首页 > 最新文献

Progress in Photovoltaics最新文献

英文 中文
The effects of increasing filler loading on the contact resistivity of interconnects based on silver–epoxied conductive adhesives and silver metallization pastes 增加填充量对基于环氧银导电胶和银金属化浆料的互连器件接触电阻率的影响
IF 8 2区 材料科学 Q1 ENERGY & FUELS Pub Date : 2024-02-12 DOI: 10.1002/pip.3787
Maria Ignacia Devoto Acevedo, Rich Wells, Stephan Großer, Karl Wienands, Dominik Rudolph, Andreas Halm, Ralph Gottschalg, Daniel Tune

Our previous work highlighted how microscopic structural effects influence the sheet and contact resistance of electrically conductive adhesives (ECAs). Herein, we delve further by investigating how the contact and bulk resistivity of several ECAs that are based on the same formulation, but with different filler content, are correlated with the filler content. Additionally, two different filler geometries — high and low surface area (HSA and LSA) fillers — are combined in different ratios to maintain a similar viscosity and therefore processability. Hence, contact and bulk resistivities are also correlated with the different geometry ratios of these two fillers. As expected, it was found that the contact and bulk resistivities decreased when the filler content was increased. However, the magnitude of the decrease was found to depend strongly on the filler geometry ratio. At extreme filler geometry ratios, when the bulk is either mostly loaded with HSA-fillers or mostly with LSA-fillers, the impact of changes in the filler content on the bulk and contact resistivities is markedly different. The measured data is interpreted within the context of percolation theory and it is determined that the optimum ratio of the LSA and HSA Ag-fillers investigated in this study is approximately 60:40 (for an epoxy-based adhesive). This work has important ramifications for the design of ECAs, where cost considerations and the need to reduce silver resource usage demand the lowest (silver) filler content, but the demands of product performance point to higher filler content.

我们之前的工作强调了微观结构效应如何影响导电胶(ECA)的片状电阻和接触电阻。在此,我们将进一步研究几种基于相同配方但填料含量不同的导电胶的接触电阻率和体积电阻率如何与填料含量相关联。此外,两种不同几何形状的填料--高表面积和低表面积(HSA 和 LSA)填料--以不同的比例组合在一起,以保持相似的粘度和加工性能。因此,接触电阻和体积电阻也与这两种填料的不同几何比例相关。不出所料,当填料含量增加时,接触电阻率和体积电阻率都会下降。然而,降低的幅度在很大程度上取决于填料的几何比率。在填料几何比率达到极值时,当块体中大部分为 HSA 填料或大部分为 LSA 填料时,填料含量的变化对块体电阻率和接触电阻率的影响明显不同。根据渗流理论对测量数据进行了解释,并确定本研究中调查的 LSA 和 HSA 银填料的最佳比例约为 60:40(对于环氧基粘合剂而言)。这项工作对 ECA 的设计具有重要影响,因为在这种情况下,出于成本考虑和减少银资源使用量的需要,必须采用最低的(银)填料含量,但产品性能的要求又指向较高的填料含量。
{"title":"The effects of increasing filler loading on the contact resistivity of interconnects based on silver–epoxied conductive adhesives and silver metallization pastes","authors":"Maria Ignacia Devoto Acevedo,&nbsp;Rich Wells,&nbsp;Stephan Großer,&nbsp;Karl Wienands,&nbsp;Dominik Rudolph,&nbsp;Andreas Halm,&nbsp;Ralph Gottschalg,&nbsp;Daniel Tune","doi":"10.1002/pip.3787","DOIUrl":"10.1002/pip.3787","url":null,"abstract":"<p>Our previous work highlighted how microscopic structural effects influence the sheet and contact resistance of electrically conductive adhesives (ECAs). Herein, we delve further by investigating how the contact and bulk resistivity of several ECAs that are based on the same formulation, but with different filler content, are correlated with the filler content. Additionally, two different filler geometries — high and low surface area (HSA and LSA) fillers — are combined in different ratios to maintain a similar viscosity and therefore processability. Hence, contact and bulk resistivities are also correlated with the different geometry ratios of these two fillers. As expected, it was found that the contact and bulk resistivities decreased when the filler content was increased. However, the magnitude of the decrease was found to depend strongly on the filler geometry ratio. At extreme filler geometry ratios, when the bulk is either mostly loaded with HSA-fillers or mostly with LSA-fillers, the impact of changes in the filler content on the bulk and contact resistivities is markedly different. The measured data is interpreted within the context of percolation theory and it is determined that the optimum ratio of the LSA and HSA Ag-fillers investigated in this study is approximately 60:40 (for an epoxy-based adhesive). This work has important ramifications for the design of ECAs, where cost considerations and the need to reduce silver resource usage demand the lowest (silver) filler content, but the demands of product performance point to higher filler content.</p>","PeriodicalId":223,"journal":{"name":"Progress in Photovoltaics","volume":"33 1","pages":"143-157"},"PeriodicalIF":8.0,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/pip.3787","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139769015","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Toward more reliable measurement procedures of perovskite-silicon tandem solar cells: The role of transient device effects and measurement conditions 实现更可靠的过氧化物硅串联太阳能电池测量程序:瞬态器件效应和测量条件的作用
IF 8 2区 材料科学 Q1 ENERGY & FUELS Pub Date : 2024-02-11 DOI: 10.1002/pip.3782
Christoph Messmer, David Chojniak, Alexander J. Bett, S. Kasimir Reichmuth, Jochen Hohl-Ebinger, Martin Bivour, Martin Hermle, Jonas Schön, Martin C. Schubert, Stefan W. Glunz

Perovskite-silicon (Pero-Si) tandem solar cells have made remarkable progress in recent years, achieving certified cell efficiencies of up to 33.9%. However, accurately measuring the efficiency and current density-voltage (JV) curves of these devices poses various challenges including the presence of mobile ions within the perovskite absorber that lead to short- and long-term transient effects. Consequently, both the measurement setup and the preconditioning of the device significantly affect measurement results. This study focuses on enhancing the reliability and comparability of JV and other efficiency measurements for Pero-Si tandem devices through a systematic analysis of the influence of mobile ions, preconditioning and measurement conditions. For the first time, a full opto-electrical simulation model for Pero-Si tandem devices is presented in Sentaurus TCAD, which includes the drift-diffusion of anions and cations and is therefore able to describe short- and long-term transient device effects in state-of-the-art Pero-Si tandem cells. Experimental validation and evidence are given by comparison to in-house Pero-Si tandem cells, as well as Pero-Si mini modules from Oxford PV. We analyze by simulation and experiment how the cell preconditioning at different preconditioning voltages and times impacts the resulting measured tandem efficiency, as well as impact of JV scan times for the measured hysteresis in Pero-Si tandem devices. Furthermore, we demonstrate the impact of current-mismatching conditions on the measured hysteresis of the Pero-Si tandem device and the need of correct spectral irradiance settings during measurements. We showcase that even a very slight variation in short-circuit current density (jsc) around the current-matching point leads to significantly different hysteresis behaviors. With aid of our simulation model, we could attribute this phenomenon to a reverse/forward biasing of the perovskite sub-cell impacting the ion drift depending on the current-limiting sub-cell of the tandem device. Therefore, it is sensible to be aware of the current limiting sub-cell for the comparison of the hysteresis susceptibility of different Pero-Si tandem devices. This study strongly underscores the importance of including the preconditioning and measurement conditions when reporting Pero-Si tandem efficiencies. The findings highlight the urgent need for standardization in the field.

