首页 > 最新文献

Wiley Interdisciplinary Reviews: RNA最新文献

英文 中文
Cancer-derived non-coding RNAs endow tumor microenvironment with immunosuppressive properties. 癌症衍生的非编码RNA赋予肿瘤微环境免疫抑制特性。
IF 7.3 2区 生物学 Q1 CELL BIOLOGY Pub Date : 2023-10-10 DOI: 10.1002/wrna.1822
Tong Hu, Run Shi, Yunru Gu, Hanyu Zhou, Yuan Fang, Tingting Xu, Yangyue Xu, Xi Wu, Ling Ma, Yongqian Shu

Non-coding RNAs (ncRNAs) have attracted extensive attention due to their vital roles in tumorigenesis and progression, especially in the immunotherapy resistance. Tumor immunotherapy resistance is a crucial factor hindering the efficacy of tumor treatments, which can be largely attributed to the immunosuppressive properties of tumor microenvironment. Current studies have revealed that cancer-derived ncRNAs are involved in the formation of tumor immunosuppressive microenvironment (TIME) through multiple ways. They not only promote the expression of immune checkpoint ligands (e.g., PD-L1, CD47, Gal-9, and CD276) on cancer cell surfaces, but also enhance the secretion of immunosuppressive cytokines (e.g., TGF-β, IL-6, IL-10, VEGF, and chemokines). Cancer-derived ncRNAs could also be transferred into surrounding immune-related cells through extracellular vesicles, thereby inhibiting the cytotoxicity of CD8+ T cells and NK cells, restraining the DC-mediated antigen presentation, inducing the immunosuppressive phenotype transformation of TAMs and CAFs, and enhancing the immunosuppressive functions of Tregs and MDSCs. Herein, we summarize the roles of cancer-derived ncRNAs in regulating TIME formation and further explore their potential applications as prognostic biomarkers and immunotherapeutic targets, which will help us to address the TIME-mediated immunotherapy resistance in the future. This article is categorized under: RNA in Disease and Development > RNA in Disease Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs.

非编码RNA(ncRNA)由于其在肿瘤发生和发展中的重要作用,特别是在免疫疗法耐药性中,引起了广泛的关注。肿瘤免疫治疗耐药性是阻碍肿瘤治疗效果的关键因素,这在很大程度上可归因于肿瘤微环境的免疫抑制特性。目前的研究表明,癌症衍生的ncRNA通过多种方式参与肿瘤免疫抑制微环境(TIME)的形成。它们不仅促进免疫检查点配体(如PD-L1、CD47、Gal-9和CD276)在癌症细胞表面的表达,还促进免疫抑制细胞因子(如TGF-β、IL-6、IL-10、VEGF和趋化因子)的分泌。癌症衍生的ncRNA也可以通过细胞外小泡转移到周围的免疫相关细胞中,从而抑制CD8+T细胞和NK细胞的细胞毒性,抑制DC-介导的抗原呈递,诱导TAMs和CAFs的免疫抑制表型转化,增强Tregs和MDSCs的免疫抑制功能。在此,我们总结了癌症衍生的ncRNA在调节时间形成中的作用,并进一步探索其作为预后生物标志物和免疫治疗靶点的潜在应用,这将有助于我们在未来解决时间介导的免疫疗法耐药性。这篇文章被分类为:RNA在疾病和发展中>RNA在疾病调控RNAs/RNAi/核糖开关中>调控RNA。
{"title":"Cancer-derived non-coding RNAs endow tumor microenvironment with immunosuppressive properties.","authors":"Tong Hu,&nbsp;Run Shi,&nbsp;Yunru Gu,&nbsp;Hanyu Zhou,&nbsp;Yuan Fang,&nbsp;Tingting Xu,&nbsp;Yangyue Xu,&nbsp;Xi Wu,&nbsp;Ling Ma,&nbsp;Yongqian Shu","doi":"10.1002/wrna.1822","DOIUrl":"https://doi.org/10.1002/wrna.1822","url":null,"abstract":"<p><p>Non-coding RNAs (ncRNAs) have attracted extensive attention due to their vital roles in tumorigenesis and progression, especially in the immunotherapy resistance. Tumor immunotherapy resistance is a crucial factor hindering the efficacy of tumor treatments, which can be largely attributed to the immunosuppressive properties of tumor microenvironment. Current studies have revealed that cancer-derived ncRNAs are involved in the formation of tumor immunosuppressive microenvironment (TIME) through multiple ways. They not only promote the expression of immune checkpoint ligands (e.g., PD-L1, CD47, Gal-9, and CD276) on cancer cell surfaces, but also enhance the secretion of immunosuppressive cytokines (e.g., TGF-β, IL-6, IL-10, VEGF, and chemokines). Cancer-derived ncRNAs could also be transferred into surrounding immune-related cells through extracellular vesicles, thereby inhibiting the cytotoxicity of CD8<sup>+</sup> T cells and NK cells, restraining the DC-mediated antigen presentation, inducing the immunosuppressive phenotype transformation of TAMs and CAFs, and enhancing the immunosuppressive functions of Tregs and MDSCs. Herein, we summarize the roles of cancer-derived ncRNAs in regulating TIME formation and further explore their potential applications as prognostic biomarkers and immunotherapeutic targets, which will help us to address the TIME-mediated immunotherapy resistance in the future. This article is categorized under: RNA in Disease and Development > RNA in Disease Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs.</p>","PeriodicalId":23886,"journal":{"name":"Wiley Interdisciplinary Reviews: RNA","volume":" ","pages":"e1822"},"PeriodicalIF":7.3,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41214478","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Regulation of microRNA by circular RNA. 环状核糖核酸对微小核糖核酸的调节。
IF 7.3 2区 生物学 Q1 CELL BIOLOGY Pub Date : 2023-10-02 DOI: 10.1002/wrna.1820
Suman Singh, Tanvi Sinha, Amaresh C Panda

Circular (circ)RNAs have emerged as novel regulators of gene expression through various mechanisms. However, most publications focus on functional circRNAs regulating target gene expression by interacting with micro (mi)RNAs and acting as competing endogenous RNAs (ceRNAs). Although the theory of miRNA sponging by ceRNAs suggests the inhibition of miRNA activity, many studies are biased toward the selection of miRNAs showing a reverse expression pattern compared with circRNA expression. Although several computational tools and molecular assays have been used to predict and validate the interaction of miRNAs with circRNAs, the actual validation of functional in vivo interactions needs careful consideration of molecular experiments with specific controls. As extensive research is being performed on circRNA, many questions arise on the functional significance of circRNA-miRNA interactions. We hope the critical discussion on the criteria for selecting circRNA-miRNA pairs for functional analysis and providing standard methods for validating circRNA-miRNA interactions will advance our understanding of circRNAs as novel gene regulators. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs Translation > Regulation RNA Methods > RNA Analyses in Cells.

