首页 > 最新文献

Progress in Photovoltaics最新文献

英文 中文
Optical design and bandgap engineering in ultrathin multiple quantum well solar cell featuring photonic nanocavity 具有光子纳米腔的超薄多量子阱太阳能电池的光学设计和带隙工程
IF 8 2区 材料科学 Q1 ENERGY & FUELS Pub Date : 2024-04-09 DOI: 10.1002/pip.3802
Hosni Meddeb, Kai Gehrke, Martin Vehse

Ultrathin solar cells are efficient and captivating devices with unique technological and scientific features in terms of minimal material consumption, fast fabrication processes, and good compatibility with semi-transparent applications. Such photovoltaic (PV) technologies can enable effective synergy between optical and electronic confinements with large tuning capabilities of all the optoelectronic characteristics. In this work, the implications of the optical design and the bandgap engineering in ultrathin hydrogenated amorphous Si/Ge multiple quantum well (MQW) solar cells featuring photonic nanocavity are analyzed based on experimental measurements and optoelectronic modelling. By changing the period thicknesses and the positions of QWs inside the deep-subwavelength nanophotonic resonator, the spatial and spectral distributions of the optical field and the local absorption are strongly affected. This leads to a modulation of the absorption resonance condition, the absorption edge and the resulting photocurrent outputs. Because of quantum confinement effect, the change of MQW configurations with different individual QW periods while keeping similar total thickness of about 20 nm alters both the bandgap energy and the band offset at the QW/barrier heterojunctions. This in turn controls the photovoltage as well as the carrier collection efficiency in solar cells. The highest open circuit voltage and fill factor values are achieved by employing MQW device configuration with 2.5 nm-thin QWs. A record efficiency above 5.5% is reached for such emerging ultrathin Si/Ge MQW solar cell technology using thinner QWs with sufficient number, because of the optimum trade-off between all the optoelectronic characteristic outputs. The presented design rules for opaque ultrathin solar cells with quantum-confined nanostructures integrated in a photonic nanocavity can be generalized for the engineering of relevant multifunctional semitransparent PV devices.

超薄太阳能电池是一种高效、迷人的装置,具有独特的技术和科学特性,如材料消耗少、制造过程快以及与半透明应用具有良好的兼容性。这种光伏(PV)技术可以实现光学和电子约束之间的有效协同,并对所有光电特性进行大幅调整。在这项工作中,基于实验测量和光电建模,分析了具有光子纳米腔的超薄氢化非晶硅/锗多量子阱(MQW)太阳能电池中光学设计和带隙工程的影响。通过改变深亚波长纳米光子谐振器内量子阱的周期厚度和位置,光场的空间和光谱分布以及局部吸收都会受到强烈影响。这导致了吸收共振条件、吸收边缘和由此产生的光电流输出的调制。由于量子约束效应,在保持约 20 纳米总厚度相似的情况下,改变不同单个 QW 周期的 MQW 配置会改变 QW/势垒异质结的带隙能和带偏移。这反过来又控制了太阳能电池中的光电压和载流子收集效率。采用 2.5 纳米薄 QW 的 MQW 器件配置可获得最高的开路电压和填充因子值。这种新兴的硅/锗 MQW 超薄太阳能电池技术采用了足够数量的更薄的 QW,由于在所有光电特性输出之间进行了最佳权衡,其效率达到了创纪录的 5.5%以上。所介绍的不透明超薄太阳能电池的设计规则与集成在光子纳米腔中的量子约束纳米结构的设计规则可以推广到相关多功能半透明光伏器件的工程设计中。
{"title":"Optical design and bandgap engineering in ultrathin multiple quantum well solar cell featuring photonic nanocavity","authors":"Hosni Meddeb,&nbsp;Kai Gehrke,&nbsp;Martin Vehse","doi":"10.1002/pip.3802","DOIUrl":"10.1002/pip.3802","url":null,"abstract":"<p>Ultrathin solar cells are efficient and captivating devices with unique technological and scientific features in terms of minimal material consumption, fast fabrication processes, and good compatibility with semi-transparent applications. Such photovoltaic (PV) technologies can enable effective synergy between optical and electronic confinements with large tuning capabilities of all the optoelectronic characteristics. In this work, the implications of the optical design and the bandgap engineering in ultrathin hydrogenated amorphous Si/Ge multiple quantum well (MQW) solar cells featuring photonic nanocavity are analyzed based on experimental measurements and optoelectronic modelling. By changing the period thicknesses and the positions of QWs inside the deep-subwavelength nanophotonic resonator, the spatial and spectral distributions of the optical field and the local absorption are strongly affected. This leads to a modulation of the absorption resonance condition, the absorption edge and the resulting photocurrent outputs. Because of quantum confinement effect, the change of MQW configurations with different individual QW periods while keeping similar total thickness of about 20 nm alters both the bandgap energy and the band offset at the QW/barrier heterojunctions. This in turn controls the photovoltage as well as the carrier collection efficiency in solar cells. The highest open circuit voltage and fill factor values are achieved by employing MQW device configuration with 2.5 nm-thin QWs. A record efficiency above 5.5% is reached for such emerging ultrathin Si/Ge MQW solar cell technology using thinner QWs with sufficient number, because of the optimum trade-off between all the optoelectronic characteristic outputs. The presented design rules for opaque ultrathin solar cells with quantum-confined nanostructures integrated in a photonic nanocavity can be generalized for the engineering of relevant multifunctional semitransparent PV devices.</p>","PeriodicalId":223,"journal":{"name":"Progress in Photovoltaics","volume":"33 1","pages":"170-183"},"PeriodicalIF":8.0,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/pip.3802","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140590826","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Silver-lean metallization and hybrid contacts via plating on screen-printed metal for silicon solar cells manufacturing 通过电镀丝网印刷金属实现硅太阳能电池制造中的银边金属化和混合触点
IF 8 2区 材料科学 Q1 ENERGY & FUELS Pub Date : 2024-03-22 DOI: 10.1002/pip.3799
Yuan-Chih Chang, Yuchao Zhang, Li Wang, Sisi Wang, Haoran Wang, Chien-Yu Huang, Ran Chen, Catherine Chan, Brett Hallam

As PV manufacturing heads towards the multi-TW scale, it is required to carefully evaluate a wide range of concepts including not only efficiency and cost but also material consumption to ensure sustainable manufacturing of PV technologies. The rapid growth of PV could significantly increase the demand for several materials required in solar cells such as silver, aluminium, copper and even silicon, thereby causing dramatic price fluctuations. Furthermore, the PV manufacturing capacity would be at risk of being limited by the supply of some scarce metals, e.g. with current industrial implementations – screen printing (SP) metallization, the capacities of PERC and TOPCon could be capped at 377 GW and 227 GW with 20% of global silver supply available to the PV industry. In addition, PV systems have ~25–30 years lifespan to ensure low LCOE and emissions. Recycling alone will not provide an immediate solution to overcome the limitation of material consumption in the exponentially growing PV market. It is expected that the Ag usage needs to be reduced to no more than 5 mg/W or even 2 mg/W for all solar cell technologies to allow a multi-TW manufacturing scale without depleting the global silver supply. Therefore, further advancements in metallization technologies are critically and urgently required to significantly reduce the silver consumption of current screen-printed contacts in industrial silicon solar cells. This paper firstly presents a roadmap towards the 5 mg/W and 2 mg/W silver consumption targets with various metallization technologies and screen-printing designs. Subsequently, a hybrid plating on screen-printed metallization design was proposed to improve the performance and reduce the silver consumption of screen-printed contacts. The experimental results have demonstrated up to 1.08%abs improvements in fill factor and 0.3%abs gains in cell efficiency. In addition, up to 40%rel reductions in finger silver consumption have been achieved without any sacrifices in the electrical conductivity of such hybrid screen-printed and plated fingers. This work proposes not only a roadmap but also a promising approach to significantly reduce the Ag demand and benefit sustainable production of industrial screen-printed silicon solar cells in the TW era.