近年来,硅殒石(Pero-Si)串联太阳能电池取得了显著进展,经认证的电池效率高达 33.9%。然而,精确测量这些设备的效率和电流密度-电压(JV)曲线面临着各种挑战,其中包括包晶石吸收器中存在的移动离子会导致短期和长期的瞬态效应。因此,测量设置和器件的预处理都会对测量结果产生重大影响。本研究的重点是通过系统分析移动离子、预处理和测量条件的影响,提高串联式 Pero-Si 器件的 JV 和其他效率测量的可靠性和可比性。Sentaurus TCAD 中首次提出了串联式硅珀尔器件的完整光电模拟模型,其中包括阴离子和阳离子的漂移扩散,因此能够描述最先进的串联式硅珀尔电池的短期和长期瞬态器件效应。通过与公司内部的硅珀尔串联电池以及牛津光伏公司的硅珀尔迷你组件进行比较,我们给出了实验验证和证据。我们通过模拟和实验分析了不同预处理电压和时间下的电池预处理如何影响所测得的串联效率,以及 JV 扫描时间对所测得的硅珀尔串联器件滞后的影响。此外,我们还展示了电流不匹配条件对硅珀尔串联器件测量滞后的影响,以及在测量过程中正确设置光谱辐照度的必要性。我们表明,即使电流匹配点附近的短路电流密度 (jsc) 有非常微小的变化,也会导致显著不同的磁滞行为。借助我们的模拟模型,我们可以将这一现象归因于包晶子电池的反向/正向偏压影响了离子漂移,这取决于串联器件的限流子电池。因此,在比较不同的 Pero-Si 串联器件的滞后敏感性时,应注意限流子电池。这项研究有力地强调了在报告硅钙钛矿串联器件效率时纳入预处理和测量条件的重要性。研究结果突出表明,该领域迫切需要标准化。
{"title":"Toward more reliable measurement procedures of perovskite-silicon tandem solar cells: The role of transient device effects and measurement conditions","authors":"Christoph Messmer,&nbsp;David Chojniak,&nbsp;Alexander J. Bett,&nbsp;S. Kasimir Reichmuth,&nbsp;Jochen Hohl-Ebinger,&nbsp;Martin Bivour,&nbsp;Martin Hermle,&nbsp;Jonas Schön,&nbsp;Martin C. Schubert,&nbsp;Stefan W. Glunz","doi":"10.1002/pip.3782","DOIUrl":"10.1002/pip.3782","url":null,"abstract":"<p>Perovskite-silicon (Pero-Si) tandem solar cells have made remarkable progress in recent years, achieving certified cell efficiencies of up to 33.9%. However, accurately measuring the efficiency and current density-voltage (<i>JV</i>) curves of these devices poses various challenges including the presence of mobile ions within the perovskite absorber that lead to short- and long-term transient effects. Consequently, both the measurement setup and the preconditioning of the device significantly affect measurement results. This study focuses on enhancing the reliability and comparability of <i>JV</i> and other efficiency measurements for Pero-Si tandem devices through a systematic analysis of the influence of mobile ions, preconditioning and measurement conditions. For the first time, a full opto-electrical simulation model for Pero-Si tandem devices is presented in Sentaurus TCAD, which includes the drift-diffusion of anions and cations and is therefore able to describe short- and long-term transient device effects in state-of-the-art Pero-Si tandem cells. Experimental validation and evidence are given by comparison to in-house Pero-Si tandem cells, as well as Pero-Si mini modules from Oxford PV. We analyze by simulation and experiment how the cell preconditioning at different preconditioning voltages and times impacts the resulting measured tandem efficiency, as well as impact of <i>JV</i> scan times for the measured hysteresis in Pero-Si tandem devices. Furthermore, we demonstrate the impact of current-mismatching conditions on the measured hysteresis of the Pero-Si tandem device and the need of correct spectral irradiance settings during measurements. We showcase that even a very slight variation in short-circuit current density (<i>j</i><sub>sc</sub>) around the current-matching point leads to significantly different hysteresis behaviors. With aid of our simulation model, we could attribute this phenomenon to a reverse/forward biasing of the perovskite sub-cell impacting the ion drift depending on the current-limiting sub-cell of the tandem device. Therefore, it is sensible to be aware of the current limiting sub-cell for the comparison of the hysteresis susceptibility of different Pero-Si tandem devices. This study strongly underscores the importance of including the preconditioning and measurement conditions when reporting Pero-Si tandem efficiencies. The findings highlight the urgent need for standardization in the field.</p>","PeriodicalId":223,"journal":{"name":"Progress in Photovoltaics","volume":"33 1","pages":"126-142"},"PeriodicalIF":8.0,"publicationDate":"2024-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/pip.3782","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139768987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Scalable all-perovskite double- and triple-junction solar modules: Modeling for configuration optimization 可扩展的全过氧化物双结和三结太阳能模块:配置优化建模
IF 8 2区 材料科学 Q1 ENERGY & FUELS Pub Date : 2024-02-11 DOI: 10.1002/pip.3786
Yasuhiko Takeda, Ken-ichi Yamanaka, Naohiko Kato

We modeled the photovoltaic conversion of all-perovskite (PVK) double- and triple-junction solar modules to clarify the configurations suitable for the monolithically series-interconnected structure, which offers high scalability by fully exploiting the advantages of the thin-film modules over wafer-based crystalline-silicon modules. We first formulated the photovoltaic processes of single cells and modules by reference to previously reported data, next optimized the module structure parameters including the bandgaps of PVKs, cell widths, and transparent-electrode thicknesses, and then evaluated the annually averaged conversion efficiencies (ηannual) defined by the ratio of the annual energy yield to the annual insolation in outdoor environments using a meteorological database. The double-junction four-terminal (2J-4T) module overcomes the shortcomings involved in the two-terminal module consisting of series-connected top and bottom cells, providing higher ηannual and more options of the top-cell bandgap; the latter allows us to select a more durable PVK composition. However, the dual output (four terminals) is practically a serious drawback. The double-junction voltage-matched (2J-VM) configuration eliminates this drawback, that is, realizes the single output (two terminals) with taking over the advantages of 2J-4T, and hence, 2J-VM would be the most promising candidate. However, when the VM configuration is applied to the triple-junction modules, the ohmic loss and optical loss in the transparent electrodes used for the three submodules are more detrimental. To mitigate this shortcoming, we proposed a new configuration of the triple-junction series/parallel-connecting voltage-matched (3J-SPVM) module. This uses only two substrates with securing high ηannual and other advantages of the VM configuration, which contributes to cost reduction. Consequently, 3J-SPVM is potentially the most promising configuration for widespread use.

