首页 > 最新文献

Sustainable Materials and Technologies最新文献

英文 中文
A tunable pendulum-like piezoelectric energy harvester for multidirectional vibration 用于多向振动的可调摆式压电能量收集器
IF 8.6 2区 工程技术 Q1 ENERGY & FUELS Pub Date : 2024-08-22 DOI: 10.1016/j.susmat.2024.e01094

Harvesting energy from vibrations using piezoelectric mechanism has attracted much attention for powering wireless sensors over the past decade. This paper proposes a tunable pendulum-like piezoelectric energy harvester for multidirectional vibration (TP-PVEH) to enhance the power generation characteristic, durability, and environmental adaptability of energy harvester. Unlike traditional cantilevered piezoelectric vibration energy harvesters (PVEHs), which typically lowered working frequencies by adding the weight of proof mass at the end of beam or reshaping beam, TP-PVEH employed a pendulum to harness low-frequency vibrations. Moreover, in contrast to typical pendulum-like PVEHs, the pendulum in this design was not mounted at the end of beam but was attached to a radial spherical plain bearing (RSPB) structure, which avoided the irreversible beam damage caused by gravitational force. TP-PVEH utilized simple-pendulum-induced RSPB motion to smoothly pluck piezoelectric beams, subjecting the piezoelectric beams to unidirectional compressive stress only. Meanwhile, the RSPB structure's capability to facilitate multidirectional rotation enabled TP-PVEH to efficiently capture energy from various directions. Theoretical analysis, numerical analysis and experiment tests were conducted to validate the design and examine how excitation and structural parameters influenced on the output performance of TP-PVEH. The results demonstrated that the excitation amplitude, excitation angle, proof mass, and mass distance brought significant effects on the output characteristic of TP-PVEH. The working frequency, output voltage and power could be efficiently tuned by the abovementioned parameters. With an excitation amplitude of 3 mm, TP-PVEH achieved an optimal output power of 9.81 mW and an output power density of 11.37 μW/mm3, operating with a load resistance of 200 kΩ at a frequency of 12.5 Hz.TP-PVEH could power 100 blue LEDs and a calculator. Additionally, the ability of TP-PVEH to charge capacitors further demonstrated its practical power supply capabilities.

在过去十年中,利用压电机制从振动中收集能量为无线传感器供电备受关注。本文提出了一种用于多向振动的可调摆式压电能量收集器(TP-PVEH),以增强能量收集器的发电特性、耐用性和环境适应性。传统的悬臂式压电振动能量收集器(PVEH)通常通过在横梁末端增加证明质量或重塑横梁来降低工作频率,与此不同,TP-PVEH 采用摆锤来利用低频振动。此外,与典型的摆锤式 PVEH 不同的是,该设计中的摆锤没有安装在梁端,而是固定在径向球面滑动轴承(RSPB)结构上,从而避免了重力对梁造成的不可逆损坏。TP-PVEH 利用单摆引起的 RSPB 运动平稳地拨动压电横梁,使压电横梁仅受到单向压应力。同时,由于 RSPB 结构能够促进多向旋转,因此 TP-PVEH 能够有效捕获来自不同方向的能量。研究人员通过理论分析、数值分析和实验测试验证了设计方案,并研究了激励参数和结构参数对 TP-PVEH 输出性能的影响。结果表明,激励振幅、激励角度、验证质量和质量距离对 TP-PVEH 的输出特性有显著影响。工作频率、输出电压和功率可通过上述参数进行有效调节。当激励振幅为 3 mm 时,TP-PVEH 的最佳输出功率为 9.81 mW,输出功率密度为 11.37 μW/mm3,工作频率为 12.5 Hz,负载电阻为 200 kΩ。此外,TP-PVEH 还能为电容器充电,这进一步证明了它的实际供电能力。
{"title":"A tunable pendulum-like piezoelectric energy harvester for multidirectional vibration","authors":"","doi":"10.1016/j.susmat.2024.e01094","DOIUrl":"10.1016/j.susmat.2024.e01094","url":null,"abstract":"<div><p>Harvesting energy from vibrations using piezoelectric mechanism has attracted much attention for powering wireless sensors over the past decade. This paper proposes a tunable pendulum-like piezoelectric energy harvester for multidirectional vibration (TP-PVEH) to enhance the power generation characteristic, durability, and environmental adaptability of energy harvester. Unlike traditional cantilevered piezoelectric vibration energy harvesters (PVEHs), which typically lowered working frequencies by adding the weight of proof mass at the end of beam or reshaping beam, TP-PVEH employed a pendulum to harness low-frequency vibrations. Moreover, in contrast to typical pendulum-like PVEHs, the pendulum in this design was not mounted at the end of beam but was attached to a radial spherical plain bearing (RSPB) structure, which avoided the irreversible beam damage caused by gravitational force. TP-PVEH utilized simple-pendulum-induced RSPB motion to smoothly pluck piezoelectric beams, subjecting the piezoelectric beams to unidirectional compressive stress only. Meanwhile, the RSPB structure's capability to facilitate multidirectional rotation enabled TP-PVEH to efficiently capture energy from various directions. Theoretical analysis, numerical analysis and experiment tests were conducted to validate the design and examine how excitation and structural parameters influenced on the output performance of TP-PVEH. The results demonstrated that the excitation amplitude, excitation angle, proof mass, and mass distance brought significant effects on the output characteristic of TP-PVEH. The working frequency, output voltage and power could be efficiently tuned by the abovementioned parameters. With an excitation amplitude of 3 mm, TP-PVEH achieved an optimal output power of 9.81 mW and an output power density of 11.37 μW/mm<sup>3</sup>, operating with a load resistance of 200 kΩ at a frequency of 12.5 Hz.TP-PVEH could power 100 blue LEDs and a calculator. Additionally, the ability of TP-PVEH to charge capacitors further demonstrated its practical power supply capabilities.</p></div>","PeriodicalId":22097,"journal":{"name":"Sustainable Materials and Technologies","volume":null,"pages":null},"PeriodicalIF":8.6,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142049542","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bilayer-favored intercalation induced low-voltage electrochemical production of nano-graphene oxide in neutral phosphate 中性磷酸盐中双层有利插层诱导低压电化学生产纳米氧化石墨烯
IF 8.6 2区 工程技术 Q1 ENERGY & FUELS Pub Date : 2024-08-22 DOI: 10.1016/j.susmat.2024.e01093

