有适度的磁性,使其成为实际应用的潜在候选材料。本综述旨在重点介绍光电催化剂的合成、功能化和环境应用的各种方法。本文还介绍了合成光电催化剂的各种方法,如溶胶凝胶法、水热/溶热法、化学气相沉积法、电化学法、热分解法、化学浴沉积法、共沉淀法、浸渍法和热处理法。此外,还总结和讨论了各种表征技术,如 TEM、SEM、STM、XRD、PL、XPS、ET、EIS、BET、RS、ESR 等。为了提高光电催化剂的性能和应用,还讨论了功能化问题。此外,还探讨了水分离、光催化、环境修复、二氧化碳还原、能量存储、传感器技术、水净化、生物医学应用等众多用途,涵盖了广泛的领域,突出了光电催化剂在各个领域的多功能性。同样,还阐述了影响材料结构-性能关系的各种实验因素。此外,结论部分还讨论了面临的挑战和未来的建议,为研究人员提供指导。本综述简明扼要,希望对光电催化剂领域感兴趣的研究人员和学者有所帮助。
{"title":"Recent trends in Photoelectrocatalysts: Types, influencing factors, and versatile applications: A comprehensive review","authors":"Muhammad Yaseen ,&nbsp;Khadija Khalid ,&nbsp;Shaista Bibi ,&nbsp;Abbas Khan ,&nbsp;Mustafa Tuzen ,&nbsp;Tawfik A. Saleh","doi":"10.1016/j.susmat.2024.e01067","DOIUrl":"10.1016/j.susmat.2024.e01067","url":null,"abstract":"<div><p>Photoelectrocatalyst materials catalyze chemical reactions using solar light and an electric field. They have garnered interest due to their potential for sustainable energy conversion and environmental applications. Photoelectrocatalysts have demonstrated moderate magnetic properties, making them potential candidates for practical applications. This review aims to highlight various methods of synthesis, functionalization, and environmental applications of photoelectrocatalysts. The present work also describes different methods for synthesizing photoelectrocatalysts such as sol-gel, hydrothermal/solvothermal, chemical vapour deposition, electrochemical methods, thermal decomposition, chemical bath deposition, co-precipitation, impregnation, and heat treatment. Furthermore, various characterization techniques such as TEM, SEM, STM, XRD, PL, XPS, ET, EIS, BET, RS, ESR, etc., have been summarized and discussed. To enhance the properties and applications of photoelectrocatalysts, functionalization has also been discussed. Additionally, numerous uses such as water splitting, photocatalysis, environmental remediation, carbon dioxide reduction, energy storage, sensor technology, water purification, biomedical applications, etc., have been explored, covering a broad range of fields, and highlighting the versatility of photoelectrocatalysts across various sectors. Likewise, various experimental factors that affect the structure-property relationship of the materials have also been elaborated. Furthermore, challenges and future suggestions have been discussed in the concluding section to provide guidance for researchers. Given its simplicity and conciseness, it is hoped that this review will be equally helpful for researchers and academics interested in the field of photoelectrocatalysts.</p></div>","PeriodicalId":22097,"journal":{"name":"Sustainable Materials and Technologies","volume":"41 ","pages":"Article e01067"},"PeriodicalIF":8.6,"publicationDate":"2024-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141850644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Carbon cloth core with a PEDOT decorated TiO2 shell for degradation of emerging organic contaminants and enhanced vanadium redox flow batteries 带有 PEDOT 装饰 TiO2 外壳的碳布内核,用于降解新出现的有机污染物和增强型钒氧化还原液流电池
IF 8.6 2区 工程技术 Q1 ENERGY & FUELS Pub Date : 2024-07-27 DOI: 10.1016/j.susmat.2024.e01069
Emad K. Radwan , Rehab A. Omar , Aya M. Ali , Ahmed S.S. Elsayed , Ehab N. El Sawy

In this study, carbon cloth (CC) was enrobed with a TiO2 layer (CC@TiO2) and then decorated with poly(3,4-ethylenedioxythiophene) (PEDOT, CC@TiO2-PEDOT). The XRD, Raman, XPS, and EDS results confirmed the successful preparation of the targeted materials, and SEM images revealed the targeted morphology. According to the UV–vis and PL analysis, the CC@TiO2-PEDOT exhibits wide and strong photoabsorption across the UV–vis spectrum, and the photogenerated charge carriers have a long lifespan and low recombination rate. The photocatalytic assessment revealed that CC@TiO2-PEDOT was more efficient than CC@TiO2 and CC@PEDOT in degrading both benzotriazole and 2-hydroxybenzothiazole. However, 2-hydroxybenzothiazole was more stable than benzotriazole. The superoxide anion radicals, holes, and/or hydroxyl radicals of CC@TiO2-PEDOT played pivotal roles in the photocatalytic degradation of benzotriazole. After the photocatalytic process, the benzotriazole solution was safe to use. The CC@TiO2 and CC@TiO2-PEDOT exhibited a superior performance as a potential cathode for vanadium redox flow batteries (VRFBs) and effectively mitigated the parasitic influence of the hydrogen evolution reaction (HER). CC@TiO2 and CC@TiO2-PEDOT displayed significantly smaller peak separation of 94 and 62 mV, at a scan rate of 5 mV/s, respectively, and a higher suppression for HER compared to CC or CC@PEDOT. The performance of the CC@TiO2 and CC@TiO2-PEDOT electrodes manifests their high reversibility for the V(II)/V(III) redox reaction. This research underscores the multifaceted potential of CC@TiO2-PEDOT as a promising material for addressing water purification challenges and advancing VRFBs for sustainable energy applications.