我们建立了全长晶硅(PVK)双结和三结太阳能模块的光电转换模型,以明确适合单片串联互连结构的配置,这种结构充分发挥了薄膜模块相对于晶硅晶片模块的优势,具有很高的可扩展性。我们首先参考之前报道的数据制定了单个电池和模块的光伏过程,接下来优化了模块结构参数,包括 PVK 带隙、电池宽度和透明电极厚度,然后利用气象数据库评估了年平均转换效率 (η年),年平均转换效率的定义是年发电量与室外环境中年日照量之比。双结四终端(2J-4T)模块克服了由串联顶部和底部电池组成的双终端模块的缺点,提供了更高的η年率和更多的顶部电池带隙选择;后者允许我们选择更耐用的 PVK 组成。然而,双输出(四个端子)实际上是一个严重的缺点。双结电压匹配(2J-VM)配置消除了这一缺点,即在继承 2J-4T 优点的基础上实现了单输出(两个端子),因此,2J-VM 是最有前途的候选方案。然而,当 VM 配置应用于三重结模块时,三个子模块所用透明电极中的欧姆损耗和光损耗将更为不利。为了缓解这一缺陷,我们提出了一种新的三结串联/并联电压匹配(3J-SPVM)模块配置。这种模块仅使用两个基板,但却能确保高η年率以及电压匹配模块配置的其他优点,从而有助于降低成本。因此,3J-SPVM 有可能成为最有希望得到广泛应用的配置。
{"title":"Scalable all-perovskite double- and triple-junction solar modules: Modeling for configuration optimization","authors":"Yasuhiko Takeda,&nbsp;Ken-ichi Yamanaka,&nbsp;Naohiko Kato","doi":"10.1002/pip.3786","DOIUrl":"10.1002/pip.3786","url":null,"abstract":"<p>We modeled the photovoltaic conversion of all-perovskite (PVK) double- and triple-junction solar modules to clarify the configurations suitable for the monolithically series-interconnected structure, which offers high scalability by fully exploiting the advantages of the thin-film modules over wafer-based crystalline-silicon modules. We first formulated the photovoltaic processes of single cells and modules by reference to previously reported data, next optimized the module structure parameters including the bandgaps of PVKs, cell widths, and transparent-electrode thicknesses, and then evaluated the annually averaged conversion efficiencies (<i>η</i><sub>annual</sub>) defined by the ratio of the annual energy yield to the annual insolation in outdoor environments using a meteorological database. The double-junction four-terminal (2J-4T) module overcomes the shortcomings involved in the two-terminal module consisting of series-connected top and bottom cells, providing higher <i>η</i><sub>annual</sub> and more options of the top-cell bandgap; the latter allows us to select a more durable PVK composition. However, the dual output (four terminals) is practically a serious drawback. The double-junction voltage-matched (2J-VM) configuration eliminates this drawback, that is, realizes the single output (two terminals) with taking over the advantages of 2J-4T, and hence, 2J-VM would be the most promising candidate. However, when the VM configuration is applied to the triple-junction modules, the ohmic loss and optical loss in the transparent electrodes used for the three submodules are more detrimental. To mitigate this shortcoming, we proposed a new configuration of the triple-junction series/parallel-connecting voltage-matched (3J-SPVM) module. This uses only two substrates with securing high <i>η</i><sub>annual</sub> and other advantages of the VM configuration, which contributes to cost reduction. Consequently, 3J-SPVM is potentially the most promising configuration for widespread use.</p>","PeriodicalId":223,"journal":{"name":"Progress in Photovoltaics","volume":"32 7","pages":"442-455"},"PeriodicalIF":8.0,"publicationDate":"2024-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139768877","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lithography-free fabrication of a local contact interlayer for Si-based tandem solar cells 为硅基串联太阳能电池免光刻制造局部接触中间膜
IF 6.7 2区 材料科学 Q1 ENERGY & FUELS Pub Date : 2024-02-04 DOI: 10.1002/pip.3784
Youngseok Lee, Chan Ul Kim, Yeeun Woo, Won-Mok Kim, Jeung-hyun Jeong, Dong-hwan Kim, Doh-Kwon Lee, Kyoung Jin Choi, Inho Kim

Currently, the Si solar cell market share is dominated by PERC solar cells. Although the efficiency of PERC solar cells has been steadily increasing, it is expected to reach the practical efficiency limit in the near future. The thin film/PERC Si tandem cell technique can be one of the solutions to overcome the single-cell efficiency limit. In this study, we developed a novel interlayer fabrication technology for the diffused junction Si solar cells of the PERC and Al BSF cell architectures. We combined laser contact opening (LCO) and laser-induced forward transfer (LIFT) processes to fabricate local contact opening with low contact resistance while maintaining the high passivation performance of the Si bottom cell. The dielectric-passivated emitter of the Si solar cell was ablated locally by the LCO process, and subsequently, the Ti nanoparticles were transferred selectively by the LIFT process to the opened emitter region followed by transparent conducting oxide deposition. Laser process parameters were carefully optimized to fabricate low-loss interlayers. We applied the developed interlayer fabrication technology to the Si bottom cells of Al BSF and PERC cells. Finally, we demonstrated successfully the perovskite/PERC Si tandem cell with an interlayer developed in this study. The developed interlayer fabrication technology does not include a photolithography step and vacuum deposition processes for buffer metals; thus, we expect it may be more compatible with the mass production of thin film/diffused junction Si tandem solar cells.

目前,硅太阳能电池的市场份额主要由 PERC 太阳能电池占据。虽然 PERC 太阳能电池的效率一直在稳步提高,但预计在不久的将来就会达到实用效率极限。薄膜/PERC 硅串联电池技术是克服单电池效率限制的解决方案之一。在本研究中,我们为 PERC 和 Al BSF 电池结构的扩散结硅太阳能电池开发了一种新型层间制造技术。我们结合了激光接触开口(LCO)和激光诱导正向转移(LIFT)工艺,在保持硅底电池高钝化性能的同时,制造出具有低接触电阻的局部接触开口。通过 LCO 工艺对硅太阳能电池的介质钝化发射极进行局部烧蚀,然后通过 LIFT 工艺将钛纳米粒子选择性地转移到打开的发射极区域,接着进行透明导电氧化物沉积。我们仔细优化了激光工艺参数,以制造低损耗夹层。我们将所开发的夹层制造技术应用于 Al BSF 和 PERC 电池的硅底电池。最后,我们成功演示了使用本研究中开发的中间膜的过氧化物/PERC Si 串联电池。所开发的中间膜制造技术不包括光刻步骤和缓冲金属的真空沉积过程;因此,我们预计该技术更适合薄膜/扩散结 Si 串联太阳能电池的大规模生产。
{"title":"Lithography-free fabrication of a local contact interlayer for Si-based tandem solar cells","authors":"Youngseok Lee,&nbsp;Chan Ul Kim,&nbsp;Yeeun Woo,&nbsp;Won-Mok Kim,&nbsp;Jeung-hyun Jeong,&nbsp;Dong-hwan Kim,&nbsp;Doh-Kwon Lee,&nbsp;Kyoung Jin Choi,&nbsp;Inho Kim","doi":"10.1002/pip.3784","DOIUrl":"10.1002/pip.3784","url":null,"abstract":"<p>Currently, the Si solar cell market share is dominated by PERC solar cells. Although the efficiency of PERC solar cells has been steadily increasing, it is expected to reach the practical efficiency limit in the near future. The thin film/PERC Si tandem cell technique can be one of the solutions to overcome the single-cell efficiency limit. In this study, we developed a novel interlayer fabrication technology for the diffused junction Si solar cells of the PERC and Al BSF cell architectures. We combined laser contact opening (LCO) and laser-induced forward transfer (LIFT) processes to fabricate local contact opening with low contact resistance while maintaining the high passivation performance of the Si bottom cell. The dielectric-passivated emitter of the Si solar cell was ablated locally by the LCO process, and subsequently, the Ti nanoparticles were transferred selectively by the LIFT process to the opened emitter region followed by transparent conducting oxide deposition. Laser process parameters were carefully optimized to fabricate low-loss interlayers. We applied the developed interlayer fabrication technology to the Si bottom cells of Al BSF and PERC cells. Finally, we demonstrated successfully the perovskite/PERC Si tandem cell with an interlayer developed in this study. The developed interlayer fabrication technology does not include a photolithography step and vacuum deposition processes for buffer metals; thus, we expect it may be more compatible with the mass production of thin film/diffused junction Si tandem solar cells.</p>","PeriodicalId":223,"journal":{"name":"Progress in Photovoltaics","volume":"32 6","pages":"406-416"},"PeriodicalIF":6.7,"publicationDate":"2024-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/pip.3784","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139769339","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development and improvement of a transient temperature model of PV modules: Concept of trailing data 开发和改进光伏组件瞬态温度模型:跟踪数据概念
IF 6.7 2区 材料科学 Q1 ENERGY & FUELS Pub Date : 2024-02-01 DOI: 10.1002/pip.3785
Whyte Goodfriend, E. Bart Pieters, Merdzhanova Tsvetelina, Agbo Solomon, Fabian Ezema, Uwe Rau

The development of a transient temperature model of photovoltaic (PV) modules is presented in this paper. Currently, there are a few steady-state temperature models targeted at assessing and predicting the PV module temperature. One of the most commonly used models is the Faiman thermal model. This model is derived from the modified Hottel-Whillier-Bliss (HWB) model for flat-plate solar-thermal collector under steady-state conditions and assumes low or no thermal mass in the modules (i.e., short time constants such that transients are neglected, and steady-state conditions are assumed). The transient extension of the Faiman model we present in this paper introduces a thermal mass, which provides two advantages. First of all, it improves the temperature prediction under dynamic conditions. Second, our transient extension to the Faiman model allows the accurate parametrization of the Faiman model under dynamic conditions. We present our model and parametrization method. Furthermore, we applied the model and parametrization method to a 1-year data set with 5-min resolved outdoor module measurements. We demonstrate a significant improvement in temperature prediction for the transient model, especially under dynamic conditions.