Graphene oxide (GO) exhibits great potential in various fields such as catalysis, wastewater treatment, and energy storage. However, traditional top-down GO preparation methods based on graphite exfoliation often suffer from high energy consumption and inevitably environmental pollution. In this work, an environmentally benign and low-voltage electrochemical exfoliation approach to fabricate nanoscale GO employing carbon fiber-based materials as the precursor using phosphate was proposed. Under neutral phosphate electrolyte, bilayer graphene oxide with a lateral size of ∼500 nm, thickness of ∼1.5 nm, and C/O ratio of 2.96 could be obtained via a constant potential process. By adjusting the pH to 12 to intensify the exfoliation reaction, the lateral size of the graphene oxide was controllable, decreasing to ∼50 nm, while the C/O ratio decreased to 0.9. Due to the further decrease in C/O ratio, the thickness increased slightly to 2–3 nm. The exfoliation potential (1.6–2.5 V vs. Ag/AgCl) and electrolyte concentration (50–500 mM) had an obvious impact on the yield of graphene oxide. Through electrochemical analysis such as linear sweep voltammetry, as well as density functional theory calculations, the exfoliation mechanism of phosphate is elucidated in detail, demonstrating that the stepwise ionized phosphate anions possess more robust intercalation capability than sulfate, thus enabling efficient exfoliation to the intertwined nanocrystalline graphite structure of carbon fibers. The DFT results revealed the bilayer-favored intercalation of phosphate, which accords well with experiments. This work provides a new controllable and green approach for GO synthesis, demonstrated by life cycle assessment. It could assist subsequent studies exploring the size effects of GO and its applications in environmental remediation and energy storage.

氧化石墨烯(GO)在催化、废水处理和储能等多个领域都展现出巨大的潜力。然而,传统的基于石墨剥离的自上而下的 GO 制备方法往往能耗较高,并不可避免地造成环境污染。本研究提出了一种以碳纤维基材料为前驱体,利用磷酸盐制备纳米级 GO 的环保低压电化学剥离方法。在中性磷酸盐电解质条件下,通过恒电位工艺可获得横向尺寸为 500 nm、厚度为 1.5 nm、C/O 比为 2.96 的双层氧化石墨烯。将 pH 值调至 12 以加强剥离反应,氧化石墨烯的横向尺寸可控,可降至 ∼50 nm,而 C/O 比降至 0.9。由于 C/O 比的进一步降低,厚度略微增加到 2-3 nm。剥离电位(1.6-2.5 V 对 Ag/AgCl)和电解质浓度(50-500 mM)对氧化石墨烯的产量有明显影响。通过线性扫频伏安法等电化学分析以及密度泛函理论计算,详细阐明了磷酸盐的剥离机理,表明逐步电离的磷酸盐阴离子比硫酸盐具有更强的插层能力,从而能高效剥离成碳纤维的交织纳米晶石墨结构。DFT 结果表明,磷酸盐的插层倾向于双层,这与实验结果十分吻合。这项工作为 GO 的合成提供了一种可控的绿色新方法,生命周期评估也证明了这一点。它可以帮助后续研究探索 GO 的尺寸效应及其在环境修复和能量存储方面的应用。
{"title":"Bilayer-favored intercalation induced low-voltage electrochemical production of nano-graphene oxide in neutral phosphate","authors":"","doi":"10.1016/j.susmat.2024.e01093","DOIUrl":"10.1016/j.susmat.2024.e01093","url":null,"abstract":"<div><p>Graphene oxide (GO) exhibits great potential in various fields such as catalysis, wastewater treatment, and energy storage. However, traditional top-down GO preparation methods based on graphite exfoliation often suffer from high energy consumption and inevitably environmental pollution. In this work, an environmentally benign and low-voltage electrochemical exfoliation approach to fabricate nanoscale GO employing carbon fiber-based materials as the precursor using phosphate was proposed. Under neutral phosphate electrolyte, bilayer graphene oxide with a lateral size of ∼500 nm, thickness of ∼1.5 nm, and C/O ratio of 2.96 could be obtained via a constant potential process. By adjusting the pH to 12 to intensify the exfoliation reaction, the lateral size of the graphene oxide was controllable, decreasing to ∼50 nm, while the C/O ratio decreased to 0.9. Due to the further decrease in C/O ratio, the thickness increased slightly to 2–3 nm. The exfoliation potential (1.6–2.5 V vs. Ag/AgCl) and electrolyte concentration (50–500 mM) had an obvious impact on the yield of graphene oxide. Through electrochemical analysis such as linear sweep voltammetry, as well as density functional theory calculations, the exfoliation mechanism of phosphate is elucidated in detail, demonstrating that the stepwise ionized phosphate anions possess more robust intercalation capability than sulfate, thus enabling efficient exfoliation to the intertwined nanocrystalline graphite structure of carbon fibers. The DFT results revealed the bilayer-favored intercalation of phosphate, which accords well with experiments. This work provides a new controllable and green approach for GO synthesis, demonstrated by life cycle assessment. It could assist subsequent studies exploring the size effects of GO and its applications in environmental remediation and energy storage.</p></div>","PeriodicalId":22097,"journal":{"name":"Sustainable Materials and Technologies","volume":null,"pages":null},"PeriodicalIF":8.6,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142058067","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sustainable recycling of aluminum scraps to recycled aerospace-grade 7075 aluminum alloy sheets 将铝废料可持续地回收利用为再生航空航天级 7075 铝合金板材
IF 8.6 2区 工程技术 Q1 ENERGY & FUELS Pub Date : 2024-08-22 DOI: 10.1016/j.susmat.2024.e01100

The production of aerospace-grade aluminum alloy sheet is characterized by stringent demands, resulting in a low yield rate. The processing of this material generates considerable amounts of highly alloyed scrap, complicating its recycling due to the challenge of maintaining melt cleanliness. This study employed an aerospace-grade melt refining system to purify the recycled 7075 alloy melt obtained from comprehensive scrap remelting. The melt's cleanliness was assessed using Porous Disc Filtration Analysis (PoDFA) and Liquid Metal Cleanliness Analyzer (LiMCA) and Alscan. The microstructure of the ingots and sheets was examined through Scanning Electron Microscopy (SEM) and Electron Backscatter Diffraction (EBSD), whereas the mechanical properties of recycled sheets were evaluated and benchmarked against those of primary sheet at an aerospace-certified testing facility. The findings indicate that the recycled 7075 sheet meets aviation standards, with no significant differences in microstructure or performance when compared to primary sheet. Furthermore, the study highlights the economic benefits of recycling scrap, revealing a potential cost saving of $4210.8 per ton of recycled sheet. The findings presented herein offer a theoretical framework and empirical evidence supporting the development of a recycling system for aerospace scraps and the certification of airworthiness for recycled aerospace aluminum alloy.