环状(circ)RNA已通过各种机制成为基因表达的新调节因子。然而,大多数出版物关注的是通过与微小(mi)RNA相互作用并作为竞争性内源性RNA(ceRNA)来调节靶基因表达的功能性circRNA。尽管ceRNA吸收miRNA的理论表明miRNA活性受到抑制,但许多研究倾向于选择与circRNA表达相比表现出反向表达模式的miRNA。尽管已经使用了几种计算工具和分子分析来预测和验证miRNA与circRNA的相互作用,但体内功能相互作用的实际验证需要仔细考虑具有特定对照的分子实验。随着对circRNA的广泛研究,circRNA-miRNA相互作用的功能意义出现了许多问题。我们希望,关于选择circRNA-miRNA对进行功能分析的标准以及提供验证circRNA-miRNA相互作用的标准方法的批判性讨论,将促进我们对circRNAs作为新型基因调节因子的理解。本文分类为:调控RNAs/RNAi/核糖开关>调控RNA翻译>调控RNA方法>细胞中的RNA分析。
{"title":"Regulation of microRNA by circular RNA.","authors":"Suman Singh,&nbsp;Tanvi Sinha,&nbsp;Amaresh C Panda","doi":"10.1002/wrna.1820","DOIUrl":"https://doi.org/10.1002/wrna.1820","url":null,"abstract":"<p><p>Circular (circ)RNAs have emerged as novel regulators of gene expression through various mechanisms. However, most publications focus on functional circRNAs regulating target gene expression by interacting with micro (mi)RNAs and acting as competing endogenous RNAs (ceRNAs). Although the theory of miRNA sponging by ceRNAs suggests the inhibition of miRNA activity, many studies are biased toward the selection of miRNAs showing a reverse expression pattern compared with circRNA expression. Although several computational tools and molecular assays have been used to predict and validate the interaction of miRNAs with circRNAs, the actual validation of functional in vivo interactions needs careful consideration of molecular experiments with specific controls. As extensive research is being performed on circRNA, many questions arise on the functional significance of circRNA-miRNA interactions. We hope the critical discussion on the criteria for selecting circRNA-miRNA pairs for functional analysis and providing standard methods for validating circRNA-miRNA interactions will advance our understanding of circRNAs as novel gene regulators. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs Translation > Regulation RNA Methods > RNA Analyses in Cells.</p>","PeriodicalId":23886,"journal":{"name":"Wiley Interdisciplinary Reviews: RNA","volume":" ","pages":"e1820"},"PeriodicalIF":7.3,"publicationDate":"2023-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41103990","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Imprinted small nucleolar RNAs: Missing link in development and disease? 印记小核仁rna:发育和疾病的缺失环节?
IF 7.3 2区 生物学 Q1 CELL BIOLOGY Pub Date : 2023-09-18 DOI: 10.1002/wrna.1818
Kishor Gawade, Katarzyna D Raczynska

The 14q32.2 (DLK1-DIO3) and 15q11-q13 (SNURF-SNRPN) imprinted gene loci harbor the largest known small nucleolar RNA clusters expressed from the respective maternal and paternal alleles. Recent studies have demonstrated significant roles for the 15q11-q13 located SNORD115-SNORD116 C/D box snoRNAs in Prader-Willi syndrome (PWS), a neurodevelopmental disorder. Even though the effect of SNORD116 deletion is apparent in the PWS phenotype, similar effects of a SNORD113-SNORD114 cluster deletion from the 14q32.2 locus in Kagami-Ogata syndrome (KOS14) and upregulation in Temple syndrome (TS14) remain to be explored. Moreover, apart from their probable involvement in neurodevelopmental disorders, snoRNAs from the SNORD113-SNORD114 cluster have been implicated in multiple biological processes, including pluripotency, development, cancers, and RNA modifications. Here we summarize the current understanding of the system to explore the possibility of a link between developmental disorders and C/D box snoRNA expression from the imprinted 14q32.2 locus. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA in Disease and Development > RNA in Development RNA Processing > Processing of Small RNAs.