随着光伏制造向多兆瓦级迈进,需要仔细评估各种概念,不仅包括效率和成本,还包括材料消耗,以确保光伏技术的可持续制造。光伏技术的快速发展会大幅增加对太阳能电池所需的几种材料的需求,如银、铝、铜甚至硅,从而导致价格剧烈波动。此外,光伏制造能力还可能受到某些稀缺金属供应的限制,例如,在目前的工业实施--丝网印刷(SP)金属化的情况下,PERC 和 TOPCon 的产能上限分别为 377 千兆瓦和 227 千兆瓦,而光伏产业只能获得全球银供应量的 20%。此外,光伏系统的使用寿命约为 25-30 年,以确保低 LCOE 和低排放。仅靠回收利用并不能立即解决光伏市场急剧增长对材料消耗的限制。预计所有太阳能电池技术的银用量都需要降低到不超过 5 mg/W 甚至 2 mg/W,才能在不耗尽全球银供应的情况下实现多 TW 的生产规模。因此,迫切需要进一步提高金属化技术,以大幅降低目前工业硅太阳能电池中丝网印刷触点的银用量。本文首先介绍了利用各种金属化技术和丝网印刷设计实现 5 mg/W 和 2 mg/W 耗银目标的路线图。随后,提出了一种丝网印刷金属化混合电镀设计,以提高丝网印刷触点的性能并降低银消耗。实验结果表明,填充因子提高了 1.08%abs,电池效率提高了 0.3%abs。此外,在不牺牲丝网印刷和电镀混合触点导电性能的情况下,触点银消耗量最多可减少 40%abs。这项工作不仅提出了一个路线图,而且还提出了一种在 TW 时代大幅减少银需求并有利于工业丝网印刷硅太阳能电池可持续生产的可行方法。
{"title":"Silver-lean metallization and hybrid contacts via plating on screen-printed metal for silicon solar cells manufacturing","authors":"Yuan-Chih Chang,&nbsp;Yuchao Zhang,&nbsp;Li Wang,&nbsp;Sisi Wang,&nbsp;Haoran Wang,&nbsp;Chien-Yu Huang,&nbsp;Ran Chen,&nbsp;Catherine Chan,&nbsp;Brett Hallam","doi":"10.1002/pip.3799","DOIUrl":"10.1002/pip.3799","url":null,"abstract":"<p>As PV manufacturing heads towards the multi-TW scale, it is required to carefully evaluate a wide range of concepts including not only efficiency and cost but also material consumption to ensure sustainable manufacturing of PV technologies. The rapid growth of PV could significantly increase the demand for several materials required in solar cells such as silver, aluminium, copper and even silicon, thereby causing dramatic price fluctuations. Furthermore, the PV manufacturing capacity would be at risk of being limited by the supply of some scarce metals, e.g. with current industrial implementations – screen printing (SP) metallization, the capacities of PERC and TOPCon could be capped at 377 GW and 227 GW with 20% of global silver supply available to the PV industry. In addition, PV systems have ~25–30 years lifespan to ensure low LCOE and emissions. Recycling alone will not provide an immediate solution to overcome the limitation of material consumption in the exponentially growing PV market. It is expected that the Ag usage needs to be reduced to no more than 5 mg/W or even 2 mg/W for all solar cell technologies to allow a multi-TW manufacturing scale without depleting the global silver supply. Therefore, further advancements in metallization technologies are critically and urgently required to significantly reduce the silver consumption of current screen-printed contacts in industrial silicon solar cells. This paper firstly presents a roadmap towards the 5 mg/W and 2 mg/W silver consumption targets with various metallization technologies and screen-printing designs. Subsequently, a hybrid plating on screen-printed metallization design was proposed to improve the performance and reduce the silver consumption of screen-printed contacts. The experimental results have demonstrated up to 1.08%<sub>abs</sub> improvements in fill factor and 0.3%<sub>abs</sub> gains in cell efficiency. In addition, up to 40%<sub>rel</sub> reductions in finger silver consumption have been achieved without any sacrifices in the electrical conductivity of such hybrid screen-printed and plated fingers. This work proposes not only a roadmap but also a promising approach to significantly reduce the Ag demand and benefit sustainable production of industrial screen-printed silicon solar cells in the TW era.</p>","PeriodicalId":223,"journal":{"name":"Progress in Photovoltaics","volume":"33 1","pages":"158-169"},"PeriodicalIF":8.0,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/pip.3799","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140202935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Role of solar PV in net-zero growth: An analysis of international manufacturers and policies 太阳能光伏发电在净零增长中的作用:国际制造商和政策分析
IF 8 2区 材料科学 Q1 ENERGY & FUELS Pub Date : 2024-03-21 DOI: 10.1002/pip.3797
Arcipowska Aleksandra, Blanco Perez Sara, Jakimów Małgorzata, Baldassarre Brian, Polverini Davide, Cabrera Miguel

In May 2022, the European Commission adopted a new European Union (EU) Solar Energy Strategy [1] aiming to ensure that solar energy achieves its full potential in helping to meet the European Green Deal's climate and energy targets. A goal of the strategy is to reach nearly 600 GW of installed solar photovoltaics (PV) capacity by 2030. While Europe is a pioneer in the definition of new policy requirements to ensure the circularity and sustainability of PV products, its manufacturing capabilities are limited. The EU mostly imports PV modules from China, which for the last decade has remained the global leader in PV manufacturing across the supply chain. This article aims to provide insight into the solar PV industry and the surrounding policy context, focusing on the manufacturing phase and its climate impact. It provides a comparative overview of the key players in the European and Chinese PV markets with an overview of the whole supply chain (i.e. production of polysilicon, cells, wafers and modules). Having in mind the net-zero commitments across the globe, and a central role of the solar PV in the energy transition, the demand for PV products is expected to grow exponentially in the next decades. With this in mind, the authors look into environmental impacts from the PV manufacturing. A simplified analysis concludes on the suitability of the PV manufacturing process today and indicates the opportunities for the net-zero transition in the future. While the focus is on the carbon impacts of the solar PV industry, the authors also identify other relevant aspects (such as circularity), laying the ground for a future research.