航空航天级铝合金板材的生产要求严格,因此成品率较低。这种材料在加工过程中会产生大量的高合金废料,由于难以保持熔体的清洁度,使其回收变得更加复杂。这项研究采用了航空航天级熔体精炼系统来净化从全面废料重熔中获得的回收 7075 合金熔体。使用多孔盘过滤分析仪(PoDFA)、液态金属清洁度分析仪(LiMCA)和 Alscan 评估了熔体的清洁度。通过扫描电子显微镜(SEM)和电子背散射衍射(EBSD)对铸锭和板材的微观结构进行了检测,同时在航空航天认证测试机构对回收板材的机械性能进行了评估,并与原生板材的机械性能进行了比较。研究结果表明,回收的 7075 板材符合航空标准,与原生板材相比,在微观结构或性能方面没有明显差异。此外,该研究还强调了回收废料的经济效益,显示每吨回收板材可节省 4210.8 美元的潜在成本。本文介绍的研究结果提供了一个理论框架和经验证据,支持航空废料回收系统的开发和回收航空铝合金的适航认证。
{"title":"Sustainable recycling of aluminum scraps to recycled aerospace-grade 7075 aluminum alloy sheets","authors":"","doi":"10.1016/j.susmat.2024.e01100","DOIUrl":"10.1016/j.susmat.2024.e01100","url":null,"abstract":"<div><p>The production of aerospace-grade aluminum alloy sheet is characterized by stringent demands, resulting in a low yield rate. The processing of this material generates considerable amounts of highly alloyed scrap, complicating its recycling due to the challenge of maintaining melt cleanliness. This study employed an aerospace-grade melt refining system to purify the recycled 7075 alloy melt obtained from comprehensive scrap remelting. The melt's cleanliness was assessed using Porous Disc Filtration Analysis (PoDFA) and Liquid Metal Cleanliness Analyzer (LiMCA) and Alscan. The microstructure of the ingots and sheets was examined through Scanning Electron Microscopy (SEM) and Electron Backscatter Diffraction (EBSD), whereas the mechanical properties of recycled sheets were evaluated and benchmarked against those of primary sheet at an aerospace-certified testing facility. The findings indicate that the recycled 7075 sheet meets aviation standards, with no significant differences in microstructure or performance when compared to primary sheet. Furthermore, the study highlights the economic benefits of recycling scrap, revealing a potential cost saving of $4210.8 per ton of recycled sheet. The findings presented herein offer a theoretical framework and empirical evidence supporting the development of a recycling system for aerospace scraps and the certification of airworthiness for recycled aerospace aluminum alloy.</p></div>","PeriodicalId":22097,"journal":{"name":"Sustainable Materials and Technologies","volume":null,"pages":null},"PeriodicalIF":8.6,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142049540","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thermo-pressed blend films of poly(lactic acid)/poly(butylene adipate-co-terephthalate) with polylimonene for sustainable active food packaging 聚(乳酸)/聚(己二酸丁二醇酯-共对苯二甲酸酯)与聚柠檬烯的热压共混膜,用于可持续活性食品包装
IF 8.6 2区 工程技术 Q1 ENERGY & FUELS Pub Date : 2024-08-22 DOI: 10.1016/j.susmat.2024.e01099

Poly(lactic acid) (PLA) and poly(butylene adipate-co-terephthalate) (PBAT) blends provide sustainable packaging solutions renowned for their robustness and biodegradability. Herein, we used a commercial PLA/PBAT blend (Ecovio® - E) to develop films by thermo-pressing, incorporating polylimonene (PLM) and comparing them with limonene (LIM) at 5% and 10% additive concentrations. Remarkably, E/PLM10% film exhibited an 84.9% reduction in Staphylococcus aureus count and a 62% decrease in Aspergillus niger count, surpassing LIM and PLA/PBAT. Additionally, PLM substantially improved the antioxidant activity of the films, achieving more than 40% DPPH scavenging and providing light-blocking capability, with E/PLM5% virtually halting UV-A transmission. Mechanical assessments showed that, although higher PLM levels reduced tensile strength, E/PLM5% matched control performance. FT-IR analysis confirmed PLM presence without chemical alterations, and minimal changes in crystallinity were observed via DSC and XRD, while TGA confirmed the attractive thermal stability of the films. Expanding on these findings, we evaluated film efficacy in cherry tomato preservation, including unpackaged controls. E/PLM5%-packaged tomatoes exhibited superior visual quality and fungal inhibition, proving a promising option for active food packaging due to their antimicrobial effectiveness, antioxidant activity, and UV-light protection. Therefore, this study represents significant progress in advanced packaging development, providing prolonged food preservation, sustainability, and retained performance even when prepared in simulated industrial conditions.