14q32.2 (DLK1-DIO3)和15q11-q13 (SNURF-SNRPN)印迹基因位点包含最大的已知小核仁RNA簇,分别来自母本和父本等位基因。最近的研究表明,位于15q11-q13的SNORD115-SNORD116 C/D盒snoRNAs在PWS(一种神经发育障碍)中发挥着重要作用。尽管SNORD116缺失对PWS表型的影响是明显的,但在香神-奥多形综合征(KOS14)和Temple综合征(TS14)中,14q32.2位点的SNORD113-SNORD114簇缺失的类似影响仍有待探索。此外,除了可能参与神经发育障碍外,SNORD113-SNORD114集群的snoRNAs还涉及多种生物学过程,包括多能性、发育、癌症和RNA修饰。在这里,我们总结了目前对该系统的理解,从印迹14q32.2位点探索发育障碍与C/D盒snoRNA表达之间的联系的可能性。本文分类为:RNA在疾病与发展> RNA在疾病与发展> RNA在疾病与发展> RNA在发育RNA加工>小RNA加工。
{"title":"Imprinted small nucleolar RNAs: Missing link in development and disease?","authors":"Kishor Gawade,&nbsp;Katarzyna D Raczynska","doi":"10.1002/wrna.1818","DOIUrl":"https://doi.org/10.1002/wrna.1818","url":null,"abstract":"<p><p>The 14q32.2 (DLK1-DIO3) and 15q11-q13 (SNURF-SNRPN) imprinted gene loci harbor the largest known small nucleolar RNA clusters expressed from the respective maternal and paternal alleles. Recent studies have demonstrated significant roles for the 15q11-q13 located SNORD115-SNORD116 C/D box snoRNAs in Prader-Willi syndrome (PWS), a neurodevelopmental disorder. Even though the effect of SNORD116 deletion is apparent in the PWS phenotype, similar effects of a SNORD113-SNORD114 cluster deletion from the 14q32.2 locus in Kagami-Ogata syndrome (KOS14) and upregulation in Temple syndrome (TS14) remain to be explored. Moreover, apart from their probable involvement in neurodevelopmental disorders, snoRNAs from the SNORD113-SNORD114 cluster have been implicated in multiple biological processes, including pluripotency, development, cancers, and RNA modifications. Here we summarize the current understanding of the system to explore the possibility of a link between developmental disorders and C/D box snoRNA expression from the imprinted 14q32.2 locus. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA in Disease and Development > RNA in Development RNA Processing > Processing of Small RNAs.</p>","PeriodicalId":23886,"journal":{"name":"Wiley Interdisciplinary Reviews: RNA","volume":" ","pages":"e1818"},"PeriodicalIF":7.3,"publicationDate":"2023-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10308054","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cyclin-dependent kinases: Masters of the eukaryotic universe. 依赖细胞周期蛋白的激酶:真核生物宇宙的主宰者
IF 7.3 2区 生物学 Q1 CELL BIOLOGY Pub Date : 2023-09-17 DOI: 10.1002/wrna.1816
Aleksandra J Pluta, Cécilia Studniarek, Shona Murphy, Chris J Norbury

A family of structurally related cyclin-dependent protein kinases (CDKs) drives many aspects of eukaryotic cell function. Much of the literature in this area has considered individual members of this family to act primarily either as regulators of the cell cycle, the context in which CDKs were first discovered, or as regulators of transcription. Until recently, CDK7 was the only clear example of a CDK that functions in both processes. However, new data points to several "cell-cycle" CDKs having important roles in transcription and some "transcriptional" CDKs having cell cycle-related targets. For example, novel functions in transcription have been demonstrated for the archetypal cell cycle regulator CDK1. The increasing evidence of the overlap between these two CDK types suggests that they might play a critical role in coordinating the two processes. Here we review the canonical functions of cell-cycle and transcriptional CDKs, and provide an update on how these kinases collaborate to perform important cellular functions. We also provide a brief overview of how dysregulation of CDKs contributes to carcinogenesis, and possible treatment avenues. This article is categorized under: RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes RNA Processing > 3' End Processing RNA Processing > Splicing Regulation/Alternative Splicing.

结构相关的细胞周期蛋白依赖性蛋白激酶(CDKs)家族驱动着真核细胞功能的许多方面。该领域的许多文献都认为该家族的各个成员主要是作为细胞周期的调节者(CDKs 最初就是在这种情况下被发现的)或转录的调节者发挥作用。直到最近,CDK7 仍是 CDK 在这两个过程中发挥作用的唯一明确例子。然而,新的数据表明,一些 "细胞周期 "CDK 在转录中发挥着重要作用,一些 "转录 "CDK 具有与细胞周期相关的靶标。例如,典型的细胞周期调节因子 CDK1 在转录中的新功能已被证实。越来越多的证据表明,这两种 CDK 类型之间存在重叠,这表明它们可能在协调这两个过程中发挥着关键作用。在此,我们回顾了细胞周期和转录 CDK 的典型功能,并提供了这些激酶如何协同执行重要细胞功能的最新信息。我们还简要概述了 CDKs 失调如何导致癌变以及可能的治疗途径。本文归类于RNA 与蛋白质和其他分子的相互作用 > RNA 蛋白复合物 RNA 处理 > 3' 端处理 RNA 处理 > 剪接调节/替代剪接。
{"title":"Cyclin-dependent kinases: Masters of the eukaryotic universe.","authors":"Aleksandra J Pluta, Cécilia Studniarek, Shona Murphy, Chris J Norbury","doi":"10.1002/wrna.1816","DOIUrl":"10.1002/wrna.1816","url":null,"abstract":"<p><p>A family of structurally related cyclin-dependent protein kinases (CDKs) drives many aspects of eukaryotic cell function. Much of the literature in this area has considered individual members of this family to act primarily either as regulators of the cell cycle, the context in which CDKs were first discovered, or as regulators of transcription. Until recently, CDK7 was the only clear example of a CDK that functions in both processes. However, new data points to several \"cell-cycle\" CDKs having important roles in transcription and some \"transcriptional\" CDKs having cell cycle-related targets. For example, novel functions in transcription have been demonstrated for the archetypal cell cycle regulator CDK1. The increasing evidence of the overlap between these two CDK types suggests that they might play a critical role in coordinating the two processes. Here we review the canonical functions of cell-cycle and transcriptional CDKs, and provide an update on how these kinases collaborate to perform important cellular functions. We also provide a brief overview of how dysregulation of CDKs contributes to carcinogenesis, and possible treatment avenues. This article is categorized under: RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes RNA Processing > 3' End Processing RNA Processing > Splicing Regulation/Alternative Splicing.</p>","PeriodicalId":23886,"journal":{"name":"Wiley Interdisciplinary Reviews: RNA","volume":" ","pages":"e1816"},"PeriodicalIF":7.3,"publicationDate":"2023-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10909489/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10634604","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A-to-I RNA editing by ADAR and its therapeutic applications: From viral infections to cancer immunotherapy. ADAR 的 A 到 I RNA 编辑及其治疗应用:从病毒感染到癌症免疫疗法。
IF 7.3 2区 生物学 Q1 CELL BIOLOGY Pub Date : 2023-09-17 DOI: 10.1002/wrna.1817
Rohini Datta, Julia Z Adamska, Amruta Bhate, Jin Billy Li