本文介绍了光伏(PV)模块瞬态温度模型的开发情况。目前,有一些稳态温度模型用于评估和预测光伏组件温度。最常用的模型之一是 Faiman 热模型。该模型由修改后的 Hottel-Whillier-Bliss (HWB) 模型推导而来,适用于稳态条件下的平板式太阳能集热器,并假设组件中的热质量较低或没有热质量(即时间常数较短,从而忽略了瞬态,并假设为稳态条件)。我们在本文中介绍的费曼模型的瞬态扩展引入了热质量,它有两个优点。首先,它改进了动态条件下的温度预测。其次,我们对费曼模型的瞬态扩展允许在动态条件下对费曼模型进行精确的参数化。我们介绍了我们的模型和参数化方法。此外,我们还将模型和参数化方法应用于一个为期 1 年的数据集,该数据集具有 5 分钟分辨率的室外模块测量值。我们展示了瞬态模型在温度预测方面的显著改进,尤其是在动态条件下。
{"title":"Development and improvement of a transient temperature model of PV modules: Concept of trailing data","authors":"Whyte Goodfriend,&nbsp;E. Bart Pieters,&nbsp;Merdzhanova Tsvetelina,&nbsp;Agbo Solomon,&nbsp;Fabian Ezema,&nbsp;Uwe Rau","doi":"10.1002/pip.3785","DOIUrl":"10.1002/pip.3785","url":null,"abstract":"<p>The development of a transient temperature model of photovoltaic (PV) modules is presented in this paper. Currently, there are a few steady-state temperature models targeted at assessing and predicting the PV module temperature. One of the most commonly used models is the Faiman thermal model. This model is derived from the modified Hottel-Whillier-Bliss (HWB) model for flat-plate solar-thermal collector under steady-state conditions and assumes low or no thermal mass in the modules (i.e., short time constants such that transients are neglected, and steady-state conditions are assumed). The transient extension of the Faiman model we present in this paper introduces a thermal mass, which provides two advantages. First of all, it improves the temperature prediction under dynamic conditions. Second, our transient extension to the Faiman model allows the accurate parametrization of the Faiman model under dynamic conditions. We present our model and parametrization method. Furthermore, we applied the model and parametrization method to a 1-year data set with 5-min resolved outdoor module measurements. We demonstrate a significant improvement in temperature prediction for the transient model, especially under dynamic conditions.</p>","PeriodicalId":223,"journal":{"name":"Progress in Photovoltaics","volume":"32 6","pages":"399-405"},"PeriodicalIF":6.7,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/pip.3785","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139664186","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Photovoltaics literature survey (No. 189) 光伏文献调查(第 189 号)
IF 6.7 2区 材料科学 Q1 ENERGY & FUELS Pub Date : 2024-02-01 DOI: 10.1002/pip.3773
Ziv Hameiri
<p>In order to help readers stay up-to-date in the field, each issue of <i>Progress in Photovoltaics</i> will contain a list of recently published journal articles that are most relevant to its aims and scope. This list is drawn from an extremely wide range of journals, including <i>IEEE Journal of Photovoltaics</i>, <i>Solar Energy Materials and Solar Cells</i>, <i>Renewable Energy</i>, <i>Renewable and Sustainable Energy Reviews</i>, <i>Journal of Applied Physics</i>, and <i>Applied Physics Letters</i>. To assist readers, the list is separated into broad categories, but please note that these classifications are by no means strict. Also note that inclusion in the list is not an endorsement of a paper's quality. If you have any suggestions please email Ziv Hameiri at <span>[email protected]</span>.</p><p>Vicari Stefani B, Kim M, Zhang Y, et al. <b>Historical market projections and the future of silicon solar cells.</b> <i>Joule</i> 2023; <b>7</b>(12): 2684-2699.</p><p>Zhang CP, Wei K, Hu JF, et al. <b>A review on organic hole transport materials for perovskite solar cells: Structure, composition and reliability.</b> <i>Materials Today</i> 2023; <b>67</b>: 518-547.</p><p>Zhang JX, Chen XY, Wei HK, et al. <b>A lightweight network for photovoltaic cell defect detection in electroluminescence images based on neural architecture search and knowledge distillation.</b> <i>Applied Energy</i> 2024; <b>355</b>: 122184.</p><p>Pan JX, Chen ZM, Zhang TK, et al. <b>Operando dynamics of trapped carriers in perovskite solar cells observed via infrared optical activation spectroscopy.</b> <i>Nature Communications</i> 2023; <b>14</b>(1): 8000.</p><p>Lorenzo E, Moretón R, Solorzano J, et al. <b>On outdoor testing procedures of large samples of PV modules.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2024; <b>32</b>(1): 14-24.</p><p>Grant NE, Pain SL, Khorani E, et al. <b>Activation of Al</b><sub><b>2</b></sub><b>O</b><sub><b>3</b></sub> <b>surface passivation of silicon: Separating bulk and surface effects.</b> <i>Applied Surface Science</i> 2024; <b>645</b>: 158786.</p><p>Yue ZY, Wang GY, Huang ZG, et al. <b>Excellent crystalline silicon surface passivation by transparent conductive Al-doped ZnO/ITO stack.</b> <i>Applied Surface Science</i> 2024; <b>645</b>: 158845.</p><p>Xing C, Jiang C, Gu W, et al. <b>SrF</b><sub><b>x</b></sub><b>-based electron-selective contact with high tolerance to thickness for crystalline silicon solar cells enabling efficiency over 21%.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2024; <b>32</b>(1): 35-44.</p><p>Luo HW, Zheng XT, Kong WC, et al. <b>Inorganic framework composition engineering for scalable fabrication of perovskite/silicon tandem solar cells.</b> <i>Acs Energy Letters</i> 2023; <b>8</b>(12): 4993-5002.</p><p>Dipon MNA, Sahriar MA, Sarker S, et al. <b>A comprehensive study of mechanically stacked tandem photovoltaic devices: Materials selection and efficiency analysis using SCAPS.</b>
为了帮助读者了解该领域的最新进展,每期《光伏进展》都会列出一份最近发表的与其目标和范围最相关的期刊文章清单。这份清单选自极为广泛的期刊,包括《IEEE 光伏学报》、《太阳能材料和太阳能电池》、《可再生能源》、《可再生和可持续能源评论》、《应用物理学报》和《应用物理快报》。为了帮助读者,本列表分为几大类,但请注意,这些分类并不严格。同时请注意,列入列表并不代表对论文质量的认可。如果您有任何建议,请发送电子邮件至 [email protected] 联系 Ziv Hameiri。Joule 2023; 7(12):Zhang CP, Wei K, Hu JF, et al:结构、组成和可靠性。Zhang JX, Chen XY, Wei HK, et al. A lightweight network for photovoltaic cell defect detection in electroluminescence images based on neural architecture search and knowledge distillation.Pan JX, Chen ZM, Zhang TK, et al.自然通讯 2023; 14(1):Lorenzo E, Moretón R, Solorzano J, et al.光伏技术进展:研究与应用 2024; 32(1):14-24.Grant NE, Pain SL, Khorani E, et al:分离块体和表面效应。Yue ZY, Wang GY, Huang ZG, et al.Xing C, Jiang C, Gu W, et al. SrFx-based electron-selective contact with high tolerance to thickness for crystalline silicon solar cells enabling efficiency over 21%.光伏技术进展:35-44.Luo HW, et al:Luo HW, Zheng XT, Kong WC, et al.Acs Energy Letters 2023; 8(12):Dipon MNA, Sahriar MA, Sarker S, et al:使用 SCAPS 进行材料选择和效率分析。