2022 年 5 月,欧盟委员会通过了一项新的欧盟太阳能战略[1],旨在确保太阳能充分发挥潜力,帮助实现欧洲绿色协议的气候和能源目标。该战略的目标之一是到 2030 年,太阳能光伏发电装机容量达到近 600 千兆瓦。虽然欧洲是制定新政策要求以确保光伏产品循环性和可持续性的先驱,但其制造能力有限。欧盟主要从中国进口光伏组件,而在过去十年中,中国一直是光伏制造供应链中的全球领导者。本文旨在深入探讨太阳能光伏产业及相关政策背景,重点关注制造阶段及其对气候的影响。文章通过对整个供应链(即多晶硅、电池、硅片和组件的生产)的概述,对欧洲和中国光伏市场的主要参与者进行了比较。考虑到全球实现净零排放的承诺,以及太阳能光伏发电在能源转型中的核心作用,光伏产品的需求预计将在未来几十年内呈指数级增长。有鉴于此,作者研究了光伏制造对环境的影响。通过简化分析,作者总结了光伏制造工艺目前的适用性,并指出了未来实现净零过渡的机会。虽然重点是太阳能光伏产业的碳影响,但作者也指出了其他相关方面(如循环性),为今后的研究奠定了基础。
{"title":"Role of solar PV in net-zero growth: An analysis of international manufacturers and policies","authors":"Arcipowska Aleksandra,&nbsp;Blanco Perez Sara,&nbsp;Jakimów Małgorzata,&nbsp;Baldassarre Brian,&nbsp;Polverini Davide,&nbsp;Cabrera Miguel","doi":"10.1002/pip.3797","DOIUrl":"10.1002/pip.3797","url":null,"abstract":"<p>In May 2022, the European Commission adopted a new European Union (EU) Solar Energy Strategy [1] aiming to ensure that solar energy achieves its full potential in helping to meet the European Green Deal's climate and energy targets. A goal of the strategy is to reach nearly 600 GW of installed solar photovoltaics (PV) capacity by 2030. While Europe is a pioneer in the definition of new policy requirements to ensure the circularity and sustainability of PV products, its manufacturing capabilities are limited. The EU mostly imports PV modules from China, which for the last decade has remained the global leader in PV manufacturing across the supply chain. This article aims to provide insight into the solar PV industry and the surrounding policy context, focusing on the manufacturing phase and its climate impact. It provides a comparative overview of the key players in the European and Chinese PV markets with an overview of the whole supply chain (i.e. production of polysilicon, cells, wafers and modules). Having in mind the net-zero commitments across the globe, and a central role of the solar PV in the energy transition, the demand for PV products is expected to grow exponentially in the next decades. With this in mind, the authors look into environmental impacts from the PV manufacturing. A simplified analysis concludes on the suitability of the PV manufacturing process today and indicates the opportunities for the net-zero transition in the future. While the focus is on the carbon impacts of the solar PV industry, the authors also identify other relevant aspects (such as circularity), laying the ground for a future research.</p>","PeriodicalId":223,"journal":{"name":"Progress in Photovoltaics","volume":"32 9","pages":"607-622"},"PeriodicalIF":8.0,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/pip.3797","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140203020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Photovoltaics literature survey (No. 190) 光伏文献调查(第 190 号)
IF 6.7 2区 材料科学 Q1 ENERGY & FUELS Pub Date : 2024-03-11 DOI: 10.1002/pip.3795
Ziv Hameiri
<p>Hu F, Mou S, Wei S, et al <b>Research on the evolution of China's photovoltaic technology innovation network from the perspective of patents.</b> <i>Energy Strategy Reviews</i> 2024; <b>51</b>: 101309.</p><p>De Keersmaecker M, Tirado J, Armstrong NR, et al <b>Defect quantification in metal halide perovskites anticipates photoluminescence and photovoltaic performance.</b> <i>Acs Energy Letters</i> 2024; <b>9</b>(1): 243–252.</p><p>Wang S, Wang C, Ge Y, et al <b>In-depth analysis of photovoltaic module parameter estimation.</b> <i>Energy</i> 2024; <b>291</b>: 130345.</p><p>Cao Y, Pang D, Zhao Q, et al <b>Improved YOLOv8-GD deep learning model for defect detection in electroluminescence images of solar photovoltaic modules.</b> <i>Engineering Applications of Artificial Intelligence</i> 2024; <b>131</b>: 107866.</p><p>Musiienko A, Yang FJ, Gries TW, et al <b>Resolving electron and hole transport properties in semiconductor materials by constant light-induced magneto transport.</b> <i>Nature Communications</i> 2024; <b>15</b>(1): 316.</p><p>Qin Y, Yonemoto A, Gotoh K, et al <b>Potential-induced degradation phenomena in single-encapsulation crystalline Si photovoltaic modules.</b> <i>Japanese Journal of Applied Physics</i> 2024; <b>63</b>(2): 02SP11.</p><p>Chen W, Liu W, Yu Y, et al <b>Study on selective emitter fabrication through an innovative pre-diffusion process for enhanced efficiency in TOPCon solar cells.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2024; <b>32</b>(3): 199–211.</p><p>Chen S, Shi J, Yao Y, et al <b>Enhancement of short-circuit current density in silicon heterojunction solar cells by hydrogenated multiple-doped In</b><sub><b>2</b></sub><b>O</b><sub><b>3</b></sub> <b>thin films.</b> <i>Solar Energy Materials and Solar Cells</i> 2024; <b>267</b>: 112727.</p><p>Hossain MJ, Sun M, Davis KO. <b>Photon management in silicon photovoltaic cells: A critical review.</b> <i>Solar Energy Materials and Solar Cells</i> 2024; <b>267</b>: 112715.</p><p>Li Y, Shi B, Xu Q, et al <b>CsCl induced efficient fully-textured perovskite/crystalline silicon tandem solar cell.</b> <i>Nano Energy</i> 2024; <b>122</b>: 109285.</p><p>Ravidas BK, Das A, Agnihotri SK, et al <b>Design principles of crystalline silicon/CsGeI</b><sub><b>3</b></sub> <b>perovskite tandem solar cells using a combination of density functional theory and SCAPS-1D frameworks.</b> <i>Solar Energy Materials and Solar Cells</i> 2024; <b>267</b>: 112688.</p><p>Du B, Ma MY, Zhang PP, et al <b>High-performance all-small-molecule organic solar cells fabricated via halogen-free preparation process.</b> <i>Acs Applied Materials and Interfaces</i> 2024; <b>16</b>(2): 2564–2,572.</p><p>Fan B, Gao H, Jen AK. <b>Biaxially conjugated materials for organic solar cells.</b> <i>Acs Nano</i> 2024; <b>18</b>(1): 136–154.</p><p>Kim JH, Park B, Song S, et al <b>Stretchable and transparent nanopillar arrays for high-performance ultra-flexible organic photovoltaics.</b> <i>Applied Physic