ADAR deaminases catalyze adenosine-to-inosine (A-to-I) editing on double-stranded RNA (dsRNA) substrates that regulate an umbrella of biological processes. One of the two catalytically active ADAR enzymes, ADAR1, plays a major role in innate immune responses by suppression of RNA sensing pathways which are orchestrated through the ADAR1-dsRNA-MDA5 axis. Unedited immunogenic dsRNA substrates are potent ligands for the cellular sensor MDA5. Upon activation, MDA5 leads to the induction of interferons and expression of hundreds of interferon-stimulated genes with potent antiviral activity. In this way, ADAR1 acts as a gatekeeper of the RNA sensing pathway by striking a fine balance between innate antiviral responses and prevention of autoimmunity. Reduced editing of immunogenic dsRNA by ADAR1 is strongly linked to the development of common autoimmune and inflammatory diseases. In viral infections, ADAR1 exhibits both antiviral and proviral effects. This is modulated by both editing-dependent and editing-independent functions, such as PKR antagonism. Several A-to-I RNA editing events have been identified in viruses, including in the insidious viral pathogen, SARS-CoV-2 which regulates viral fitness and infectivity, and could play a role in shaping viral evolution. Furthermore, ADAR1 is an attractive target for immuno-oncology therapy. Overexpression of ADAR1 and increased dsRNA editing have been observed in several human cancers. Silencing ADAR1, especially in cancers that are refractory to immune checkpoint inhibitors, is a promising therapeutic strategy for cancer immunotherapy in conjunction with epigenetic therapy. The mechanistic understanding of dsRNA editing by ADAR1 and dsRNA sensing by MDA5 and PKR holds great potential for therapeutic applications. This article is categorized under: RNA Processing > RNA Editing and Modification RNA in Disease and Development > RNA in Disease.

ADAR 脱氨酶催化双链 RNA(dsRNA)底物上的腺苷-肌苷(A-to-I)编辑,从而调节一系列生物过程。两种具有催化活性的 ADAR 酶之一 ADAR1 在先天性免疫反应中发挥着重要作用,它通过 ADAR1-dsRNA-MDA5 轴抑制 RNA 传感途径。未经编辑的免疫原性 dsRNA 底物是细胞传感器 MDA5 的强效配体。激活后,MDA5 会诱导干扰素,并表达数百个具有强大抗病毒活性的干扰素刺激基因。这样,ADAR1 就充当了 RNA 感知通路的看门人,在先天性抗病毒反应和预防自身免疫之间取得了微妙的平衡。ADAR1 对免疫原性 dsRNA 编辑的减少与常见自身免疫性和炎症性疾病的发生密切相关。在病毒感染中,ADAR1 具有抗病毒和抑制病毒的作用。这受到依赖编辑和不依赖编辑功能(如 PKR 拮抗作用)的调节。在病毒中发现了几种 A 到 I 的 RNA 编辑事件,包括在隐匿性病毒病原体 SARS-CoV-2 中,它调节病毒的适应性和感染性,并可能在病毒进化过程中发挥作用。此外,ADAR1还是免疫肿瘤学治疗的一个有吸引力的靶点。在几种人类癌症中观察到 ADAR1 的过表达和 dsRNA 编辑的增加。沉默 ADAR1,尤其是在对免疫检查点抑制剂难治的癌症中沉默 ADAR1,是癌症免疫疗法与表观遗传疗法相结合的一种很有前景的治疗策略。对ADAR1的dsRNA编辑以及MDA5和PKR的dsRNA感应的机理认识具有巨大的治疗应用潜力。本文归类于RNA Processing > RNA Editing and Modification RNA in Disease and Development > RNA in Disease。
{"title":"A-to-I RNA editing by ADAR and its therapeutic applications: From viral infections to cancer immunotherapy.","authors":"Rohini Datta, Julia Z Adamska, Amruta Bhate, Jin Billy Li","doi":"10.1002/wrna.1817","DOIUrl":"10.1002/wrna.1817","url":null,"abstract":"<p><p>ADAR deaminases catalyze adenosine-to-inosine (A-to-I) editing on double-stranded RNA (dsRNA) substrates that regulate an umbrella of biological processes. One of the two catalytically active ADAR enzymes, ADAR1, plays a major role in innate immune responses by suppression of RNA sensing pathways which are orchestrated through the ADAR1-dsRNA-MDA5 axis. Unedited immunogenic dsRNA substrates are potent ligands for the cellular sensor MDA5. Upon activation, MDA5 leads to the induction of interferons and expression of hundreds of interferon-stimulated genes with potent antiviral activity. In this way, ADAR1 acts as a gatekeeper of the RNA sensing pathway by striking a fine balance between innate antiviral responses and prevention of autoimmunity. Reduced editing of immunogenic dsRNA by ADAR1 is strongly linked to the development of common autoimmune and inflammatory diseases. In viral infections, ADAR1 exhibits both antiviral and proviral effects. This is modulated by both editing-dependent and editing-independent functions, such as PKR antagonism. Several A-to-I RNA editing events have been identified in viruses, including in the insidious viral pathogen, SARS-CoV-2 which regulates viral fitness and infectivity, and could play a role in shaping viral evolution. Furthermore, ADAR1 is an attractive target for immuno-oncology therapy. Overexpression of ADAR1 and increased dsRNA editing have been observed in several human cancers. Silencing ADAR1, especially in cancers that are refractory to immune checkpoint inhibitors, is a promising therapeutic strategy for cancer immunotherapy in conjunction with epigenetic therapy. The mechanistic understanding of dsRNA editing by ADAR1 and dsRNA sensing by MDA5 and PKR holds great potential for therapeutic applications. This article is categorized under: RNA Processing > RNA Editing and Modification RNA in Disease and Development > RNA in Disease.</p>","PeriodicalId":23886,"journal":{"name":"Wiley Interdisciplinary Reviews: RNA","volume":" ","pages":"e1817"},"PeriodicalIF":7.3,"publicationDate":"2023-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10947335/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10634589","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Regulation of alternative splicing: Functional interplay with epigenetic modifications and its implication to cancer. 选择性剪接的调控:与表观遗传修饰的功能相互作用及其对癌症的影响。
IF 7.3 2区 生物学 Q1 CELL BIOLOGY Pub Date : 2023-09-12 DOI: 10.1002/wrna.1815
Ning Wang, Yue Hu, Zefeng Wang