Mohamad Noh MF, Arzaee NA, Fat CC, et al. Perovskite/CIGS tandem solar cells: progressive advances from technical perspectives.Bao Y, Ma T, Ai Z, et al. Insights into efficiency deviation from current-mismatch for tandem photovoltaics.Kang Y, Yoon JW, Lee YK, et al:宽吸收和高性能有机光伏。Nakano K, Kaji Y, Tajima K. Origin of electric field-dependent charge generation in organic photovoltaics with planar and bulk heterojunctions.材料化学杂志 A 2023; 11(48):Luo X, Freychet G, Gan Z, et al.大分子 2023; 56(21):Song W, Ge JF, Xie L, et al.Nano Energy 2023; 116: 108805.Aziz NAS, Rahman MYA, Umar AA, et al. Iridium-palladium binary alloy as a counter electrode in dye-sensitized solar cells.Dalton Transactions 2023; 52(48):Jumaah FN, Mustafa NM, Mobarak NN, et al.Electrochimica Acta 2023; 472: 143383.Yan WY, Xiang F, Ou JH, et al. 通过匹配假卤素氧化还原偶和有机供体-π-受体氰基丙烯酸染料之间的能级实现的高效染料敏化太阳能电池。Electrochimica Acta 2024; 473: 143522.Nawghare IS, Singh AK, Maibam A, et al.物理化学杂志 C 2023; 127(46):22473-22488.Mirzaei M, Gholivand MB.嵌入锚定在多壁碳纳米管上的 N 掺杂碳框架中的 P 掺杂 NiS2/Ni 纳米异质颗粒作为无铂染料敏化太阳能电池的高效对电极。Norouzibazaz M, Gholivand MB, Taherpour AA, et al. Co-Ni-Se@MoSe2 核壳装饰的多壁碳纳米管作为染料敏化太阳能电池可持续对电极的实验和计算研究。Materials Today Energy 2023; 38: 101447. Aktas E, Poli I, Ponti C, et al. 使用不含二甲基亚砜的溶剂系统在自组装单层上一步沉积锡-超长晶石。Acs Energy Letters 2023; 8(12):Ali W, Qin W, Tian H, et al.Acs Energy Letters 2023; 8(12):Park SW, Heo JH, Lee HJ, et al.Acs Energy Letters 2023; 8(12):5061-5069.Wang HS, Yin YF, Xu J, et al. Field-induced transport anisotropy in single-crystalline all-inorganic lead-halide perovskite nanowires.Acs Nano 2023; 17(23):Yue Y, Yang R, Zhang W, et al. Cesium cyclopropane acid-aided crystal growth enables efficient inorganic perovskite solar cells with a high moisture tolerance.Fan L, Yu M, Hu W, et al. Reducing charge-recombination losses in photovoltaic cells by spontaneous reconstruction of n/p homojunction in a monolithic perovskite film using black phosphorus nanosheet.Johnson SA, White KP, Tong J, et al.Joule 2023;
{"title":"Photovoltaics literature survey (No. 189)","authors":"Ziv Hameiri","doi":"10.1002/pip.3773","DOIUrl":"https://doi.org/10.1002/pip.3773","url":null,"abstract":"&lt;p&gt;In order to help readers stay up-to-date in the field, each issue of &lt;i&gt;Progress in Photovoltaics&lt;/i&gt; will contain a list of recently published journal articles that are most relevant to its aims and scope. This list is drawn from an extremely wide range of journals, including &lt;i&gt;IEEE Journal of Photovoltaics&lt;/i&gt;, &lt;i&gt;Solar Energy Materials and Solar Cells&lt;/i&gt;, &lt;i&gt;Renewable Energy&lt;/i&gt;, &lt;i&gt;Renewable and Sustainable Energy Reviews&lt;/i&gt;, &lt;i&gt;Journal of Applied Physics&lt;/i&gt;, and &lt;i&gt;Applied Physics Letters&lt;/i&gt;. To assist readers, the list is separated into broad categories, but please note that these classifications are by no means strict. Also note that inclusion in the list is not an endorsement of a paper's quality. If you have any suggestions please email Ziv Hameiri at &lt;span&gt;[email protected]&lt;/span&gt;.&lt;/p&gt;&lt;p&gt;Vicari Stefani B, Kim M, Zhang Y, et al. &lt;b&gt;Historical market projections and the future of silicon solar cells.&lt;/b&gt; &lt;i&gt;Joule&lt;/i&gt; 2023; &lt;b&gt;7&lt;/b&gt;(12): 2684-2699.&lt;/p&gt;&lt;p&gt;Zhang CP, Wei K, Hu JF, et al. &lt;b&gt;A review on organic hole transport materials for perovskite solar cells: Structure, composition and reliability.&lt;/b&gt; &lt;i&gt;Materials Today&lt;/i&gt; 2023; &lt;b&gt;67&lt;/b&gt;: 518-547.&lt;/p&gt;&lt;p&gt;Zhang JX, Chen XY, Wei HK, et al. &lt;b&gt;A lightweight network for photovoltaic cell defect detection in electroluminescence images based on neural architecture search and knowledge distillation.&lt;/b&gt; &lt;i&gt;Applied Energy&lt;/i&gt; 2024; &lt;b&gt;355&lt;/b&gt;: 122184.&lt;/p&gt;&lt;p&gt;Pan JX, Chen ZM, Zhang TK, et al. &lt;b&gt;Operando dynamics of trapped carriers in perovskite solar cells observed via infrared optical activation spectroscopy.&lt;/b&gt; &lt;i&gt;Nature Communications&lt;/i&gt; 2023; &lt;b&gt;14&lt;/b&gt;(1): 8000.&lt;/p&gt;&lt;p&gt;Lorenzo E, Moretón R, Solorzano J, et al. &lt;b&gt;On outdoor testing procedures of large samples of PV modules.&lt;/b&gt; &lt;i&gt;Progress in Photovoltaics: Research and Applications&lt;/i&gt; 2024; &lt;b&gt;32&lt;/b&gt;(1): 14-24.&lt;/p&gt;&lt;p&gt;Grant NE, Pain SL, Khorani E, et al. &lt;b&gt;Activation of Al&lt;/b&gt;&lt;sub&gt;&lt;b&gt;2&lt;/b&gt;&lt;/sub&gt;&lt;b&gt;O&lt;/b&gt;&lt;sub&gt;&lt;b&gt;3&lt;/b&gt;&lt;/sub&gt; &lt;b&gt;surface passivation of silicon: Separating bulk and surface effects.&lt;/b&gt; &lt;i&gt;Applied Surface Science&lt;/i&gt; 2024; &lt;b&gt;645&lt;/b&gt;: 158786.&lt;/p&gt;&lt;p&gt;Yue ZY, Wang GY, Huang ZG, et al. &lt;b&gt;Excellent crystalline silicon surface passivation by transparent conductive Al-doped ZnO/ITO stack.&lt;/b&gt; &lt;i&gt;Applied Surface Science&lt;/i&gt; 2024; &lt;b&gt;645&lt;/b&gt;: 158845.&lt;/p&gt;&lt;p&gt;Xing C, Jiang C, Gu W, et al. &lt;b&gt;SrF&lt;/b&gt;&lt;sub&gt;&lt;b&gt;x&lt;/b&gt;&lt;/sub&gt;&lt;b&gt;-based electron-selective contact with high tolerance to thickness for crystalline silicon solar cells enabling efficiency over 21%.&lt;/b&gt; &lt;i&gt;Progress in Photovoltaics: Research and Applications&lt;/i&gt; 2024; &lt;b&gt;32&lt;/b&gt;(1): 35-44.&lt;/p&gt;&lt;p&gt;Luo HW, Zheng XT, Kong WC, et al. &lt;b&gt;Inorganic framework composition engineering for scalable fabrication of perovskite/silicon tandem solar cells.&lt;/b&gt; &lt;i&gt;Acs Energy Letters&lt;/i&gt; 2023; &lt;b&gt;8&lt;/b&gt;(12): 4993-5002.&lt;/p&gt;&lt;p&gt;Dipon MNA, Sahriar MA, Sarker S, et al. &lt;b&gt;A comprehensive study of mechanically stacked tandem photovoltaic devices: Materials selection and efficiency analysis using SCAPS.&lt;/b&gt;","PeriodicalId":223,"journal":{"name":"Progress in Photovoltaics","volume":"32 3","pages":"212-215"},"PeriodicalIF":6.7,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/pip.3773","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139676407","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Prevention of potential-induced degradation using a moisture barrier in crystalline silicon photovoltaic modules 在晶体硅光伏组件中使用防潮层防止电位引起的降解
IF 6.7 2区 材料科学 Q1 ENERGY & FUELS Pub Date : 2024-01-30 DOI: 10.1002/pip.3783
Solhee Lee, Kyung Dong Lee, Soohyun Bae, Yoonmook Kang, Donghwan Kim, Hae-Seok Lee