在这项研究中,碳布(CC)上包覆了一层 TiO2(CC@TiO2),然后用聚(3,4-亚乙二氧基噻吩)(PEDOT,CC@TiO2-PEDOT)进行装饰。XRD、拉曼、XPS和EDS结果证实了目标材料的成功制备,SEM图像显示了目标形貌。紫外-可见光和聚光分析表明,CC@TiO2-PEDOT 在紫外-可见光谱范围内表现出广泛而强烈的光吸收,光生电荷载流子寿命长、重组率低。光催化评估显示,在降解苯并三唑和 2-羟基苯并噻唑方面,CC@TiO2-PEDOT 比 CC@TiO2 和 CC@PEDOT 更有效。不过,2-羟基苯并噻唑比苯并三唑更稳定。在光催化降解苯并三唑的过程中,CC@TiO2-PEDOT 的超氧阴离子自由基、空穴和/或羟自由基发挥了关键作用。光催化过程结束后,苯并三唑溶液可以安全使用。CC@TiO2和CC@TiO2-PEDOT作为潜在的钒氧化还原液流电池(VRFBs)阴极表现出卓越的性能,并有效减轻了氢进化反应(HER)的寄生影响。与CC或CC@PEDOT相比,CC@TiO2和CC@TiO2-PEDOT在5 mV/s的扫描速率下分别显示出94 mV和62 mV的较小峰值分离,以及更高的HER抑制率。CC@TiO2 和 CC@TiO2-PEDOT 电极的性能表明它们对 V(II)/V(III) 氧化还原反应具有很高的可逆性。这项研究强调了 CC@TiO2-PEDOT 作为一种有前途的材料在应对水净化挑战和推进可持续能源应用的 VRFB 方面的多方面潜力。
{"title":"Carbon cloth core with a PEDOT decorated TiO2 shell for degradation of emerging organic contaminants and enhanced vanadium redox flow batteries","authors":"Emad K. Radwan ,&nbsp;Rehab A. Omar ,&nbsp;Aya M. Ali ,&nbsp;Ahmed S.S. Elsayed ,&nbsp;Ehab N. El Sawy","doi":"10.1016/j.susmat.2024.e01069","DOIUrl":"10.1016/j.susmat.2024.e01069","url":null,"abstract":"<div><p>In this study, carbon cloth (CC) was enrobed with a TiO<sub>2</sub> layer (CC@TiO<sub>2</sub>) and then decorated with poly(3,4-ethylenedioxythiophene) (PEDOT, CC@TiO<sub>2</sub>-PEDOT). The XRD, Raman, XPS, and EDS results confirmed the successful preparation of the targeted materials, and SEM images revealed the targeted morphology. According to the UV–vis and PL analysis, the CC@TiO<sub>2</sub>-PEDOT exhibits wide and strong photoabsorption across the UV–vis spectrum, and the photogenerated charge carriers have a long lifespan and low recombination rate. The photocatalytic assessment revealed that CC@TiO<sub>2</sub>-PEDOT was more efficient than CC@TiO<sub>2</sub> and CC@PEDOT in degrading both benzotriazole and 2-hydroxybenzothiazole. However, 2-hydroxybenzothiazole was more stable than benzotriazole. The superoxide anion radicals, holes, and/or hydroxyl radicals of CC@TiO<sub>2</sub>-PEDOT played pivotal roles in the photocatalytic degradation of benzotriazole. After the photocatalytic process, the benzotriazole solution was safe to use. The CC@TiO<sub>2</sub> and CC@TiO<sub>2</sub>-PEDOT exhibited a superior performance as a potential cathode for vanadium redox flow batteries (VRFBs) and effectively mitigated the parasitic influence of the hydrogen evolution reaction (HER). CC@TiO<sub>2</sub> and CC@TiO<sub>2</sub>-PEDOT displayed significantly smaller peak separation of 94 and 62 mV, at a scan rate of 5 mV/s, respectively, and a higher suppression for HER compared to CC or CC@PEDOT. The performance of the CC@TiO<sub>2</sub> and CC@TiO<sub>2</sub>-PEDOT electrodes manifests their high reversibility for the V(II)/V(III) redox reaction. This research underscores the multifaceted potential of CC@TiO<sub>2</sub>-PEDOT as a promising material for addressing water purification challenges and advancing VRFBs for sustainable energy applications.</p></div>","PeriodicalId":22097,"journal":{"name":"Sustainable Materials and Technologies","volume":"41 ","pages":"Article e01069"},"PeriodicalIF":8.6,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141838444","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Single proton anti-freezing hydrogel electrolyte with enhanced ion migration number enabling high-performance supercapacitor 具有增强离子迁移数的单质子抗冻水凝胶电解质可实现高性能超级电容器
IF 8.6 2区 工程技术 Q1 ENERGY & FUELS Pub Date : 2024-07-27 DOI: 10.1016/j.susmat.2024.e01066
Qingqing Guo , Weigang Sun , Xiang Gao , Furui Ma , Xingxiang Ji , Ligang Gai , Libin Liu , Zijian Zheng