聚乳酸(PLA)和聚己二酸丁二醇酯(PBAT)混合物以其坚固性和生物降解性而闻名,是一种可持续包装解决方案。在本文中,我们使用商用聚乳酸/PBAT 混合物(Ecovio® - E)通过热压法生产薄膜,其中添加了聚柠檬烯(PLM),并与添加浓度为 5%和 10%的柠檬烯(LIM)进行了比较。令人瞩目的是,E/PLM10% 薄膜的金黄色葡萄球菌数量减少了 84.9%,黑曲霉数量减少了 62%,超过了 LIM 和 PLA/PBAT。此外,PLM 大大提高了薄膜的抗氧化活性,DPPH 清除率超过 40%,并具有阻光能力,E/PLM5% 几乎阻止了紫外线-A 的传播。机械评估结果表明,虽然较高的 PLM 含量会降低拉伸强度,但 E/PLM5% 与对照组的性能相当。傅立叶变换红外分析证实了 PLM 的存在,且未发生化学变化,通过 DSC 和 XRD 观察到的结晶度变化极小,而 TGA 则证实了薄膜极具吸引力的热稳定性。基于这些发现,我们评估了薄膜在樱桃番茄保鲜中的功效,包括无包装对照。E/PLM5%包装番茄显示出卓越的视觉质量和真菌抑制能力,由于其抗菌效果、抗氧化活性和紫外线防护能力,被证明是活性食品包装的理想选择。因此,这项研究标志着先进包装开发取得了重大进展,即使在模拟工业条件下制备,也能延长食品保鲜期,实现可持续性,并保持性能。
{"title":"Thermo-pressed blend films of poly(lactic acid)/poly(butylene adipate-co-terephthalate) with polylimonene for sustainable active food packaging","authors":"","doi":"10.1016/j.susmat.2024.e01099","DOIUrl":"10.1016/j.susmat.2024.e01099","url":null,"abstract":"<div><p>Poly(lactic acid) (PLA) and poly(butylene adipate-<em>co</em>-terephthalate) (PBAT) blends provide sustainable packaging solutions renowned for their robustness and biodegradability. Herein, we used a commercial PLA/PBAT blend (Ecovio® - E) to develop films by thermo-pressing, incorporating polylimonene (PLM) and comparing them with limonene (LIM) at 5% and 10% additive concentrations. Remarkably, E/PLM10% film exhibited an 84.9% reduction in <em>Staphylococcus aureus</em> count and a 62% decrease in <em>Aspergillus niger</em> count, surpassing LIM and PLA/PBAT. Additionally, PLM substantially improved the antioxidant activity of the films, achieving more than 40% DPPH scavenging and providing light-blocking capability, with E/PLM5% virtually halting UV-A transmission. Mechanical assessments showed that, although higher PLM levels reduced tensile strength, E/PLM5% matched control performance. FT-IR analysis confirmed PLM presence without chemical alterations, and minimal changes in crystallinity were observed via DSC and XRD, while TGA confirmed the attractive thermal stability of the films. Expanding on these findings, we evaluated film efficacy in cherry tomato preservation, including unpackaged controls. E/PLM5%-packaged tomatoes exhibited superior visual quality and fungal inhibition, proving a promising option for active food packaging due to their antimicrobial effectiveness, antioxidant activity, and UV-light protection. Therefore, this study represents significant progress in advanced packaging development, providing prolonged food preservation, sustainability, and retained performance even when prepared in simulated industrial conditions.</p></div>","PeriodicalId":22097,"journal":{"name":"Sustainable Materials and Technologies","volume":null,"pages":null},"PeriodicalIF":8.6,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142049541","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Utilization of the easy electron-losing capacity of dog fur waste for green energy devices and self-powered smart pet care systems 利用狗皮废物易于失去电子的特性,开发绿色能源设备和自供电智能宠物护理系统
IF 8.6 2区 工程技术 Q1 ENERGY & FUELS Pub Date : 2024-08-22 DOI: 10.1016/j.susmat.2024.e01096

The present global energy shortage and climate crisis can be addressed by embracing recycling, reuse, and recovery; for example, this can be achieved by methodically utilizing the problematic wastes for energy harvesting. This research describes a novel approach for recovery and reutilization of waste material by incorporating dog fur waste into a triboelectric energy harvester; this was accomplished via a simple, inexpensive, and eco-friendly chemical processing to turn this problematic waste into a high-performance tribolayer. Due to the complications of operating practical devices with dog fur in its natural form, the dog fur waste was transformed for the first time into a uniform thin-film-based high-performance positive tribolayer. The optimization of the fabrication of the dog fur film featured hexagonal pyramid nanostructures, and a novel tribopair was selected and consisted of the dog fur-based film and a Teflon film; these films have very large differences in electron affinities. Based on this optimization and selection, we achieved an outstanding output voltage, current, and power density of 2021.46 V, 109.84 μA and 24,669.957 μWcm−2, respectively, along with appreciable mechanical stability during continuous operation up to 10,000 cycles. Our research demonstrates the potential for integration of green electronics and self-powered human-pet interaction systems while providing a sustainable approach to a circular bioeconomy.

目前的全球能源短缺和气候危机可以通过循环利用、再利用和回收来解决;例如,可以通过有条不紊地利用有问题的废物进行能源收集来实现这一目标。本研究介绍了一种回收和再利用废料的新方法,即把狗毛皮废料纳入三电能收集器;这是通过一种简单、廉价和环保的化学处理方法实现的,将这种问题废料变成了一种高性能摩擦层。由于使用自然形态的狗毛操作实用设备的复杂性,我们首次将狗毛废物转化为基于薄膜的均匀的高性能正摩擦片层。通过优化狗毛薄膜的制造工艺,形成了以六角形金字塔为特征的纳米结构,并选择了一种新型摩擦对,它由狗毛薄膜和特氟龙薄膜组成;这两种薄膜的电子亲和性差异非常大。在优化和选择的基础上,我们实现了出色的输出电压、电流和功率密度,分别达到 2021.46 V、109.84 μA 和 24,669.957 μWcm-2,并且在连续工作达 10,000 次时具有显著的机械稳定性。我们的研究展示了绿色电子与自供电人宠互动系统集成的潜力,同时为循环生物经济提供了一种可持续的方法。
{"title":"Utilization of the easy electron-losing capacity of dog fur waste for green energy devices and self-powered smart pet care systems","authors":"","doi":"10.1016/j.susmat.2024.e01096","DOIUrl":"10.1016/j.susmat.2024.e01096","url":null,"abstract":"<div><p>The present global energy shortage and climate crisis can be addressed by embracing recycling, reuse, and recovery; for example, this can be achieved by methodically utilizing the problematic wastes for energy harvesting. This research describes a novel approach for recovery and reutilization of waste material by incorporating dog fur waste into a triboelectric energy harvester; this was accomplished via a simple, inexpensive, and eco-friendly chemical processing to turn this problematic waste into a high-performance tribolayer. Due to the complications of operating practical devices with dog fur in its natural form, the dog fur waste was transformed for the first time into a uniform thin-film-based high-performance positive tribolayer. The optimization of the fabrication of the dog fur film featured hexagonal pyramid nanostructures, and a novel tribopair was selected and consisted of the dog fur-based film and a Teflon film; these films have very large differences in electron affinities. Based on this optimization and selection, we achieved an outstanding output voltage, current, and power density of 2021.46 V, 109.84 μA and 24,669.957 μWcm<sup>−2</sup>, respectively, along with appreciable mechanical stability during continuous operation up to 10,000 cycles. Our research demonstrates the potential for integration of green electronics and self-powered human-pet interaction systems while providing a sustainable approach to a circular bioeconomy.</p></div>","PeriodicalId":22097,"journal":{"name":"Sustainable Materials and Technologies","volume":null,"pages":null},"PeriodicalIF":8.6,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142083186","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Facile preparation of a highly efficient coin cell supercapacitor based on WO3 nanorods 基于 WO3 纳米棒的高效纽扣电池超级电容器的简便制备方法
IF 8.6 2区 工程技术 Q1 ENERGY & FUELS Pub Date : 2024-08-21 DOI: 10.1016/j.susmat.2024.e01097