As photovoltaic (PV) modules are exposed to high temperatures and humidity over time, they generate leakage current, which leads to potential-induced degradation (PID) and lower power output. In silicon, Cu(In,Ga)(Se,S)2 (CIGS) thin film and perovskite solar cells, PID has been shown to be driven by the presence of Na in the module glass. PID stability is crucial for the commercialization of such solar modules. This study aims to confirm the leaching phenomenon of Na in soda–lime module glass and study the use of polytetrafluoroethylene (PTFE) as a moisture barrier to prevent PID. By water immersion and exposure to different temperature and humidity conditions, we exhibited Na leaching in soda–lime glass. Moreover, we demonstrate the use of an anti-PID moisture barrier made of PTFE, which was deposited using kinetic spraying between the cover glass and encapsulant in the solar module. The thickness of the moisture barrier was controlled by adjusting the deposition rate, and the PID characteristics were evaluated by manufacturing solar modules for different barrier thicknesses. Light current–voltage (LIV), dark current–voltage (DIV), and electroluminescence (EL) measurements confirmed that the PTFE moisture barrier effectively inhibits the degradation of solar cells. This study provides further insights into the Na leaching phenomenon and PID mechanism in PV modules and contributes to the design and development of more stable solar cells.

由于光伏(PV)组件长期暴露在高温和潮湿环境中,会产生漏电流,从而导致电位诱发衰减(PID)和功率输出降低。在硅、铜铟镓硒(CIGS)薄膜和过氧化物太阳能电池中,PID 是由组件玻璃中的 Na 所引起的。PID 稳定性对于此类太阳能模块的商业化至关重要。本研究旨在证实钠钙电池组件玻璃中 Na 的浸出现象,并研究使用聚四氟乙烯(PTFE)作为防潮层来防止 PID。通过水浸泡和暴露在不同的温度和湿度条件下,我们展示了钠钙玻璃中的 Na 浸出现象。此外,我们还展示了由聚四氟乙烯制成的防 PID 防潮层的使用方法,该防潮层是通过动力学喷涂沉积在太阳能模块的盖板玻璃和封装材料之间的。通过调整沉积速率来控制防潮层的厚度,并通过制造不同防潮层厚度的太阳能模块来评估 PID 特性。光电流-电压(LIV)、暗电流-电压(DIV)和电致发光(EL)测量结果证实,聚四氟乙烯防潮层能有效抑制太阳能电池的降解。这项研究进一步揭示了光伏组件中的 Na 浸出现象和 PID 机制,有助于设计和开发更稳定的太阳能电池。
{"title":"Prevention of potential-induced degradation using a moisture barrier in crystalline silicon photovoltaic modules","authors":"Solhee Lee,&nbsp;Kyung Dong Lee,&nbsp;Soohyun Bae,&nbsp;Yoonmook Kang,&nbsp;Donghwan Kim,&nbsp;Hae-Seok Lee","doi":"10.1002/pip.3783","DOIUrl":"10.1002/pip.3783","url":null,"abstract":"<p>As photovoltaic (PV) modules are exposed to high temperatures and humidity over time, they generate leakage current, which leads to potential-induced degradation (PID) and lower power output. In silicon, Cu(In,Ga)(Se,S)<sub>2</sub> (CIGS) thin film and perovskite solar cells, PID has been shown to be driven by the presence of Na in the module glass. PID stability is crucial for the commercialization of such solar modules. This study aims to confirm the leaching phenomenon of Na in soda–lime module glass and study the use of polytetrafluoroethylene (PTFE) as a moisture barrier to prevent PID. By water immersion and exposure to different temperature and humidity conditions, we exhibited Na leaching in soda–lime glass. Moreover, we demonstrate the use of an anti-PID moisture barrier made of PTFE, which was deposited using kinetic spraying between the cover glass and encapsulant in the solar module. The thickness of the moisture barrier was controlled by adjusting the deposition rate, and the PID characteristics were evaluated by manufacturing solar modules for different barrier thicknesses. Light current–voltage (LIV), dark current–voltage (DIV), and electroluminescence (EL) measurements confirmed that the PTFE moisture barrier effectively inhibits the degradation of solar cells. This study provides further insights into the Na leaching phenomenon and PID mechanism in PV modules and contributes to the design and development of more stable solar cells.</p>","PeriodicalId":223,"journal":{"name":"Progress in Photovoltaics","volume":"32 6","pages":"390-398"},"PeriodicalIF":6.7,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140485299","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A precise method for the spectral adjustment of LED and multi-light source solar simulators 发光二极管和多光源太阳模拟器光谱调整的精确方法
IF 6.7 2区 材料科学 Q1 ENERGY & FUELS Pub Date : 2024-01-26 DOI: 10.1002/pip.3776
David Chojniak, Michael Schachtner, S. Kasimir Reichmuth, Alexander J. Bett, Michael Rauer, Jochen Hohl-Ebinger, Alexandra Schmid, Gerald Siefer, Stefan W. Glunz

Solar simulators based on light-emitting diodes (LEDs) usually consist of many spectrally different LEDs, which in sum produce a sun-like spectrum. On the one hand, this results in the advantage of a high spectral tunability of these systems and on the other hand, however, also in the challenge of a high number of parameters which have to be set for the adjustment of a suitable simulator spectrum. Multijunction solar cells consisting of series-connected subcells are very sensitive to spectral irradiance conditions, which are affecting the current and the fill factor of the device. A precise adjustment of the simulator spectrum based on the spectral responsivity of the subcells is therefore essential for accurate multijunction measurements. Therefore, the number of spectrally different light sources used should be at least as high as the number of subcells in the device under test. However, for the measurement of multijunction devices, the much higher number of spectrally different light sources in common LED solar simulators results in a plethora of different simulator spectra, potentially suitable for the measurement. Furthermore, the nonlinear intensity characteristics of the utilized LEDs as well as the distance-dependent illumination uniformity of such solar simulators add complexity when aiming for a precise spectral adjustment. To tackle these challenges, a new spectral adjustment procedure which is based on a least square's solution algorithm and the definition of appropriate boundary conditions for the calculation of suitable simulator settings is introduced in this publication. Focusing on measurements carried out under constant illumination makes the presented method especially applicable for perovskite-on-silicon multijunction devices. Therefore, an adapted method for the determination of the solar simulator's spectral properties, considering thermal influences which are particularly relevant when carrying out continuous illumination measurements, is introduced in this work. The presented method is verified applying it on a Wavelabs SINUS 220 LED solar simulator by performing a measurement comparison on a multijunction solar cell with Fraunhofer ISE CalLab's well-established multilight source solar simulator.