Eukaryotic gene expression is intricately regulated at multiple levels. The protein-coding genes are first transcribed as pre-mRNAs in the nucleus and undergo a series of RNA processing steps before being transported into the cytoplasm for translation. During RNA processing, most human genes (>95%) undergo alternative splicing to generate multiple mRNA isoforms from a single gene, which effectively diversifies the genome complexity. Since the splicing of most genes occurs co-transcriptionally, the regulation layers of gene expression often show functional interactions with each other. In this review, we provide a brief overview of alternative splicing regulation in three different layers (controlled by the splicing machinery, transcription process, and chromatin structure), emphasizing the regulatory roles of epigenetic modifications and the crosstalk between these layers. Specifically, we categorize the major effects of the epigenetic modifications on alternative splicing into three different types: by affecting transcription rate, splicing factor recruitment, or the expression/activity of splicing factor. The dysregulation of epigenetics and splicing are extremely common in cancer, we also discuss the potential mechanisms of how epigenetic changes can lead to splicing dysregulation and their functional consequences. We aim to provide insights into the complicated regulation of different gene expression layers, which will shed light on the novel approaches to modulate disease-related splicing dysregulation. This article is categorized under: RNA Processing > 3' End Processing RNA Processing > Splicing Mechanisms RNA Processing > Splicing Regulation/Alternative Splicing RNA in Disease and Development > RNA in Disease.

真核生物的基因表达在多个水平上受到复杂的调控。蛋白质编码基因首先在细胞核中作为pre- mrna转录,并经过一系列RNA加工步骤,然后被转运到细胞质中进行翻译。在RNA加工过程中,大多数人类基因(>95%)通过选择性剪接从单个基因产生多个mRNA同种异构体,从而有效地多样化了基因组的复杂性。由于大多数基因的剪接是共转录发生的,因此基因表达的调控层之间经常表现出功能上的相互作用。在这篇综述中,我们简要概述了剪接在三个不同层(由剪接机制、转录过程和染色质结构控制)中的选择性调节,强调了表观遗传修饰和这些层之间的串扰的调节作用。具体来说,我们将表观遗传修饰对选择性剪接的主要影响分为三种不同的类型:通过影响转录率、剪接因子招募或剪接因子的表达/活性。表观遗传和剪接的失调在癌症中非常常见,我们还讨论了表观遗传变化如何导致剪接失调的潜在机制及其功能后果。我们的目标是提供对不同基因表达层的复杂调控的见解,这将揭示调节疾病相关剪接失调的新方法。本文分类如下:RNA加工> 3'端加工RNA加工>剪接机制RNA加工>剪接调控/选择性剪接RNA在疾病和发展> RNA在疾病。
{"title":"Regulation of alternative splicing: Functional interplay with epigenetic modifications and its implication to cancer.","authors":"Ning Wang,&nbsp;Yue Hu,&nbsp;Zefeng Wang","doi":"10.1002/wrna.1815","DOIUrl":"https://doi.org/10.1002/wrna.1815","url":null,"abstract":"<p><p>Eukaryotic gene expression is intricately regulated at multiple levels. The protein-coding genes are first transcribed as pre-mRNAs in the nucleus and undergo a series of RNA processing steps before being transported into the cytoplasm for translation. During RNA processing, most human genes (>95%) undergo alternative splicing to generate multiple mRNA isoforms from a single gene, which effectively diversifies the genome complexity. Since the splicing of most genes occurs co-transcriptionally, the regulation layers of gene expression often show functional interactions with each other. In this review, we provide a brief overview of alternative splicing regulation in three different layers (controlled by the splicing machinery, transcription process, and chromatin structure), emphasizing the regulatory roles of epigenetic modifications and the crosstalk between these layers. Specifically, we categorize the major effects of the epigenetic modifications on alternative splicing into three different types: by affecting transcription rate, splicing factor recruitment, or the expression/activity of splicing factor. The dysregulation of epigenetics and splicing are extremely common in cancer, we also discuss the potential mechanisms of how epigenetic changes can lead to splicing dysregulation and their functional consequences. We aim to provide insights into the complicated regulation of different gene expression layers, which will shed light on the novel approaches to modulate disease-related splicing dysregulation. This article is categorized under: RNA Processing > 3' End Processing RNA Processing > Splicing Mechanisms RNA Processing > Splicing Regulation/Alternative Splicing RNA in Disease and Development > RNA in Disease.</p>","PeriodicalId":23886,"journal":{"name":"Wiley Interdisciplinary Reviews: RNA","volume":" ","pages":"e1815"},"PeriodicalIF":7.3,"publicationDate":"2023-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10564634","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Saccharomyces cerevisiae as a research tool for RNA-mediated human disease. 将酿酒酵母作为研究 RNA 介导的人类疾病的工具。
IF 7.3 2区 生物学 Q1 CELL BIOLOGY Pub Date : 2023-09-06 DOI: 10.1002/wrna.1814
Stephanie Gastelum, Allison F Michael, Timothy A Bolger

The budding yeast, Saccharomyces cerevisiae, has been used for decades as a powerful genetic tool to study a broad spectrum of biological topics. With its ease of use, economic utility, well-studied genome, and a highly conserved proteome across eukaryotes, it has become one of the most used model organisms. Due to these advantages, it has been used to study an array of complex human diseases. From broad, complex pathological conditions such as aging and neurodegenerative disease to newer uses such as SARS-CoV-2, yeast continues to offer new insights into how cellular processes are affected by disease and how affected pathways might be targeted in therapeutic settings. At the same time, the roles of RNA and RNA-based processes have become increasingly prominent in the pathology of many of these same human diseases, and yeast has been utilized to investigate these mechanisms, from aberrant RNA-binding proteins in amyotrophic lateral sclerosis to translation regulation in cancer. Here we review some of the important insights that yeast models have yielded into the molecular pathology of complex, RNA-based human diseases. This article is categorized under: RNA in Disease and Development > RNA in Disease.