Developing sustainable energy storage devices is challenging for the progress of energy storage applications. Here, nanotechnology represents a strategic route to reduce the amount of used critical materials, while continuing to take advantage of their properties, thanks to the high surface to volume ratio which characterizes nanostructures. WO3 nanostructures represent a promising active material for energy storage applications, thanks to their wide capability of small positive ions (H+ and Li+) intercalation and their high stability in acidic conditions. The coupling between WO3 nanorods and carbon black powder is studied to realize a highly efficient coin cell supercapacitor. The morphology of WO3 nanorods and carbon black is investigated by using a scanning electron microscope, and the energy storage performances were evaluated by performing cycling voltammetry and galvanostatic charge and discharge analysis, thus obtaining promising specific capacitance results (79 and 70 F/g at 5 mV/s and 0.5 A/g respectively). Moreover, the stability of the obtained coin cell was investigated, thus getting good capacity retention over 250 charge-discharge cycles. Energy and power densities were also calculated, obtaining the highest energy density of 39 Wh/kg at a power density of 500 W/kg. The WO3‑carbon black coin cells are used to power a red LED, so demonstrating the viability for practical applications.

开发可持续的储能设备对储能应用的发展具有挑战性。在这方面,纳米技术是减少关键材料用量的战略途径,同时还能继续利用其特性,这要归功于纳米结构特有的高表面体积比。由于 WO3 纳米结构具有广泛的小正离子(H+ 和 Li+)插层能力和在酸性条件下的高稳定性,因此是一种很有前途的储能活性材料。本文研究了 WO3 纳米棒与炭黑粉末之间的耦合,以实现一种高效的纽扣电池超级电容器。利用扫描电子显微镜研究了 WO3 纳米棒和炭黑的形态,并通过循环伏安法和电静态充放电分析评估了其储能性能,从而获得了良好的比电容结果(在 5 mV/s 和 0.5 A/g 条件下分别为 79 和 70 F/g)。此外,还对所获纽扣电池的稳定性进行了研究,结果表明该电池在 250 次充放电循环后仍能保持良好的容量。此外,还计算了能量密度和功率密度,在功率密度为 500 W/kg 时,获得了 39 Wh/kg 的最高能量密度。WO3 碳黑纽扣电池用于为红色 LED 供电,从而证明了其在实际应用中的可行性。
{"title":"Facile preparation of a highly efficient coin cell supercapacitor based on WO3 nanorods","authors":"","doi":"10.1016/j.susmat.2024.e01097","DOIUrl":"10.1016/j.susmat.2024.e01097","url":null,"abstract":"<div><p>Developing sustainable energy storage devices is challenging for the progress of energy storage applications. Here, nanotechnology represents a strategic route to reduce the amount of used critical materials, while continuing to take advantage of their properties, thanks to the high surface to volume ratio which characterizes nanostructures. WO<sub>3</sub> nanostructures represent a promising active material for energy storage applications, thanks to their wide capability of small positive ions (H<sup>+</sup> and Li<sup>+</sup>) intercalation and their high stability in acidic conditions. The coupling between WO<sub>3</sub> nanorods and carbon black powder is studied to realize a highly efficient coin cell supercapacitor. The morphology of WO<sub>3</sub> nanorods and carbon black is investigated by using a scanning electron microscope, and the energy storage performances were evaluated by performing cycling voltammetry and galvanostatic charge and discharge analysis, thus obtaining promising specific capacitance results (79 and 70 F/g at 5 mV/s and 0.5 A/g respectively). Moreover, the stability of the obtained coin cell was investigated, thus getting good capacity retention over 250 charge-discharge cycles. Energy and power densities were also calculated, obtaining the highest energy density of 39 Wh/kg at a power density of 500 W/kg. The WO<sub>3</sub>‑carbon black coin cells are used to power a red LED, so demonstrating the viability for practical applications.</p></div>","PeriodicalId":22097,"journal":{"name":"Sustainable Materials and Technologies","volume":null,"pages":null},"PeriodicalIF":8.6,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S221499372400277X/pdfft?md5=228e093a401b438f2f345bb1fe887478&pid=1-s2.0-S221499372400277X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142049623","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancement of mechanical, barrier, and functional properties of chitosan film reinforced with glycerol, COS, and gallic acid for active food packaging 用甘油、COS 和没食子酸增强壳聚糖薄膜的机械、阻隔和功能特性,用于活性食品包装
IF 8.6 2区 工程技术 Q1 ENERGY & FUELS Pub Date : 2024-08-17 DOI: 10.1016/j.susmat.2024.e01092

The demand for eco-friendly and natural food packaging materials has sparked considerable interest in the research and development of sustainable active packaging materials. In this study, a chitosan-based film was developed using glycerol as a plasticiser, chitooligosaccharide (COS) as an additive, and gallic acid as a cross-linking agent. The physical, barrier, mechanical, morphological, thermal, and functional properties of fabricated films were measured. The bio-composite film showed significantly lower moisture content (from 24.28 to 17.01%), water solubility (from 41.56% to 31.03%), water vapour permeability (14.63 to 9.79 × 10−9 gm−1s−1Pa−1), and light transmittance (from 63.67% to 21.71%) compared to neat chitosan film. Furthermore, the bio-composite film exhibited higher tensile strength (57.66 MPa) and elongation at break (88.76%), smooth microstructure, strong DPPH and ABTS radicals scavenging capacity, and good antimicrobial activity towards E. coli, L. innocua, and S. cerevisiae, and non-toxic to HaCaT cells indicating promising potential for use in sustainable active food packaging.