基于发光二极管(LED)的太阳模拟器通常由许多光谱不同的发光二极管组成,这些发光二极管共同产生类似太阳的光谱。一方面,这使得这些系统具有光谱可调性高的优势,但另一方面,也带来了大量参数的挑战,这些参数必须通过设置来调整合适的模拟器光谱。由串联子电池组成的多接面太阳能电池对光谱辐照条件非常敏感,而光谱辐照条件会影响设备的电流和填充因子。因此,根据子电池的光谱响应度精确调整模拟器光谱对于精确测量多接面太阳能电池至关重要。因此,所使用的光谱不同的光源数量至少应与被测设备中子电池的数量相同。然而,在测量多接面器件时,普通 LED 太阳能模拟器中光谱不同的光源数量要多得多,因此会产生大量不同的模拟器光谱,可能适合测量。此外,所使用的 LED 的非线性强度特性以及此类太阳能模拟器随距离变化的照明均匀性,也增加了精确光谱调整的复杂性。为了应对这些挑战,本出版物介绍了一种新的光谱调整程序,该程序基于最小平方求解算法和适当边界条件的定义,用于计算合适的模拟器设置。该方法侧重于在恒定光照下进行测量,因此特别适用于硅基包晶多结器件。因此,考虑到在进行持续光照测量时特别相关的热影响,本著作介绍了一种用于确定太阳能模拟器光谱特性的调整方法。通过对多接面太阳能电池与弗劳恩霍夫 ISE CalLab 成熟的多光源太阳能模拟器进行测量比较,在 Wavelabs SINUS 220 LED 太阳能模拟器上验证了所介绍的方法。
{"title":"A precise method for the spectral adjustment of LED and multi-light source solar simulators","authors":"David Chojniak,&nbsp;Michael Schachtner,&nbsp;S. Kasimir Reichmuth,&nbsp;Alexander J. Bett,&nbsp;Michael Rauer,&nbsp;Jochen Hohl-Ebinger,&nbsp;Alexandra Schmid,&nbsp;Gerald Siefer,&nbsp;Stefan W. Glunz","doi":"10.1002/pip.3776","DOIUrl":"10.1002/pip.3776","url":null,"abstract":"<p>Solar simulators based on light-emitting diodes (LEDs) usually consist of many spectrally different LEDs, which in sum produce a sun-like spectrum. On the one hand, this results in the advantage of a high spectral tunability of these systems and on the other hand, however, also in the challenge of a high number of parameters which have to be set for the adjustment of a suitable simulator spectrum. Multijunction solar cells consisting of series-connected subcells are very sensitive to spectral irradiance conditions, which are affecting the current and the fill factor of the device. A precise adjustment of the simulator spectrum based on the spectral responsivity of the subcells is therefore essential for accurate multijunction measurements. Therefore, the number of spectrally different light sources used should be at least as high as the number of subcells in the device under test. However, for the measurement of multijunction devices, the much higher number of spectrally different light sources in common LED solar simulators results in a plethora of different simulator spectra, potentially suitable for the measurement. Furthermore, the nonlinear intensity characteristics of the utilized LEDs as well as the distance-dependent illumination uniformity of such solar simulators add complexity when aiming for a precise spectral adjustment. To tackle these challenges, a new spectral adjustment procedure which is based on a least square's solution algorithm and the definition of appropriate boundary conditions for the calculation of suitable simulator settings is introduced in this publication. Focusing on measurements carried out under constant illumination makes the presented method especially applicable for perovskite-on-silicon multijunction devices. Therefore, an adapted method for the determination of the solar simulator's spectral properties, considering thermal influences which are particularly relevant when carrying out continuous illumination measurements, is introduced in this work. The presented method is verified applying it on a Wavelabs SINUS 220 LED solar simulator by performing a measurement comparison on a multijunction solar cell with Fraunhofer ISE CalLab's well-established multilight source solar simulator.</p>","PeriodicalId":223,"journal":{"name":"Progress in Photovoltaics","volume":"32 6","pages":"372-389"},"PeriodicalIF":6.7,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/pip.3776","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139584857","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Approaches for III-V/Si tandem solar cells and comparative studies on Si tandem solar cells III-V/Si 串联太阳能电池的方法和硅串联太阳能电池的比较研究
IF 8 2区 材料科学 Q1 ENERGY & FUELS Pub Date : 2024-01-25 DOI: 10.1002/pip.3780
Masafumi Yamaguchi, Tatsuya Takamoto, Hiroyuki Juso, Kyotaro Nakamura, Ryo Ozaki, Taizo Masuda, Takashi Mabuchi, Kenichi Okumura, Nobuaki Kojima, Yoshio Ohshita

Photovoltaic (PV)-powered vehicle applications are very attractive for reducing CO2 emission and creation of new market. Development of Si tandem solar cells is very promising for high-efficiency and low-cost solar cells. This paper presents our approaches for III–V/Si 3-junction tandem solar cells. In this paper, 24.9% efficiency Si heterojunction solar cells and mechanically stacked four-terminal 35.8% InGaP/GaAs/Si three-junction tandem solar cell are shown. Roadmap for realizing high-efficacy three-junction tandem solar cells of more than 40% is discussed in this paper. Because efficiencies of record cell of 36.1% with III–V/Si three-junction tandem cells and 33.9% with perovskite/Si two-junction cells are lower compared to 39.5% with III–V three-junction solar cells, it is necessary to clarify and reduce several losses of Si tandem solar cells. This paper presents high efficiency potential of III–V/Si three-junction and perovskite/Si two-junction solar cells analyzed by using our analytical procedure and discusses about non-radiative recombination, optical, and resistance losses in those Si tandem cells. Current status of various solar cell module efficiencies including our new record efficiency Si tandem solar cell module with an efficiency of 33.66% is also analyzed.