阳离子在二维/三维界面上的迁移如何决定包晶太阳能电池的效率Acs Energy Letters 2024; 9(1):Hu P, Zhou W, Chen J, et al Multidentate anchoring strategy for synergistically modulating crystallization and stability towards efficient perovskite solar cells.Liu H, Liu T, Ma X, et al Regulation on electron density distribution of organic molecule passivator enables efficient and stable perovskite solar cells.Tian K, Chen M, Liu H, et al Interfacial bidirectional binding for improving photovoltaic performance of perovskite solar cells.Aranda CA, Alvarez AO, Chivrony VS, et al Overcoming ionic migration in perovskite solar cells through alkali metals.Joule 2024; 8(1):Gao ZW, Wang Y, Chen X, et al Reconstructing subsurface lattice for stable perovskite photovoltaics.Joule 2024; 8(1):255-266.Huan ZH, Zheng YF, Wang KP, et al.材料化学学报 A 2024; 12(4):1910-1922.Chen N, Li QS.天然烯番茄红素对高效稳定的包晶体太阳能电池的胶状钝化:理论视角的启示。材料化学学报 C 2024; 12(4):Song ZL, Gao YP, Zou Y, et al Single-crystal-assisted In situ phase reconstruction enables efficient and stable 2D/3D perovskite solar cells.美国化学会志》,2024 年,146(2):Liu F, Ma Y, Zhang Y, et al Oxyl-terminated melem nanoparticles as crystallization modulators and passivating anchors for high-performance perovskite solar cells.Zeng LR, Ding B, Zhang G, et al Elimination of buried interfacial voids for efficient perovskite solar cells.Dong X, Wang R, Gao Y, et al Orbital interactions in 2D Dion-Jacobson perovskites using oligothiophene-based semiconductor spacers enable efficient solar cells.Nano Letters 2024; 24(1):Said AA, Aydin E, Ugur E, et al Sublimed C60 for efficient and repeatable perovskite-based solar cells.自然通讯 2024; 15(1):708.Elanzeery H, Stolzel M, Eraerds P, et al 超越 20% 世界纪录的薄膜太阳能模块效率。IEEE 光伏学报 2024; 14(1): 107-115:Chander S, Tripathi SK, Kaur I, et al Nontoxic and earth-abundant Cu2ZnSnS4 (CZTS) thin film solar cells:高通量加工方法综述。Chauhan P, Agarwal S, Srivastava V, et al Impact on Generation and recombination rate in Cu2ZnSnS4 (CZTS) solar cell for Ag2S and In2Se3 buffer layers with CuSbS2 back surface field layer.光伏技术进展:2024;32(3):Debono A, L'Hostis H, Rebai A, et al 钼背接触和 CIGS 吸收体在太阳能电池降解过程中的协同效应。光伏技术进展:Photovoltaics: Research and Applications 2024; 32(3):Gensowski K, Freund T, Much M, et al 不同太阳能电池应用中透明导电氧化物层低电阻率触点的固化条件。光伏技术进展:研究与应用》,2024 年,第 32(2)期,第 102-114 页:Agrawal S, De Souza DO, Balasubramanian C, et al 由前驱体成分控制的次生相对 CZTS 薄膜太阳能电池效率的影响。Liu X, Abbas A, Togay M, et al The effect of remnant CdSe layers on the performance of CdSeTe/CdTe photovoltaic devices.Hao MM, Ding SS, Gaznaghi S, et al Perovskite 量子点太阳能电池:现状与未来展望。Acs Energy Letters 2024; 9(1):Maleki J, Eskandari M, Fathi D. 半串联量子点太阳能电池的新设计和优化:使用面向核壳的纳米结构,功率转换效率超过 30%。Renewable Energy 2024; 222: 119938.Ahn H. A framework for developing data-driven correction factors for solar PV systems.能源 2024; 290: 130096.Xu L, Ding P, Zhang Y, et al 太阳能光伏板不同位置障碍物遮挡效应的敏感性分析。Ahluwalia D, Anjum S, Mukherjee V. 线损综合分析及部分遮挡下优化光伏阵列的节能评估。Energy Conversion and Management 2024; 301: 118034.Amiri AF, Oudira H, Chouder A, et
{"title":"Photovoltaics literature survey (No. 190)","authors":"Ziv Hameiri","doi":"10.1002/pip.3795","DOIUrl":"https://doi.org/10.1002/pip.3795","url":null,"abstract":"&lt;p&gt;Hu F, Mou S, Wei S, et al &lt;b&gt;Research on the evolution of China's photovoltaic technology innovation network from the perspective of patents.&lt;/b&gt; &lt;i&gt;Energy Strategy Reviews&lt;/i&gt; 2024; &lt;b&gt;51&lt;/b&gt;: 101309.&lt;/p&gt;&lt;p&gt;De Keersmaecker M, Tirado J, Armstrong NR, et al &lt;b&gt;Defect quantification in metal halide perovskites anticipates photoluminescence and photovoltaic performance.&lt;/b&gt; &lt;i&gt;Acs Energy Letters&lt;/i&gt; 2024; &lt;b&gt;9&lt;/b&gt;(1): 243–252.&lt;/p&gt;&lt;p&gt;Wang S, Wang C, Ge Y, et al &lt;b&gt;In-depth analysis of photovoltaic module parameter estimation.&lt;/b&gt; &lt;i&gt;Energy&lt;/i&gt; 2024; &lt;b&gt;291&lt;/b&gt;: 130345.&lt;/p&gt;&lt;p&gt;Cao Y, Pang D, Zhao Q, et al &lt;b&gt;Improved YOLOv8-GD deep learning model for defect detection in electroluminescence images of solar photovoltaic modules.&lt;/b&gt; &lt;i&gt;Engineering Applications of Artificial Intelligence&lt;/i&gt; 2024; &lt;b&gt;131&lt;/b&gt;: 107866.&lt;/p&gt;&lt;p&gt;Musiienko A, Yang FJ, Gries TW, et al &lt;b&gt;Resolving electron and hole transport properties in semiconductor materials by constant light-induced magneto transport.&lt;/b&gt; &lt;i&gt;Nature Communications&lt;/i&gt; 2024; &lt;b&gt;15&lt;/b&gt;(1): 316.&lt;/p&gt;&lt;p&gt;Qin Y, Yonemoto A, Gotoh K, et al &lt;b&gt;Potential-induced degradation phenomena in single-encapsulation crystalline Si photovoltaic modules.&lt;/b&gt; &lt;i&gt;Japanese Journal of Applied Physics&lt;/i&gt; 2024; &lt;b&gt;63&lt;/b&gt;(2): 02SP11.&lt;/p&gt;&lt;p&gt;Chen W, Liu W, Yu Y, et al &lt;b&gt;Study on selective emitter fabrication through an innovative pre-diffusion process for enhanced efficiency in TOPCon solar cells.&lt;/b&gt; &lt;i&gt;Progress in Photovoltaics: Research and Applications&lt;/i&gt; 2024; &lt;b&gt;32&lt;/b&gt;(3): 199–211.&lt;/p&gt;&lt;p&gt;Chen S, Shi J, Yao Y, et al &lt;b&gt;Enhancement of short-circuit current density in silicon heterojunction solar cells by hydrogenated multiple-doped In&lt;/b&gt;&lt;sub&gt;&lt;b&gt;2&lt;/b&gt;&lt;/sub&gt;&lt;b&gt;O&lt;/b&gt;&lt;sub&gt;&lt;b&gt;3&lt;/b&gt;&lt;/sub&gt; &lt;b&gt;thin films.&lt;/b&gt; &lt;i&gt;Solar Energy Materials and Solar Cells&lt;/i&gt; 2024; &lt;b&gt;267&lt;/b&gt;: 112727.&lt;/p&gt;&lt;p&gt;Hossain MJ, Sun M, Davis KO. &lt;b&gt;Photon management in silicon photovoltaic cells: A critical review.&lt;/b&gt; &lt;i&gt;Solar Energy Materials and Solar Cells&lt;/i&gt; 2024; &lt;b&gt;267&lt;/b&gt;: 112715.&lt;/p&gt;&lt;p&gt;Li Y, Shi B, Xu Q, et al &lt;b&gt;CsCl induced efficient fully-textured perovskite/crystalline silicon tandem solar cell.&lt;/b&gt; &lt;i&gt;Nano Energy&lt;/i&gt; 2024; &lt;b&gt;122&lt;/b&gt;: 109285.&lt;/p&gt;&lt;p&gt;Ravidas BK, Das A, Agnihotri SK, et al &lt;b&gt;Design principles of crystalline silicon/CsGeI&lt;/b&gt;&lt;sub&gt;&lt;b&gt;3&lt;/b&gt;&lt;/sub&gt; &lt;b&gt;perovskite tandem solar cells using a combination of density functional theory and SCAPS-1D frameworks.&lt;/b&gt; &lt;i&gt;Solar Energy Materials and Solar Cells&lt;/i&gt; 2024; &lt;b&gt;267&lt;/b&gt;: 112688.&lt;/p&gt;&lt;p&gt;Du B, Ma MY, Zhang PP, et al &lt;b&gt;High-performance all-small-molecule organic solar cells fabricated via halogen-free preparation process.&lt;/b&gt; &lt;i&gt;Acs Applied Materials and Interfaces&lt;/i&gt; 2024; &lt;b&gt;16&lt;/b&gt;(2): 2564–2,572.&lt;/p&gt;&lt;p&gt;Fan B, Gao H, Jen AK. &lt;b&gt;Biaxially conjugated materials for organic solar cells.&lt;/b&gt; &lt;i&gt;Acs Nano&lt;/i&gt; 2024; &lt;b&gt;18&lt;/b&gt;(1): 136–154.&lt;/p&gt;&lt;p&gt;Kim JH, Park B, Song S, et al &lt;b&gt;Stretchable and transparent nanopillar arrays for high-performance ultra-flexible organic photovoltaics.&lt;/b&gt; &lt;i&gt;Applied Physic","PeriodicalId":223,"journal":{"name":"Progress in Photovoltaics","volume":"32 4","pages":"276-279"},"PeriodicalIF":6.7,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/pip.3795","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140104467","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Theoretical limiting-efficiency assessment on advanced crystalline silicon solar cells with Auger ideality factor and wafer thickness modifications 采用奥杰构想因子和硅片厚度改性的先进晶体硅太阳能电池的理论极限效率评估
IF 8 2区 材料科学 Q1 ENERGY & FUELS Pub Date : 2024-03-05 DOI: 10.1002/pip.3790
Qiao Su, Hao Lin, Genshun Wang, Hanbo Tang, Chaowei Xue, Zhenguo Li, Xixiang Xu, Pingqi Gao