对环保和天然食品包装材料的需求引发了人们对可持续活性包装材料研发的极大兴趣。本研究以甘油为增塑剂,壳寡糖(COS)为添加剂,没食子酸为交联剂,开发了一种壳聚糖薄膜。测量了所制薄膜的物理、阻隔、机械、形态、热和功能特性。与纯壳聚糖薄膜相比,生物复合薄膜的含水量(从 24.28% 降至 17.01%)、水溶性(从 41.56% 降至 31.03%)、水蒸气透过率(从 14.63 降至 9.79 × 10-9 gm-1s-1Pa-1)和透光率(从 63.67% 降至 21.71%)均明显降低。此外,生物复合膜还表现出较高的拉伸强度(57.66 兆帕)和断裂伸长率(88.76%)、光滑的微观结构、较强的 DPPH 和 ABTS 自由基清除能力,以及对大肠杆菌、无花酵母菌和酿酒葡萄球菌的良好抗菌活性和对 HaCaT 细胞的无毒性,这表明它在可持续活性食品包装方面具有广阔的应用前景。
{"title":"Enhancement of mechanical, barrier, and functional properties of chitosan film reinforced with glycerol, COS, and gallic acid for active food packaging","authors":"","doi":"10.1016/j.susmat.2024.e01092","DOIUrl":"10.1016/j.susmat.2024.e01092","url":null,"abstract":"<div><p>The demand for eco-friendly and natural food packaging materials has sparked considerable interest in the research and development of sustainable active packaging materials. In this study, a chitosan-based film was developed using glycerol as a plasticiser, chitooligosaccharide (COS) as an additive, and gallic acid as a cross-linking agent. The physical, barrier, mechanical, morphological, thermal, and functional properties of fabricated films were measured. The bio-composite film showed significantly lower moisture content (from 24.28 to 17.01%), water solubility (from 41.56% to 31.03%), water vapour permeability (14.63 to 9.79 × 10<sup>−9</sup> gm<sup>−1</sup>s<sup>−1</sup>Pa<sup>−1</sup>), and light transmittance (from 63.67% to 21.71%) compared to neat chitosan film. Furthermore, the bio-composite film exhibited higher tensile strength (57.66 MPa) and elongation at break (88.76%), smooth microstructure, strong DPPH and ABTS radicals scavenging capacity, and good antimicrobial activity towards <em>E. coli</em>, <em>L. innocua</em>, and <em>S. cerevisiae</em>, and non-toxic to HaCaT cells indicating promising potential for use in sustainable active food packaging.</p></div>","PeriodicalId":22097,"journal":{"name":"Sustainable Materials and Technologies","volume":null,"pages":null},"PeriodicalIF":8.6,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214993724002720/pdfft?md5=8206bdd7217425240a95619e428a07fb&pid=1-s2.0-S2214993724002720-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142041167","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sustainable industrial process design for derived CO2 adsorbent from municipal solid wastes: Scale-up, techno-economic and parametric assessment 从城市固体废物中提取二氧化碳吸附剂的可持续工业流程设计:规模扩大、技术经济和参数评估
IF 8.6 2区 工程技术 Q1 ENERGY & FUELS Pub Date : 2024-08-15 DOI: 10.1016/j.susmat.2024.e01091

Climate change and carbon emissions attributed to anthropogenic activities is getting alarming dimensions. On the other hand, the overwhelming progress of industrialization and urbanization contributed to an explosion in the municipal solid waste (MSW), as one of the other global challenges. However, developing a cost-effective adsorbent with appealing textural properties for CO2 capture is still one of the main challenges. Lately, carbon-based solid waste materials of biogenic origin have received a major interest to this end, owing to the renewability, availability and low-cost. Routinely, academic research mainly focuses on lab-scale development of activated carbons derived from waste materials. However, there is a significant gap concerning the industrial production of activated carbon from such materials. Accordingly, in this work, an industrial plant has been designed for producing activated carbon derived from digestate of MSWs in the industrial scale by presenting all scale-up details, engineering assumptions and process specifications. The results indicated that the plant has a potential to process 90,273 ton MSW annually, which consumes 1367.8 MWh net electricity and 20,134.4 GJ net heat, also produces 4788.10 ton CO2 adsorbent, per year. The economic assessment specified that the plant capital cost is around $14.112 million with the net price of 0.61 $/kg for produced activated carbon. Further, the sensitivity analysis and parametric study determined that the sample level in the drum is the determinative parameter on the energy consumption and net price of adsorbent. Finally, Response Surface Methodology was employed to maximize the plant profitability concerning the designing factors.