几十年来,酵母芽孢杆菌(Saccharomyces cerevisiae)一直被用作研究各种生物学课题的强大遗传工具。酵母菌使用方便、经济实用、基因组研究充分、蛋白质组在真核生物中高度保守,因此已成为最常用的模式生物之一。由于这些优势,它已被用于研究一系列复杂的人类疾病。从衰老和神经退行性疾病等广泛而复杂的病理情况,到 SARS-CoV-2 等较新的用途,酵母不断提供新的见解,让人们了解细胞过程如何受到疾病的影响,以及在治疗过程中如何针对受影响的途径进行治疗。与此同时,RNA 和基于 RNA 的过程在许多相同人类疾病的病理学中的作用也日益突出,酵母已被用来研究这些机制,从肌萎缩性脊髓侧索硬化症中的异常 RNA 结合蛋白到癌症中的翻译调控。在此,我们回顾了酵母模型对复杂的、以 RNA 为基础的人类疾病的分子病理学所产生的一些重要启示。本文归类于疾病与发育中的 RNA > 疾病中的 RNA。
{"title":"Saccharomyces cerevisiae as a research tool for RNA-mediated human disease.","authors":"Stephanie Gastelum, Allison F Michael, Timothy A Bolger","doi":"10.1002/wrna.1814","DOIUrl":"10.1002/wrna.1814","url":null,"abstract":"<p><p>The budding yeast, Saccharomyces cerevisiae, has been used for decades as a powerful genetic tool to study a broad spectrum of biological topics. With its ease of use, economic utility, well-studied genome, and a highly conserved proteome across eukaryotes, it has become one of the most used model organisms. Due to these advantages, it has been used to study an array of complex human diseases. From broad, complex pathological conditions such as aging and neurodegenerative disease to newer uses such as SARS-CoV-2, yeast continues to offer new insights into how cellular processes are affected by disease and how affected pathways might be targeted in therapeutic settings. At the same time, the roles of RNA and RNA-based processes have become increasingly prominent in the pathology of many of these same human diseases, and yeast has been utilized to investigate these mechanisms, from aberrant RNA-binding proteins in amyotrophic lateral sclerosis to translation regulation in cancer. Here we review some of the important insights that yeast models have yielded into the molecular pathology of complex, RNA-based human diseases. This article is categorized under: RNA in Disease and Development > RNA in Disease.</p>","PeriodicalId":23886,"journal":{"name":"Wiley Interdisciplinary Reviews: RNA","volume":" ","pages":"e1814"},"PeriodicalIF":7.3,"publicationDate":"2023-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10162601","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ghost authors revealed: The structure and function of human N6 -methyladenosine RNA methyltransferases. 鬼才作者透露:人类 N6 -甲基腺苷 RNA 甲基转移酶的结构和功能。
IF 7.3 2区 生物学 Q1 CELL BIOLOGY Pub Date : 2023-09-06 DOI: 10.1002/wrna.1810
Kurtis Breger, Charlotte N Kunkler, Nathan J O'Leary, Jacob P Hulewicz, Jessica A Brown

Despite the discovery of modified nucleic acids nearly 75 years ago, their biological functions are still being elucidated. N6 -methyladenosine (m6 A) is the most abundant modification in eukaryotic messenger RNA (mRNA) and has also been detected in non-coding RNAs, including long non-coding RNA, ribosomal RNA, and small nuclear RNA. In general, m6 A marks can alter RNA secondary structure and initiate unique RNA-protein interactions that can alter splicing, mRNA turnover, and translation, just to name a few. Although m6 A marks in human RNAs have been known to exist since 1974, the structures and functions of methyltransferases responsible for writing m6 A marks have been established only recently. Thus far, there are four confirmed human methyltransferases that catalyze the transfer of a methyl group from S-adenosylmethionine (SAM) to the N6 position of adenosine, producing m6 A: methyltransferase-like protein (METTL) 3/METTL14 complex, METTL16, METTL5, and zinc-finger CCHC-domain-containing protein 4. Though the methyltransferases have unique RNA targets, all human m6 A RNA methyltransferases contain a Rossmann fold with a conserved SAM-binding pocket, suggesting that they utilize a similar catalytic mechanism for methyl transfer. For each of the human m6 A RNA methyltransferases, we present the biological functions and links to human disease, RNA targets, catalytic and kinetic mechanisms, and macromolecular structures. We also discuss m6 A marks in human viruses and parasites, assigning m6 A marks in the transcriptome to specific methyltransferases, small molecules targeting m6 A methyltransferases, and the enzymes responsible for hypermodified m6 A marks and their biological functions in humans. Understanding m6 A methyltransferases is a critical steppingstone toward establishing the m6 A epitranscriptome and more broadly the RNome. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.