With the improvement of surface passivation, bulk recombination is becoming an indispensable and decisive factor to assess the theoretical limiting efficiency (ηlim) of crystalline silicon (c-Si) solar cells. In simultaneous consideration of surface and bulk recombination, a modified model of ηlim evaluation is developed. Surface recombination is directly depicted with contact selectivity while bulk recombination is revised on the aspects of ideality factor and wafer thickness. The ηlim of the double-side silicon heterojunction (SHJ) and double-side tunneling-oxide passivating contact (TOPCon) solar cells are numerically simulated using the new model as 28.99% and 29.19%, respectively. However, the ηlim of single-side TOPCon solar cells, the more practicable scenario, is only 27.79%. Besides, the ηlim of the double-side SHJ solar cells would exceed the double-side TOPCon solar cells if the recombination parameter of the non-contacted area is higher than 0.6 fA/cm2, instead of perfect passivation. Our results are instructive in accurately assessing efficiency potential and accordingly optimizing design strategies of c-Si solar cells.

随着表面钝化的改进,体重组正成为评估晶体硅(c-Si)太阳能电池理论极限效率()不可或缺的决定性因素。在同时考虑表面和体层重组的情况下,我们开发了一种改进的评估模型。表面重组直接用接触选择性来描述,而体部重组则根据意向系数和硅片厚度来修正。使用新模型对双面硅异质结(SHJ)和双面隧穿氧化物钝化接触(TOPCon)太阳能电池进行了数值模拟,结果分别为 28.99% 和 29.19%。然而,更实用的单面 TOPCon 太阳能电池的转化率仅为 27.79%。此外,如果非接触区的重组参数高于 0.6 fA/cm2,而不是完全钝化,双面 SHJ 太阳能电池的转化率将超过双面 TOPCon 太阳能电池。我们的研究结果有助于准确评估晶体硅太阳能电池的效率潜力,并据此优化设计策略。
{"title":"Theoretical limiting-efficiency assessment on advanced crystalline silicon solar cells with Auger ideality factor and wafer thickness modifications","authors":"Qiao Su,&nbsp;Hao Lin,&nbsp;Genshun Wang,&nbsp;Hanbo Tang,&nbsp;Chaowei Xue,&nbsp;Zhenguo Li,&nbsp;Xixiang Xu,&nbsp;Pingqi Gao","doi":"10.1002/pip.3790","DOIUrl":"10.1002/pip.3790","url":null,"abstract":"<p>With the improvement of surface passivation, bulk recombination is becoming an indispensable and decisive factor to assess the theoretical limiting efficiency (\u0000<span></span><math>\u0000 <msub>\u0000 <mi>η</mi>\u0000 <mi>lim</mi>\u0000 </msub></math>) of crystalline silicon (c-Si) solar cells. In simultaneous consideration of surface and bulk recombination, a modified model of \u0000<span></span><math>\u0000 <msub>\u0000 <mi>η</mi>\u0000 <mi>lim</mi>\u0000 </msub></math> evaluation is developed. Surface recombination is directly depicted with contact selectivity while bulk recombination is revised on the aspects of ideality factor and wafer thickness. The \u0000<span></span><math>\u0000 <msub>\u0000 <mi>η</mi>\u0000 <mi>lim</mi>\u0000 </msub></math> of the double-side silicon heterojunction (SHJ) and double-side tunneling-oxide passivating contact (TOPCon) solar cells are numerically simulated using the new model as 28.99% and 29.19%, respectively. However, the \u0000<span></span><math>\u0000 <msub>\u0000 <mi>η</mi>\u0000 <mi>lim</mi>\u0000 </msub></math> of single-side TOPCon solar cells, the more practicable scenario, is only 27.79%. Besides, the \u0000<span></span><math>\u0000 <msub>\u0000 <mi>η</mi>\u0000 <mi>lim</mi>\u0000 </msub></math> of the double-side SHJ solar cells would exceed the double-side TOPCon solar cells if the recombination parameter of the non-contacted area is higher than 0.6 fA/cm<sup>2</sup>, instead of perfect passivation. Our results are instructive in accurately assessing efficiency potential and accordingly optimizing design strategies of c-Si solar cells.</p>","PeriodicalId":223,"journal":{"name":"Progress in Photovoltaics","volume":"32 9","pages":"587-598"},"PeriodicalIF":8.0,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140045737","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Large-area MoOx/c-Si heterojunction solar cells with a ICO/Ag back reflector 带 ICO/Ag 背反射器的大面积 MoOx/c-Si 异质结太阳能电池
IF 8 2区 材料科学 Q1 ENERGY & FUELS Pub Date : 2024-03-05 DOI: 10.1002/pip.3796
Xu Wang, Bowen Ding, Yurong Zhou, Dongming Zhao, Fanying Meng, Hui Yan, Rui Life, Haiwei Huang, Zhidan Hao, Yuqin Zhou, Fengzhen Liu