人类活动造成的气候变化和碳排放正变得越来越令人担忧。另一方面,工业化和城市化的巨大进步导致城市固体废物(MSW)激增,这也是其他全球性挑战之一。然而,为二氧化碳捕集开发一种具有成本效益且具有吸引人的质地特性的吸附剂仍是主要挑战之一。最近,源于生物的碳基固体废物材料因其可再生性、可获得性和低成本而受到了广泛关注。通常,学术研究主要集中在实验室规模的废料活性碳开发上。然而,从此类材料中提取活性炭的工业化生产还存在很大差距。因此,在这项工作中,我们设计了一种工业设备,通过介绍所有的放大细节、工程假设和工艺规格,在工业规模下生产从都市固体废物沼渣中提取的活性炭。结果表明,该工厂每年可处理 90 273 吨 MSW,净耗电量为 1367.8 兆瓦时,净耗热量为 20134.4 千兆焦耳,每年还可生产 4788.10 吨二氧化碳吸附剂。经济评估表明,工厂资本成本约为 1 411.2 万美元,生产的活性炭净价格为 0.61 美元/千克。此外,敏感性分析和参数研究确定,转鼓中的样品水平是能耗和吸附剂净价格的决定性参数。最后,采用了响应面方法,以最大限度地提高工厂在设计因素方面的盈利能力。
{"title":"Sustainable industrial process design for derived CO2 adsorbent from municipal solid wastes: Scale-up, techno-economic and parametric assessment","authors":"","doi":"10.1016/j.susmat.2024.e01091","DOIUrl":"10.1016/j.susmat.2024.e01091","url":null,"abstract":"<div><p>Climate change and carbon emissions attributed to anthropogenic activities is getting alarming dimensions. On the other hand, the overwhelming progress of industrialization and urbanization contributed to an explosion in the municipal solid waste (MSW), as one of the other global challenges. However, developing a cost-effective adsorbent with appealing textural properties for CO<sub>2</sub> capture is still one of the main challenges. Lately, carbon-based solid waste materials of biogenic origin have received a major interest to this end, owing to the renewability, availability and low-cost. Routinely, academic research mainly focuses on lab-scale development of activated carbons derived from waste materials. However, there is a significant gap concerning the industrial production of activated carbon from such materials. Accordingly, in this work, an industrial plant has been designed for producing activated carbon derived from digestate of MSWs in the industrial scale by presenting all scale-up details, engineering assumptions and process specifications. The results indicated that the plant has a potential to process 90,273 ton MSW annually, which consumes 1367.8 MWh net electricity and 20,134.4 GJ net heat, also produces 4788.10 ton CO<sub>2</sub> adsorbent, per year. The economic assessment specified that the plant capital cost is around $14.112 million with the net price of 0.61 $/kg for produced activated carbon. Further, the sensitivity analysis and parametric study determined that the sample level in the drum is the determinative parameter on the energy consumption and net price of adsorbent. Finally, Response Surface Methodology was employed to maximize the plant profitability concerning the designing factors.</p></div>","PeriodicalId":22097,"journal":{"name":"Sustainable Materials and Technologies","volume":null,"pages":null},"PeriodicalIF":8.6,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142006353","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Studies on the antioxidant mechanisms of betacyanins from improved fermented red dragon fruit (Hylocereus polyrhizus) drink in HepG2 cells 改良发酵红火龙果(Hylocereus polyrhizus)饮料中的甜菜素在 HepG2 细胞中的抗氧化机制研究
IF 8.6 2区 工程技术 Q1 ENERGY & FUELS Pub Date : 2024-08-13 DOI: 10.1016/j.susmat.2024.e01086

Red dragon fruit (RDF, Hylocereus polyrhizus) is high in betacyanins content but is understudied for its antioxidant mechanisms in liver cells. The present study aimed to investigate the antioxidant mechanisms of the stabilised betacyanins in a novel RDF functional drink, Improved-FRDFD-dH2O (produced from mild, sustainable approaches) using HepG2 cell line. Results revealed the betacyanins of Improved-FRDFD-dH2O (12.5% and 25%, v/v) showed the highest direct scavenging effect on intracellular ROS from 75.39% to <31%. The antioxidant enzymes (SOD, CAT and GPx) activities in HepG2 cells were remarkably increased, with 12.5% and 25% Improved-FRDFD-dH2O demonstrating the greatest enhancing effects. RT-qPCR proved the betacyanins of Improved-FRDFD-dH2O possessed indirect antioxidant mechanisms, where the gene expressions associated with Nrf2-ARE pathway were upregulated by all the tested sample concentrations (highest fold: 6.82). Overall, the present findings highlighted the RDF's potential in functional product development with betacyanins as the prominent bioactive compound to provide direct and indirect antioxidative and hepatoprotective activities.

红龙果(RDF,Hylocereus polyrhizus)含有大量的甜菜素,但其在肝细胞中的抗氧化机制却未得到充分研究。本研究旨在利用 HepG2 细胞系研究一种新型红火龙果功能饮料 Improved-FRDFD-dH2O(采用温和、可持续的方法生产)中稳定的甜菊糖苷的抗氧化机制。结果显示,改良型-FRDFD-dH2O(12.5% 和 25%,v/v)中的甜菜素对细胞内 ROS 的直接清除效果最高,从 75.39% 到 31%。HepG2 细胞中的抗氧化酶(SOD、CAT 和 GPx)活性显著提高,其中 12.5% 和 25% Improved-FRDFD-dH2O 的提高效果最好。RT-qPCR 证明了改良型-FRDFD-dH2O 的甜菜素具有间接抗氧化机制,在所有测试浓度的样品中,与 Nrf2-ARE通路相关的基因表达都得到了上调(最高倍数:6.82)。总之,本研究结果凸显了 RDF 在功能性产品开发方面的潜力,其主要生物活性化合物甜菜素具有直接和间接的抗氧化和保肝活性。
{"title":"Studies on the antioxidant mechanisms of betacyanins from improved fermented red dragon fruit (Hylocereus polyrhizus) drink in HepG2 cells","authors":"","doi":"10.1016/j.susmat.2024.e01086","DOIUrl":"10.1016/j.susmat.2024.e01086","url":null,"abstract":"<div><p>Red dragon fruit (RDF, <em>Hylocereus polyrhizus</em>) is high in betacyanins content but is understudied for its antioxidant mechanisms in liver cells. The present study aimed to investigate the antioxidant mechanisms of the stabilised betacyanins in a novel RDF functional drink, Improved-FRDFD-dH<sub>2</sub>O (produced from mild, sustainable approaches) using HepG2 cell line. Results revealed the betacyanins of Improved-FRDFD-dH<sub>2</sub>O (12.5% and 25%, <em>v</em>/v) showed the highest direct scavenging effect on intracellular ROS from 75.39% to &lt;31%. The antioxidant enzymes (SOD, CAT and GPx) activities in HepG2 cells were remarkably increased, with 12.5% and 25% Improved-FRDFD-dH<sub>2</sub>O demonstrating the greatest enhancing effects. RT-qPCR proved the betacyanins of Improved-FRDFD-dH<sub>2</sub>O possessed indirect antioxidant mechanisms, where the gene expressions associated with Nrf2-ARE pathway were upregulated by all the tested sample concentrations (highest fold: 6.82). Overall, the present findings highlighted the RDF's potential in functional product development with betacyanins as the prominent bioactive compound to provide direct and indirect antioxidative and hepatoprotective activities.</p></div>","PeriodicalId":22097,"journal":{"name":"Sustainable Materials and Technologies","volume":null,"pages":null},"PeriodicalIF":8.6,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141990631","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dual-function CoNi-LDH hollow porous spheres for morphology-driven adsorptive removal and photo-oxidative degradation of anionic dyes 用于形态驱动的阴离子染料吸附去除和光氧化降解的双功能 CoNi-LDH 空心多孔球
IF 8.6 2区 工程技术 Q1 ENERGY & FUELS Pub Date : 2024-08-13 DOI: 10.1016/j.susmat.2024.e01089