尽管近 75 年前就发现了修饰核酸,但它们的生物学功能仍在不断被阐明。N6 -甲基腺苷(m6 A)是真核生物信使 RNA(mRNA)中最丰富的修饰,在非编码 RNA(包括长非编码 RNA、核糖体 RNA 和小核 RNA)中也被检测到。一般来说,m6 A 标记会改变 RNA 的二级结构,并引发独特的 RNA 蛋白相互作用,从而改变剪接、mRNA 更替和翻译等。虽然早在 1974 年就知道人类 RNA 中存在 m6 A 标记,但负责书写 m6 A 标记的甲基转移酶的结构和功能直到最近才被确定。迄今为止,已证实有四种人类甲基转移酶能催化甲基基团从 S-腺苷蛋氨酸(SAM)转移到腺苷的 N6 位,从而产生 m6 A:甲基转移酶样蛋白(METTL)3/METTL14 复合物、METTL16、METTL5 和含锌指 CCHC 域蛋白 4。尽管这些甲基转移酶具有独特的 RNA 靶标,但所有人类 m6 A RNA 甲基转移酶都包含一个 Rossmann 折叠结构,其中有一个保守的 SAM 结合口袋,这表明它们利用类似的催化机制进行甲基转移。对于每一种人类 m6 A RNA 甲基转移酶,我们都介绍了其生物学功能、与人类疾病的联系、RNA 靶点、催化和动力学机制以及大分子结构。我们还讨论了人类病毒和寄生虫中的 m6 A 标记、将转录组中的 m6 A 标记分配给特定的甲基转移酶、以 m6 A 甲基转移酶为靶标的小分子、负责超修饰 m6 A 标记的酶及其在人类中的生物学功能。了解 m6 A 甲基转移酶是建立 m6 A 表转录组和更广泛的 RN 组的关键一步。本文归类于RNA 与蛋白质及其他分子的相互作用 > 蛋白质与 RNA 的识别 RNA 与蛋白质及其他分子的相互作用 > RNA 蛋白复合物 RNA 与蛋白质及其他分子的相互作用 > 蛋白质与 RNA 的相互作用:功能影响。
{"title":"Ghost authors revealed: The structure and function of human N<sup>6</sup> -methyladenosine RNA methyltransferases.","authors":"Kurtis Breger, Charlotte N Kunkler, Nathan J O'Leary, Jacob P Hulewicz, Jessica A Brown","doi":"10.1002/wrna.1810","DOIUrl":"10.1002/wrna.1810","url":null,"abstract":"<p><p>Despite the discovery of modified nucleic acids nearly 75 years ago, their biological functions are still being elucidated. N<sup>6</sup> -methyladenosine (m<sup>6</sup> A) is the most abundant modification in eukaryotic messenger RNA (mRNA) and has also been detected in non-coding RNAs, including long non-coding RNA, ribosomal RNA, and small nuclear RNA. In general, m<sup>6</sup> A marks can alter RNA secondary structure and initiate unique RNA-protein interactions that can alter splicing, mRNA turnover, and translation, just to name a few. Although m<sup>6</sup> A marks in human RNAs have been known to exist since 1974, the structures and functions of methyltransferases responsible for writing m<sup>6</sup> A marks have been established only recently. Thus far, there are four confirmed human methyltransferases that catalyze the transfer of a methyl group from S-adenosylmethionine (SAM) to the N<sup>6</sup> position of adenosine, producing m<sup>6</sup> A: methyltransferase-like protein (METTL) 3/METTL14 complex, METTL16, METTL5, and zinc-finger CCHC-domain-containing protein 4. Though the methyltransferases have unique RNA targets, all human m<sup>6</sup> A RNA methyltransferases contain a Rossmann fold with a conserved SAM-binding pocket, suggesting that they utilize a similar catalytic mechanism for methyl transfer. For each of the human m<sup>6</sup> A RNA methyltransferases, we present the biological functions and links to human disease, RNA targets, catalytic and kinetic mechanisms, and macromolecular structures. We also discuss m<sup>6</sup> A marks in human viruses and parasites, assigning m<sup>6</sup> A marks in the transcriptome to specific methyltransferases, small molecules targeting m<sup>6</sup> A methyltransferases, and the enzymes responsible for hypermodified m<sup>6</sup> A marks and their biological functions in humans. Understanding m<sup>6</sup> A methyltransferases is a critical steppingstone toward establishing the m<sup>6</sup> A epitranscriptome and more broadly the RNome. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.</p>","PeriodicalId":23886,"journal":{"name":"Wiley Interdisciplinary Reviews: RNA","volume":" ","pages":"e1810"},"PeriodicalIF":7.3,"publicationDate":"2023-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10915109/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10226413","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
To RNA-binding and beyond: Emerging facets of the role of Rbfox proteins in development and disease. rna结合及其他:Rbfox蛋白在发育和疾病中作用的新方面。
IF 7.3 2区 生物学 Q1 CELL BIOLOGY Pub Date : 2023-09-04 DOI: 10.1002/wrna.1813
Amartya Mukherjee, Upendra Nongthomba

The RNA-binding Fox-1 homologue (Rbfox) proteins represent an ancient family of splicing factors, conserved through evolution. All members share an RNA recognition motif (RRM), and a particular affinity for the GCAUG signature in target RNA molecules. The role of Rbfox, as a splice factor, deciding the tissue-specific inclusion/exclusion of an exon, depending on its binding position on the flanking introns, is well known. Rbfox often acts in concert with other splicing factors, and forms splicing regulatory networks. Apart from this canonical role, recent studies show that Rbfox can also function as a transcription co-factor, and affects mRNA stability and translation. The repertoire of Rbfox targets is vast, including genes involved in the development of tissue lineages, such as neurogenesis, myogenesis, and erythropoeiesis, and molecular processes, including cytoskeletal dynamics, and calcium handling. A second layer of complexity is added by the fact that Rbfox expression itself is regulated by multiple mechanisms, and, in vertebrates, exhibits tissue-specific expression. The optimum dosage of Rbfox is critical, and its misexpression is etiological to various disease conditions. In this review, we discuss the contextual roles played by Rbfox as a tissue-specific regulator for the expression of many important genes with diverse functions, through the lens of the emerging data which highlights its involvement in many human diseases. Furthermore, we explore the mechanistic details provided by studies in model organisms, with emphasis on the work with Drosophila. This article is categorized under: RNA Processing > Splicing Mechanisms RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA Turnover and Surveillance > Regulation of RNA Stability RNA Processing > Splicing Regulation/Alternative Splicing.