Compound/silicon heterojunction (SCH) solar cells have been widely studied because of the low parasitic absorption of the window layer, high short-circuit current, and simple preparation process. So far, most reported SCH solar cells are small-area devices. By depositing MoOx hole transport layer using hot-wire oxidation–sublimation deposition technique and employing a front-contact back-junction cell architecture, the large-area SCH solar cells are successfully fabricated on M6 (166 mm) n-type silicon wafers. Indium cerium oxide (ICO) film with the optimal thickness of about 110 nm is inserted between MoOx and Ag. The ICO/Ag stack functions well as a back reflector and is beneficial for increasing the short-circuit current density, reducing the contact resistance, and improving the device stability. A power conversion efficiency of 21.59% is achieved on the champion SCH solar cell with the device area of 274.15 cm2.

化合物/硅异质结(SCH)太阳能电池具有窗口层寄生吸收低、短路电流大、制备工艺简单等优点,因此被广泛研究。迄今为止,大多数报道的 SCH 太阳能电池都是小面积器件。通过使用热丝氧化-升华沉积技术沉积氧化铟铈空穴传输层,并采用前接触后结电池结构,在 M6(166 毫米)n 型硅晶片上成功制造出了大面积 SCH 太阳能电池。在氧化铟和氧化银之间插入了最佳厚度约为 110 nm 的氧化铟(ICO)薄膜。ICO/Ag 叠层具有良好的背反射功能,有利于提高短路电流密度、降低接触电阻和改善器件稳定性。器件面积为 274.15 平方厘米的冠军 SCH 太阳能电池的功率转换效率达到 21.59%。
{"title":"Large-area MoOx/c-Si heterojunction solar cells with a ICO/Ag back reflector","authors":"Xu Wang,&nbsp;Bowen Ding,&nbsp;Yurong Zhou,&nbsp;Dongming Zhao,&nbsp;Fanying Meng,&nbsp;Hui Yan,&nbsp;Rui Life,&nbsp;Haiwei Huang,&nbsp;Zhidan Hao,&nbsp;Yuqin Zhou,&nbsp;Fengzhen Liu","doi":"10.1002/pip.3796","DOIUrl":"10.1002/pip.3796","url":null,"abstract":"<p>Compound/silicon heterojunction (SCH) solar cells have been widely studied because of the low parasitic absorption of the window layer, high short-circuit current, and simple preparation process. So far, most reported SCH solar cells are small-area devices. By depositing MoO<sub>x</sub> hole transport layer using hot-wire oxidation–sublimation deposition technique and employing a front-contact back-junction cell architecture, the large-area SCH solar cells are successfully fabricated on M6 (166 mm) n-type silicon wafers. Indium cerium oxide (ICO) film with the optimal thickness of about 110 nm is inserted between MoO<sub>x</sub> and Ag. The ICO/Ag stack functions well as a back reflector and is beneficial for increasing the short-circuit current density, reducing the contact resistance, and improving the device stability. A power conversion efficiency of 21.59% is achieved on the champion SCH solar cell with the device area of 274.15 cm<sup>2</sup>.</p>","PeriodicalId":223,"journal":{"name":"Progress in Photovoltaics","volume":"32 9","pages":"599-606"},"PeriodicalIF":8.0,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140045746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Realizing SnF2-TMAB passivated lead-free formamidinum perovskite solar cells with doctor-bladed carbon electrode 利用刮刀状碳电极实现 SnF2-TMAB 钝化无铅甲脒包晶太阳能电池
IF 8 2区 材料科学 Q1 ENERGY & FUELS Pub Date : 2024-02-26 DOI: 10.1002/pip.3794
Debesh Devadutta Mishra, Pranati Kumari Rath, Natarajan Thirugnanam, Tao Shen, Zihe Chen, Zexian Zhang, Xinghang Liu, Jinhua Li, Xianbao Wang, Cher Ming Tan

The suitable band gap with outstanding optoelectronic characteristics makes Sn-based perovskites one of the promising candidates for the preparation of efficient lead-free perovskite solar cells (PSCs). However, preparing Sn2+-based PSCs is very difficult due to the ready oxidation of Sn2+ to Sn4+ when exposed to air. In this work, by incorporating the trimethylamine borane complex (TMAB) as an antioxidant additive into the perovskite precursor solution along with excess SnF2, we report the fabrication of air-stable FASnI3-based solar cells. The complex formed by TMAB-SNF2 (additive layer) enables in-situ encapsulation of perovskite grains. This layer considerably improves the oxidation stability of the perovskite layer by eliminating oxygen vacancies from the NiO hole transport. The resulting PSCs can maintain more than 70% of the efficiency over 45 and 75 hours respectively in air and N2 exposure without encapsulation. This can be regarded as a genuinely enhanced attribute, particularly considering the use of carbon in one of the electrodes in FASnI3 perovskites. The findings suggest an alternative approach to provide effective and sustainable Sn-based PSCs in the future.