Compared with traditional binary ion electrolytes, single-ion electrolytes have higher ion migration number and can avoid concentration polarization. In this work, single proton hydrogel electrolytes were prepared by one-step free radical polymerization of acrylamide and 2-acrylaminoamido-2-methyl-1-propane sulfonic acid in ethylene glycol (EG)/water binary solvent. The electrolyte possesses good mechanical strength and excellent anti-freezing ability. A high conductivity of 1.28 mS cm−1 at −40 °C is achieved by adjusting monomer ratio and EG content. The proton hopping along the ion channel formed by the anionic polymer chain and the Grotthuss transport are responsible for the high conductivity. An extremely high ion migration number of 0.87 is obtained. The fixed anionic group endows the hydrogel electrolyte with good anticorrosion ability. The hydrogel electrolyte assembled supercapacitor (SC) exhibits excellent electrochemical performance in a wide temperature range from −40 °C to 60 °C and can be stored at −30 °C for 10 months without capacitance attenuation. The capacitance retention rate of the SC is as high as 92% after 15,000 cycles at both room temperature and − 40 °C. The single proton hydrogel electrolyte provides a new route for the further development of storage device based proton transport.

与传统的二元离子电解质相比,单离子电解质具有更高的离子迁移数,可避免浓度极化。本研究采用丙烯酰胺和 2-丙烯酰胺基-2-甲基-1-丙烷磺酸在乙二醇(EG)/水二元溶剂中一步自由基聚合的方法制备了单质子水凝胶电解质。该电解质具有良好的机械强度和优异的抗冻能力。通过调节单体比例和 EG 含量,可在 -40 °C 时获得 1.28 mS cm-1 的高电导率。质子沿着阴离子聚合物链形成的离子通道跳动和格罗图斯传输是产生高电导率的原因。离子迁移系数高达 0.87。固定的阴离子基团赋予了水凝胶电解质良好的防腐能力。组装好的水凝胶电解质超级电容器(SC)在-40 °C至60 °C的宽温度范围内表现出优异的电化学性能,并可在-30 °C下保存10个月而不发生电容衰减。在室温和零下 40 ℃ 下循环 15,000 次后,电容器的电容保持率高达 92%。单一质子水凝胶电解质为进一步开发基于质子传输的存储装置提供了一条新途径。
{"title":"Single proton anti-freezing hydrogel electrolyte with enhanced ion migration number enabling high-performance supercapacitor","authors":"Qingqing Guo ,&nbsp;Weigang Sun ,&nbsp;Xiang Gao ,&nbsp;Furui Ma ,&nbsp;Xingxiang Ji ,&nbsp;Ligang Gai ,&nbsp;Libin Liu ,&nbsp;Zijian Zheng","doi":"10.1016/j.susmat.2024.e01066","DOIUrl":"10.1016/j.susmat.2024.e01066","url":null,"abstract":"<div><p>Compared with traditional binary ion electrolytes, single-ion electrolytes have higher ion migration number and can avoid concentration polarization. In this work, single proton hydrogel electrolytes were prepared by one-step free radical polymerization of acrylamide and 2-acrylaminoamido-2-methyl-1-propane sulfonic acid in ethylene glycol (EG)/water binary solvent. The electrolyte possesses good mechanical strength and excellent anti-freezing ability. A high conductivity of 1.28 mS cm<sup>−1</sup> at −40 °C is achieved by adjusting monomer ratio and EG content. The proton hopping along the ion channel formed by the anionic polymer chain and the Grotthuss transport are responsible for the high conductivity. An extremely high ion migration number of 0.87 is obtained. The fixed anionic group endows the hydrogel electrolyte with good anticorrosion ability. The hydrogel electrolyte assembled supercapacitor (SC) exhibits excellent electrochemical performance in a wide temperature range from −40 °C to 60 °C and can be stored at −30 °C for 10 months without capacitance attenuation. The capacitance retention rate of the SC is as high as 92% after 15,000 cycles at both room temperature and − 40 °C. The single proton hydrogel electrolyte provides a new route for the further development of storage device based proton transport.</p></div>","PeriodicalId":22097,"journal":{"name":"Sustainable Materials and Technologies","volume":"41 ","pages":"Article e01066"},"PeriodicalIF":8.6,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141844770","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Sustainable Materials and Technologies
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1