rna结合Fox-1同源蛋白(Rbfox)代表了一个古老的剪接因子家族,通过进化保守。所有成员共享一个RNA识别基序(RRM),并对靶RNA分子中的GCAUG特征具有特殊的亲和力。众所周知,Rbfox作为一个剪接因子,决定组织特异性外显子的包含/排除,这取决于它在侧翼内含子上的结合位置。Rbfox通常与其他剪接因子协同作用,形成剪接调控网络。除了这种典型的作用,最近的研究表明Rbfox还可以作为转录辅助因子,影响mRNA的稳定性和翻译。Rbfox靶点范围广泛,包括参与组织谱系发育的基因,如神经发生、肌肉发生和红细胞生成,以及分子过程,包括细胞骨架动力学和钙处理。Rbfox表达本身受多种机制调节,并且在脊椎动物中表现出组织特异性表达,这一事实增加了第二层复杂性。Rbfox的最佳剂量是至关重要的,它的错误表达是各种疾病的病因。在这篇综述中,我们讨论了Rbfox作为一种组织特异性调节剂,在许多具有不同功能的重要基因的表达中所起的背景作用,通过新兴数据的镜头,突出了Rbfox在许多人类疾病中的作用。此外,我们探讨了模式生物研究提供的机制细节,重点是与果蝇的工作。本文分类如下:RNA加工>剪接机制RNA与蛋白质和其他分子的相互作用>蛋白质-RNA相互作用:功能意义RNA翻转和监视> RNA稳定性调控RNA加工>剪接调控/选择性剪接。
{"title":"To RNA-binding and beyond: Emerging facets of the role of Rbfox proteins in development and disease.","authors":"Amartya Mukherjee,&nbsp;Upendra Nongthomba","doi":"10.1002/wrna.1813","DOIUrl":"https://doi.org/10.1002/wrna.1813","url":null,"abstract":"<p><p>The RNA-binding Fox-1 homologue (Rbfox) proteins represent an ancient family of splicing factors, conserved through evolution. All members share an RNA recognition motif (RRM), and a particular affinity for the GCAUG signature in target RNA molecules. The role of Rbfox, as a splice factor, deciding the tissue-specific inclusion/exclusion of an exon, depending on its binding position on the flanking introns, is well known. Rbfox often acts in concert with other splicing factors, and forms splicing regulatory networks. Apart from this canonical role, recent studies show that Rbfox can also function as a transcription co-factor, and affects mRNA stability and translation. The repertoire of Rbfox targets is vast, including genes involved in the development of tissue lineages, such as neurogenesis, myogenesis, and erythropoeiesis, and molecular processes, including cytoskeletal dynamics, and calcium handling. A second layer of complexity is added by the fact that Rbfox expression itself is regulated by multiple mechanisms, and, in vertebrates, exhibits tissue-specific expression. The optimum dosage of Rbfox is critical, and its misexpression is etiological to various disease conditions. In this review, we discuss the contextual roles played by Rbfox as a tissue-specific regulator for the expression of many important genes with diverse functions, through the lens of the emerging data which highlights its involvement in many human diseases. Furthermore, we explore the mechanistic details provided by studies in model organisms, with emphasis on the work with Drosophila. This article is categorized under: RNA Processing > Splicing Mechanisms RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA Turnover and Surveillance > Regulation of RNA Stability RNA Processing > Splicing Regulation/Alternative Splicing.</p>","PeriodicalId":23886,"journal":{"name":"Wiley Interdisciplinary Reviews: RNA","volume":" ","pages":"e1813"},"PeriodicalIF":7.3,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10500276","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cell-free RNA for the liquid biopsy of gastrointestinal cancer. 用于胃肠道癌症液体活检的无细胞RNA。
IF 7.3 2区 生物学 Q1 CELL BIOLOGY Pub Date : 2023-09-01 Epub Date: 2023-04-22 DOI: 10.1002/wrna.1791
Shaozhen Xing, Yumin Zhu, Yaxian You, Siqi Wang, Hongke Wang, Meng Ning, Heyue Jin, Zhengxia Liu, Xinhua Zhang, Chunzhao Yu, Zhi John Lu

Gastrointestinal (GI) cancer includes many cancer types, such as esophageal, liver, gastric, pancreatic, and colorectal cancer. As the cornerstone of personalized medicine for GI cancer, liquid biopsy based on noninvasive biomarkers provides promising opportunities for early diagnosis and dynamic treatment management. Recently, a growing number of studies have demonstrated the potential of cell-free RNA (cfRNA) as a new type of noninvasive biomarker in body fluids, such as blood, saliva, and urine. Meanwhile, transcriptomes based on high-throughput RNA detection technologies keep discovering new cfRNA biomarkers. In this review, we introduce the origins and applications of cfRNA, describe its detection and qualification methods in liquid biopsy, and summarize a comprehensive list of cfRNA biomarkers in different GI cancer types. Moreover, we also discuss perspective studies of cfRNA to overcome its current limitations in clinical applications. This article is categorized under: RNA in Disease and Development > RNA in Disease.

癌症包括许多癌症类型,如食管癌、肝癌、胃癌、胰腺癌和癌症。作为胃肠道癌症个性化医学的基石,基于非侵入性生物标志物的液体活检为早期诊断和动态治疗管理提供了很好的机会。最近,越来越多的研究证明了无细胞RNA(cfRNA)作为一种新型非侵入性生物标志物在体液(如血液、唾液和尿液)中的潜力。与此同时,基于高通量RNA检测技术的转录组不断发现新的cfRNA生物标志物。在这篇综述中,我们介绍了cfRNA的起源和应用,描述了其在液体活检中的检测和鉴定方法,并总结了不同GI癌症类型的cfRNA生物标志物的综合列表。此外,我们还讨论了cfRNA的前瞻性研究,以克服其目前在临床应用中的局限性。这篇文章被分类为:RNA在疾病和发展中>RNA在疾病中。
{"title":"Cell-free RNA for the liquid biopsy of gastrointestinal cancer.","authors":"Shaozhen Xing,&nbsp;Yumin Zhu,&nbsp;Yaxian You,&nbsp;Siqi Wang,&nbsp;Hongke Wang,&nbsp;Meng Ning,&nbsp;Heyue Jin,&nbsp;Zhengxia Liu,&nbsp;Xinhua Zhang,&nbsp;Chunzhao Yu,&nbsp;Zhi John Lu","doi":"10.1002/wrna.1791","DOIUrl":"10.1002/wrna.1791","url":null,"abstract":"<p><p>Gastrointestinal (GI) cancer includes many cancer types, such as esophageal, liver, gastric, pancreatic, and colorectal cancer. As the cornerstone of personalized medicine for GI cancer, liquid biopsy based on noninvasive biomarkers provides promising opportunities for early diagnosis and dynamic treatment management. Recently, a growing number of studies have demonstrated the potential of cell-free RNA (cfRNA) as a new type of noninvasive biomarker in body fluids, such as blood, saliva, and urine. Meanwhile, transcriptomes based on high-throughput RNA detection technologies keep discovering new cfRNA biomarkers. In this review, we introduce the origins and applications of cfRNA, describe its detection and qualification methods in liquid biopsy, and summarize a comprehensive list of cfRNA biomarkers in different GI cancer types. Moreover, we also discuss perspective studies of cfRNA to overcome its current limitations in clinical applications. This article is categorized under: RNA in Disease and Development > RNA in Disease.</p>","PeriodicalId":23886,"journal":{"name":"Wiley Interdisciplinary Reviews: RNA","volume":"14 5","pages":"e1791"},"PeriodicalIF":7.3,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10227254","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Wiley Interdisciplinary Reviews: RNA
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1