合适的带隙和出色的光电特性使锡基包晶石成为制备高效无铅包晶石太阳能电池(PSCs)的理想候选材料之一。然而,由于暴露在空气中时 Sn2+ 很容易氧化成 Sn4+,因此制备 Sn2+ 基 PSCs 非常困难。在这项工作中,我们将三甲胺硼烷复合物(TMAB)作为抗氧化添加剂与过量的 SnF2 一起加入到过氧化物前驱体溶液中,从而制备出了空气稳定的基于 FASnI3 的太阳能电池。TMAB-SNF2(添加剂层)形成的复合物能够原位封装过氧化物晶粒。该层通过消除氧化镍空穴传输中的氧空位,大大提高了透辉石层的氧化稳定性。在没有封装的情况下,所产生的 PSC 在暴露于空气和 N2 的情况下分别能在 45 小时和 75 小时内保持 70% 以上的效率。这可以说是一种真正的增强特性,特别是考虑到 FASnI3 包晶石的电极之一使用了碳。这些发现为今后提供有效和可持续的锡基 PSC 提出了另一种方法。
{"title":"Realizing SnF2-TMAB passivated lead-free formamidinum perovskite solar cells with doctor-bladed carbon electrode","authors":"Debesh Devadutta Mishra,&nbsp;Pranati Kumari Rath,&nbsp;Natarajan Thirugnanam,&nbsp;Tao Shen,&nbsp;Zihe Chen,&nbsp;Zexian Zhang,&nbsp;Xinghang Liu,&nbsp;Jinhua Li,&nbsp;Xianbao Wang,&nbsp;Cher Ming Tan","doi":"10.1002/pip.3794","DOIUrl":"10.1002/pip.3794","url":null,"abstract":"<p>The suitable band gap with outstanding optoelectronic characteristics makes Sn-based perovskites one of the promising candidates for the preparation of efficient lead-free perovskite solar cells (PSCs). However, preparing Sn<sup>2+</sup>-based PSCs is very difficult due to the ready oxidation of Sn<sup>2+</sup> to Sn<sup>4+</sup> when exposed to air. In this work, by incorporating the trimethylamine borane complex (TMAB) as an antioxidant additive into the perovskite precursor solution along with excess SnF<sub>2</sub>, we report the fabrication of air-stable FASnI<sub>3</sub>-based solar cells. The complex formed by TMAB-SNF<sub>2</sub> (additive layer) enables in-situ encapsulation of perovskite grains. This layer considerably improves the oxidation stability of the perovskite layer by eliminating oxygen vacancies from the NiO hole transport. The resulting PSCs can maintain more than 70% of the efficiency over 45 and 75 hours respectively in air and N<sub>2</sub> exposure without encapsulation. This can be regarded as a genuinely enhanced attribute, particularly considering the use of carbon in one of the electrodes in FASnI<sub>3</sub> perovskites. The findings suggest an alternative approach to provide effective and sustainable Sn-based PSCs in the future.</p>","PeriodicalId":223,"journal":{"name":"Progress in Photovoltaics","volume":"32 8","pages":"569-578"},"PeriodicalIF":8.0,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139987747","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evidence of hot carrier extraction in metal halide perovskite solar cells 金属卤化物过氧化物太阳能电池中热载流子萃取的证据
IF 8 2区 材料科学 Q1 ENERGY & FUELS Pub Date : 2024-02-22 DOI: 10.1002/pip.3777
Shashi Sourabh, Hadi Afshari, Vincent R. Whiteside, Giles E. Eperon, Rebecca A. Scheidt, Tielyr D. Creason, Madalina Furis, Ahmad R. Kirmani, Bayram Saparov, Joseph M. Luther, Matthew C. Beard, Ian R. Sellers

The presence of hot carriers is presented in the operational properties of an (FA,Cs)Pb(I, Br, Cl)3 solar cell at ambient temperatures and under practical solar concentration. Albeit, in a device architecture that is not suitably designed as a functional hot carrier solar cell. At 100 K, clear evidence of hot carriers is observed in both the high energy tail of the photoluminescence spectra and from the appearance of a nonequilibrium photocurrent at higher fluence in light J–V measurements. At room temperature, however, the presence of hot carriers in the emission at elevated laser fluence is shown to compete with a gradual red shift in the PL peak energy as photoinduced halide segregation begins to occur at higher lattice temperature. The effects of thermionic emission of hot carriers and the presence of a nonequilibrium carrier distribution are also shown to be distinct from simple lattice heating. This results in large unsaturated photocurrents at high powers as the Fermi distribution exceeds that of the heterointerface controlling carrier transport and rectification.

在环境温度和实际太阳浓度下,(FA,Cs)Pb(I, Br, Cl)3 太阳能电池的运行特性显示了热载流子的存在。尽管这种设备结构并不适合设计为功能性热载流子太阳能电池。在 100 K 时,在光致发光光谱的高能量尾部以及在光 J-V 测量的较高通量下出现的非平衡光电流中都能观察到热载流子的明显证据。然而,在室温下,由于光诱导的卤化物偏析开始在较高的晶格温度下发生,热载流子在较高激光通量下的发射中的存在与 PL 峰值能量的逐渐红移形成了竞争。热载流子的热离子发射和非平衡载流子分布的影响也与简单的晶格加热不同。由于费米分布超过了控制载流子传输和整流的异质界面的费米分布,因此在高功率下会产生较大的不饱和光电流。
{"title":"Evidence of hot carrier extraction in metal halide perovskite solar cells","authors":"Shashi Sourabh,&nbsp;Hadi Afshari,&nbsp;Vincent R. Whiteside,&nbsp;Giles E. Eperon,&nbsp;Rebecca A. Scheidt,&nbsp;Tielyr D. Creason,&nbsp;Madalina Furis,&nbsp;Ahmad R. Kirmani,&nbsp;Bayram Saparov,&nbsp;Joseph M. Luther,&nbsp;Matthew C. Beard,&nbsp;Ian R. Sellers","doi":"10.1002/pip.3777","DOIUrl":"10.1002/pip.3777","url":null,"abstract":"<p>The presence of hot carriers is presented in the operational properties of an (FA,Cs)Pb(I, Br, Cl)<sub>3</sub> solar cell at ambient temperatures and under practical solar concentration. Albeit, in a device architecture that is not suitably designed as a functional hot carrier solar cell. At 100 K, clear evidence of hot carriers is observed in both the high energy tail of the photoluminescence spectra and from the appearance of a nonequilibrium photocurrent at higher fluence in light <i>J–V</i> measurements. At room temperature, however, the presence of hot carriers in the emission at elevated laser fluence is shown to compete with a gradual red shift in the PL peak energy as photoinduced halide segregation begins to occur at higher lattice temperature. The effects of thermionic emission of hot carriers and the presence of a nonequilibrium carrier distribution are also shown to be distinct from simple lattice heating. This results in large unsaturated photocurrents at high powers as the Fermi distribution exceeds that of the heterointerface controlling carrier transport and rectification.</p>","PeriodicalId":223,"journal":{"name":"Progress in Photovoltaics","volume":"32 8","pages":"546-555"},"PeriodicalIF":8.0,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139946076","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Implementation of nickel and copper as cost-effective alternative contacts in silicon solar cells 在硅太阳能电池中采用镍和铜作为具有成本效益的替代触点
IF 6.7 2区 材料科学 Q1 ENERGY & FUELS Pub Date : 2024-02-22 DOI: 10.1002/pip.3792
Veysel Unsur