The layered double hydroxides (LDHs) emerged as a class of low-cost potential adsorbents for organic pollutant separation, whereas the deep study of organic dye separation regulated by LDH hollow morphology under ambient conditions is still lacking. To address this gap, ZIF-67, Bulk-CoNi-LDH, and HPS-CoNi-LDH materials of different morphology and porosity were synthesized and investigated in the dye separation process. Methyl orange (MO), congo-red (CR), methylene blue (MB), and rhodamine B (Rhb) dyes were selected as model dye pollutants. The spectroscopic and structural analysis reveals the HPS-CoNi-LDH exhibits less-aggregated 2D nanosheets, high BET surface area of 163.2 m2/g, large pore size of 12.29 nm, greater positive surface charges (27.5 mV), superior optical (2.18 eV), and charge-separation capabilities as compared to Bulk-CoNi-LDH, Which provides potential sites for adsorptive and photo-degradation for anionic dyes under natural sunlight. Therefore, it achieves a remarkable removal efficiency of 92.6% for methyl orange (15 ppm) with a superior kinetic rate of 3.0×10−2 min−1 within 90 min, outperforming Bulk-CoNi-LDH and ZIF-67 having removal efficiency of 71.7% and 40.8%, and kinetic rate of 1.35×10−2 and 0.5×10−2 min−1, respectively. Poor removal efficiency and kinetic by ZIF-67 was mainly due to its smaller pore size (1.16 nm) and surface-confined charges (6.13 mV). Additionally, HPS-CoNi-LDH exhibits superb selectivity (at a ppm level) and excellent recyclability under ambient conditions. The mechanism of photo-catalytic reaction is discussed. These results delineate the hollow morphological LDH structure could be a worthy candidate for selective wastewater treatment and useful for sustainable conditions, which points the way to other crucial anionic micropollutant remediation.

层状双氢氧化物(LDHs)是一类低成本的潜在有机污染物分离吸附剂,但对环境条件下 LDH 中空形貌调控有机染料分离的深入研究仍然缺乏。针对这一空白,研究人员合成了不同形态和孔隙率的 ZIF-67、块状-CoNi-LDH 和 HPS-CoNi-LDH 材料,并对其在染料分离过程中的应用进行了研究。选择甲基橙(MO)、刚果红(CR)、亚甲基蓝(MB)和罗丹明 B(Rhb)染料作为染料污染物模型。光谱和结构分析表明,与 Bulk-CoNi-LDH 相比,HPS-CoNi-LDH 具有较少聚集的二维纳米片、163.2 m2/g 的高 BET 表面积、12.29 nm 的大孔径、更大的表面正电荷(27.5 mV)、优异的光学(2.18 eV)和电荷分离能力。因此,它在 90 分钟内对甲基橙(15 ppm)的去除率高达 92.6%,动力学速率为 3.0×10-2 min-1,优于去除率分别为 71.7% 和 40.8%、动力学速率分别为 1.35×10-2 和 0.5×10-2 min-1 的 Bulk-CoNi-LDH 和 ZIF-67。ZIF-67 的去除效率和动力学速率较低主要是由于其较小的孔径(1.16 nm)和表面封闭电荷(6.13 mV)。此外,在环境条件下,HPS-CoNi-LDH 表现出极好的选择性(ppm 级)和出色的可回收性。本文讨论了光催化反应的机理。这些研究结果表明,中空形态的 LDH 结构可以成为选择性废水处理的理想候选材料,并可在可持续条件下使用,这为其他重要的阴离子微污染物修复指明了方向。
{"title":"Dual-function CoNi-LDH hollow porous spheres for morphology-driven adsorptive removal and photo-oxidative degradation of anionic dyes","authors":"","doi":"10.1016/j.susmat.2024.e01089","DOIUrl":"10.1016/j.susmat.2024.e01089","url":null,"abstract":"<div><p>The layered double hydroxides (LDHs) emerged as a class of low-cost potential adsorbents for organic pollutant separation, whereas the deep study of organic dye separation regulated by LDH hollow morphology under ambient conditions is still lacking. To address this gap, ZIF-67, Bulk-CoNi-LDH, and HPS-CoNi-LDH materials of different morphology and porosity were synthesized and investigated in the dye separation process. Methyl orange (MO), congo-red (CR), methylene blue (MB), and rhodamine B (Rhb) dyes were selected as model dye pollutants. The spectroscopic and structural analysis reveals the HPS-CoNi-LDH exhibits less-aggregated 2D nanosheets, high BET surface area of 163.2 m<sup>2</sup>/g, large pore size of 12.29 nm, greater positive surface charges (27.5 mV), superior optical (2.18 eV), and charge-separation capabilities as compared to Bulk-CoNi-LDH, Which provides potential sites for adsorptive and photo-degradation for anionic dyes under natural sunlight. Therefore, it achieves a remarkable removal efficiency of 92.6% for methyl orange (15 ppm) with a superior kinetic rate of 3.0<span><math><mo>×</mo></math></span>10<sup>−2</sup> min<sup>−1</sup> within 90 min, outperforming Bulk-CoNi-LDH and ZIF-67 having removal efficiency of 71.7% and 40.8%, and kinetic rate of 1.35<span><math><mo>×</mo></math></span>10<sup>−2</sup> and 0.5<span><math><mo>×</mo></math></span>10<sup>−2</sup> min<sup>−1</sup>, respectively. Poor removal efficiency and kinetic by ZIF-67 was mainly due to its smaller pore size (1.16 nm) and surface-confined charges (6.13 mV). Additionally, HPS-CoNi-LDH exhibits superb selectivity (at a ppm level) and excellent recyclability under ambient conditions. The mechanism of photo-catalytic reaction is discussed. These results delineate the hollow morphological LDH structure could be a worthy candidate for selective wastewater treatment and useful for sustainable conditions, which points the way to other crucial anionic micropollutant remediation.</p></div>","PeriodicalId":22097,"journal":{"name":"Sustainable Materials and Technologies","volume":null,"pages":null},"PeriodicalIF":8.6,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141998544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Sustainable Materials and Technologies
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1