光伏(PV)驱动的汽车应用对减少二氧化碳排放和创造新市场非常有吸引力。硅串联太阳能电池的开发对于实现高效率和低成本太阳能电池非常有前景。本文介绍了我们开发 III-V/Si 3 结串联太阳能电池的方法。本文展示了效率为 24.9% 的硅异质结太阳能电池和机械叠层四端 35.8% 的 InGaP/GaAs/Si 三结串联太阳能电池。本文讨论了实现 40% 以上高效三结串联太阳能电池的路线图。与 III-V 三结太阳能电池的 39.5% 相比,III-V/Si 三结串联电池的记录电池效率为 36.1%,Perovskite/Si 两结电池的效率为 33.9%,因此有必要澄清并减少 Si 串联太阳能电池的若干损耗。本文利用我们的分析程序分析了 III-V/Si 三结太阳能电池和包晶石/硅二结太阳能电池的高效潜力,并讨论了这些硅串联电池中的非辐射重组、光学和电阻损耗。此外,还分析了各种太阳能电池组件效率的现状,包括我们最新创纪录的效率为 33.66% 的硅串联太阳能电池组件。
{"title":"Approaches for III-V/Si tandem solar cells and comparative studies on Si tandem solar cells","authors":"Masafumi Yamaguchi,&nbsp;Tatsuya Takamoto,&nbsp;Hiroyuki Juso,&nbsp;Kyotaro Nakamura,&nbsp;Ryo Ozaki,&nbsp;Taizo Masuda,&nbsp;Takashi Mabuchi,&nbsp;Kenichi Okumura,&nbsp;Nobuaki Kojima,&nbsp;Yoshio Ohshita","doi":"10.1002/pip.3780","DOIUrl":"10.1002/pip.3780","url":null,"abstract":"<p>Photovoltaic (PV)-powered vehicle applications are very attractive for reducing CO<sub>2</sub> emission and creation of new market. Development of Si tandem solar cells is very promising for high-efficiency and low-cost solar cells. This paper presents our approaches for III–V/Si 3-junction tandem solar cells. In this paper, 24.9% efficiency Si heterojunction solar cells and mechanically stacked four-terminal 35.8% InGaP/GaAs/Si three-junction tandem solar cell are shown. Roadmap for realizing high-efficacy three-junction tandem solar cells of more than 40% is discussed in this paper. Because efficiencies of record cell of 36.1% with III–V/Si three-junction tandem cells and 33.9% with perovskite/Si two-junction cells are lower compared to 39.5% with III–V three-junction solar cells, it is necessary to clarify and reduce several losses of Si tandem solar cells. This paper presents high efficiency potential of III–V/Si three-junction and perovskite/Si two-junction solar cells analyzed by using our analytical procedure and discusses about non-radiative recombination, optical, and resistance losses in those Si tandem cells. Current status of various solar cell module efficiencies including our new record efficiency Si tandem solar cell module with an efficiency of 33.66% is also analyzed.</p>","PeriodicalId":223,"journal":{"name":"Progress in Photovoltaics","volume":"33 1","pages":"116-125"},"PeriodicalIF":8.0,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139584935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Field-representative evaluation of PID-polarization in TOPCon PV modules by accelerated stress testing 通过加速应力测试对 TOPCon 光伏组件的 PID 极化进行现场代表性评估
IF 6.7 2区 材料科学 Q1 ENERGY & FUELS Pub Date : 2024-01-25 DOI: 10.1002/pip.3774
Peter Hacke, Sergiu Spataru, Brian Habersberger, Yifeng Chen

Potential-induced degradation-polarization (PID-p) can reduce module power, but how to project the extent to which PID-p may occur in field conditions considering the factors of system voltage, condensed moisture, temperature, and illumination has not been clarified. Using tunnel oxide passivated contact (TOPCon) modules, this work demonstrates a method to test full-size crystalline silicon PV modules for PID-p to provide field-representative results. In initial screening tests with positive or negative 1000 V electrical bias applied at 60°C for 96 h using Al foil electrodes on the glass surfaces, the module type exhibited reversible PID-p only on the front face when the cell circuit was in negative voltage potential. No PID was detected on the rear after testing in either polarity. We then evaluated the PID-p sensitivity on the front side under different UV irradiances while maintaining the glass surface wet to estimate real-world susceptibility to PID-p. The magnitude of the observed behavior was fit using a previously developed charge transfer and depletion by light model. Whereas power loss with −1000 V applied to the cell circuit at 60°C for 96 h in the dark was about 30%, testing the module front under 0.051 W·m−2 nm−1 at 340 nm UVA irradiation using fluorescent tubes, the mean degradation was only 3%. When the modules were tested in the dark for PID-p with in situ dark current–voltage (I-V) characterization, the thermal activation energy for degradation was 0.71 eV; for recovery in the dark, it was 0.58 eV. Whereas recovery from the degraded state at 60°C in the dark without voltage bias was 5% absolute in 38 h, rapid recovery of about 5% absolute was observed with 1000 W·s/m2 exposure at 25°C using a flash tester.

电位诱发的极化降解(PID-p)会降低组件功率,但考虑到系统电压、冷凝湿度、温度和光照等因素,如何预测 PID-p 在现场条件下可能发生的程度尚未明确。本研究利用隧道氧化物钝化接触(TOPCon)组件,展示了一种测试全尺寸晶体硅光伏组件 PID-p 的方法,以提供具有现场代表性的结果。在玻璃表面使用铝箔电极在 60°C 下施加正或负 1000 V 电偏压 96 小时的初步筛选测试中,当电池电路处于负电压电位时,组件类型仅在正面表现出可逆的 PID-p。在两种极性下进行测试后,均未在背面检测到 PID。然后,我们评估了正面在不同紫外线辐照度下的 PID-p 灵敏度,同时保持玻璃表面湿润,以估计现实世界中对 PID-p 的敏感性。我们使用之前开发的电荷转移和光耗竭模型对观察到的行为大小进行了拟合。在 60°C 的黑暗环境中,对电池电路施加 -1000 V 电压 96 小时后,功率损耗约为 30%,而在使用荧光灯管对模块正面进行 0.051 W-m-2 nm-1 的 340 nm UVA 照射测试时,平均损耗仅为 3%。在暗处对模块进行 PID-p 测试并进行原位暗电流-电压(I-V)特性分析时,降解的热激活能为 0.71 eV;暗处恢复的热激活能为 0.58 eV。在无电压偏置的情况下,60°C 黑暗条件下的降解状态在 38 小时内绝对恢复 5%,而在 25°C 条件下使用闪光灯测试仪进行 1000 W-s/m2 曝光时,则能快速恢复约 5%的绝对值。
{"title":"Field-representative evaluation of PID-polarization in TOPCon PV modules by accelerated stress testing","authors":"Peter Hacke,&nbsp;Sergiu Spataru,&nbsp;Brian Habersberger,&nbsp;Yifeng Chen","doi":"10.1002/pip.3774","DOIUrl":"10.1002/pip.3774","url":null,"abstract":"<p>Potential-induced degradation-polarization (PID-p) can reduce module power, but how to project the extent to which PID-p may occur in field conditions considering the factors of system voltage, condensed moisture, temperature, and illumination has not been clarified. Using tunnel oxide passivated contact (TOPCon) modules, this work demonstrates a method to test full-size crystalline silicon PV modules for PID-p to provide field-representative results. In initial screening tests with positive or negative 1000 V electrical bias applied at 60°C for 96 h using Al foil electrodes on the glass surfaces, the module type exhibited reversible PID-p only on the front face when the cell circuit was in negative voltage potential. No PID was detected on the rear after testing in either polarity. We then evaluated the PID-p sensitivity on the front side under different UV irradiances while maintaining the glass surface wet to estimate real-world susceptibility to PID-p. The magnitude of the observed behavior was fit using a previously developed charge transfer and depletion by light model. Whereas power loss with −1000 V applied to the cell circuit at 60°C for 96 h in the dark was about 30%, testing the module front under 0.051 W·m<sup>−2</sup> nm<sup>−1</sup> at 340 nm UVA irradiation using fluorescent tubes, the mean degradation was only 3%. When the modules were tested in the dark for PID-p with in situ dark current–voltage (I-V) characterization, the thermal activation energy for degradation was 0.71 eV; for recovery in the dark, it was 0.58 eV. Whereas recovery from the degraded state at 60°C in the dark without voltage bias was 5% absolute in 38 h, rapid recovery of about 5% absolute was observed with 1000 W·s/m<sup>2</sup> exposure at 25°C using a flash tester.</p>","PeriodicalId":223,"journal":{"name":"Progress in Photovoltaics","volume":"32 5","pages":"346-355"},"PeriodicalIF":6.7,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/pip.3774","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139584862","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Progress in Photovoltaics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1