Efficient metal contact formation is pivotal for the production of cost-effective, high-performance crystalline silicon (Si) solar cells. Traditionally, screen-printed silver (Ag) contacts on the front surface have dominated the industry owing to their simplicity, high throughput, and significant electrical benefits. However, the high cost associated with using over 13–20 mg/Wp of Ag can impede the development of truly cost-effective solar cells. Therefore, there is an urgent need to explore alternative, economically viable metals compatible with silicon substrates. This study reports on the application of a contact stack consisting of Ag, nickel (Ni), and copper (Cu) in Si solar cells. To prevent Schottky contact formation, Ag is implemented as a seed layer, whereas Ni and Cu form the metal bulk layer. The fabricated bi-layer stack without selective emitter exhibits a maximum efficiency of ~21.5%, a fill factor of 81.5%, and an average contact resistance of 5.88 mΩ·cm2 for a monofacial PERC cell. Microstructure analysis demonstrates that the metals within the contacts remain distinct, and Cu diffusion into the silicon during the firing process is absent. Consequently, printed bi-layer contacts emerge as a promising alternative to Ag contacts, reducing the Ag consumption to below 2.5 mg/Wp per cell without compromising overall efficiency.

高效的金属触点形成是生产高性价比、高性能晶体硅(Si)太阳能电池的关键。传统上,前表面丝网印刷银(Ag)触点因其简单、高产能和显著的电气优势而在行业中占据主导地位。然而,使用超过 13-20 mg/Wp 的银所带来的高成本会阻碍真正具有成本效益的太阳能电池的开发。因此,迫切需要探索与硅衬底兼容的、经济上可行的替代金属。本研究报告介绍了在硅太阳能电池中应用由银、镍(Ni)和铜(Cu)组成的接触堆的情况。为防止形成肖特基接触,银被用作种子层,而镍和铜则构成金属体层。在单面 PERC 电池中,无选择性发射器的双层电池堆的最高效率为 21.5%,填充因子为 81.5%,平均接触电阻为 5.88 mΩ-cm2。微观结构分析表明,触点内的金属仍然是独特的,在烧结过程中没有铜扩散到硅中。因此,印刷双层触点有望替代银触点,将每个电池的银消耗量降至 2.5 mg/Wp 以下,而不会影响整体效率。
{"title":"Implementation of nickel and copper as cost-effective alternative contacts in silicon solar cells","authors":"Veysel Unsur","doi":"10.1002/pip.3792","DOIUrl":"10.1002/pip.3792","url":null,"abstract":"<p>Efficient metal contact formation is pivotal for the production of cost-effective, high-performance crystalline silicon (Si) solar cells. Traditionally, screen-printed silver (Ag) contacts on the front surface have dominated the industry owing to their simplicity, high throughput, and significant electrical benefits. However, the high cost associated with using over 13–20 mg/Wp of Ag can impede the development of truly cost-effective solar cells. Therefore, there is an urgent need to explore alternative, economically viable metals compatible with silicon substrates. This study reports on the application of a contact stack consisting of Ag, nickel (Ni), and copper (Cu) in Si solar cells. To prevent Schottky contact formation, Ag is implemented as a seed layer, whereas Ni and Cu form the metal bulk layer. The fabricated bi-layer stack without selective emitter exhibits a maximum efficiency of ~21.5%, a fill factor of 81.5%, and an average contact resistance of 5.88 mΩ·cm<sup>2</sup> for a monofacial PERC cell. Microstructure analysis demonstrates that the metals within the contacts remain distinct, and Cu diffusion into the silicon during the firing process is absent. Consequently, printed bi-layer contacts emerge as a promising alternative to Ag contacts, reducing the Ag consumption to below 2.5 mg/Wp per cell without compromising overall efficiency.</p>","PeriodicalId":223,"journal":{"name":"Progress in Photovoltaics","volume":"32 4","pages":"267-275"},"PeriodicalIF":6.7,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/pip.3792","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139946079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Photon upconversion assisted ferroelectric photovoltaics: Device configuration with multifaceted influence in augmenting the photovoltaic response of BiFeO3 thin-film solar cells 光子上转换辅助铁电光伏技术:对增强 BiFeO3 薄膜太阳能电池光伏响应具有多方面影响的器件配置
IF 8 2区 材料科学 Q1 ENERGY & FUELS Pub Date : 2024-02-22 DOI: 10.1002/pip.3793
Waseem Ahmad Wani, Gaurav Gupta, Shyama Rath, Harihara Venkataraman, Kannan Ramaswamy

This work presents a novel paradigm for upconversion-assisted ferroelectric photovoltaic devices. The system comprises a ferroelectric active layer (BiFeO3), an upconverter layer (Yb; Er-doped ZnO), a conductive ITO-coated glass substrate, and a reflective coating (Al) at the rear end of the glass substrate. The photovoltaic efficiency of the single-layer BFO was found to be 0.71%. With the prescribed device model, the total solar efficiency of BiFeO3 improved significantly and touched solar conversion efficiency of 2.21%. This model's projection widens the future perspectives of device performance in emerging photovoltaic technology, mainly perovskite-based solar cells.

这项研究提出了一种新的上转换辅助铁电光伏器件范例。该系统由铁电活性层(BiFeO3)、上转换层(掺镱;掺铒氧化锌)、ITO 涂层导电玻璃基板和玻璃基板后端的反射涂层(Al)组成。单层 BFO 的光电效率为 0.71%。在规定的设备模型下,BiFeO3 的总太阳能效率显著提高,达到了 2.21% 的太阳能转换效率。该模型的预测拓宽了未来新兴光伏技术(主要是基于包晶石的太阳能电池)的器件性能前景。
{"title":"Photon upconversion assisted ferroelectric photovoltaics: Device configuration with multifaceted influence in augmenting the photovoltaic response of BiFeO3 thin-film solar cells","authors":"Waseem Ahmad Wani,&nbsp;Gaurav Gupta,&nbsp;Shyama Rath,&nbsp;Harihara Venkataraman,&nbsp;Kannan Ramaswamy","doi":"10.1002/pip.3793","DOIUrl":"10.1002/pip.3793","url":null,"abstract":"<p>This work presents a novel paradigm for upconversion-assisted ferroelectric photovoltaic devices. The system comprises a ferroelectric active layer (BiFeO<sub>3</sub>), an upconverter layer (Yb; Er-doped ZnO), a conductive ITO-coated glass substrate, and a reflective coating (Al) at the rear end of the glass substrate. The photovoltaic efficiency of the single-layer BFO was found to be 0.71%. With the prescribed device model, the total solar efficiency of BiFeO<sub>3</sub> improved significantly and touched solar conversion efficiency of 2.21%. This model's projection widens the future perspectives of device performance in emerging photovoltaic technology, mainly perovskite-based solar cells.</p>","PeriodicalId":223,"journal":{"name":"Progress in Photovoltaics","volume":"32 8","pages":"556-568"},"PeriodicalIF":8.0,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139946086","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Progress in Photovoltaics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1