Pub Date : 2023-09-01Epub Date: 2023-05-17DOI: 10.1002/wrna.1793
Chang-Feng Su, Debatosh Das, Mehtab Muhammad Aslam, Ji-Qin Xie, Xiang-Yang Li, Mo-Xian Chen
Plant virual infections are mainly caused by plant-virus parasitism which affects ecological communities. Some viruses are highly pathogen specific that can infect only specific plants, while some can cause widespread harm, such as tobacco mosaic virus (TMV) and cucumber mosaic virus (CMV). After a virus infects the host, undergoes a series of harmful effects, including the destruction of host cell membrane receptors, changes in cell membrane components, cell fusion, and the production of neoantigens on the cell surface. Therefore, competition between the host and the virus arises. The virus starts gaining control of critical cellular functions of the host cells and ultimately affects the fate of the targeted host plants. Among these critical cellular processes, alternative splicing (AS) is an essential posttranscriptional regulation process in RNA maturation, which amplify host protein diversity and manipulates transcript abundance in response to plant pathogens. AS is widespread in nearly all human genes and critical in regulating animal-virus interactions. In particular, an animal virus can hijack the host splicing machinery to re-organize its compartments for propagation. Changes in AS are known to cause human disease, and various AS events have been reported to regulate tissue specificity, development, tumour proliferation, and multi-functionality. However, the mechanisms underlying plant-virus interactions are poorly understood. Here, we summarize the current understanding of how viruses interact with their plant hosts compared with humans, analyze currently used and putative candidate agrochemicals to treat plant-viral infections, and finally discussed the potential research hotspots in the future. This article is categorized under: RNA Processing > Splicing Mechanisms RNA Processing > Splicing Regulation/Alternative Splicing.
{"title":"Eukaryotic splicing machinery in the plant-virus battleground.","authors":"Chang-Feng Su, Debatosh Das, Mehtab Muhammad Aslam, Ji-Qin Xie, Xiang-Yang Li, Mo-Xian Chen","doi":"10.1002/wrna.1793","DOIUrl":"10.1002/wrna.1793","url":null,"abstract":"<p><p>Plant virual infections are mainly caused by plant-virus parasitism which affects ecological communities. Some viruses are highly pathogen specific that can infect only specific plants, while some can cause widespread harm, such as tobacco mosaic virus (TMV) and cucumber mosaic virus (CMV). After a virus infects the host, undergoes a series of harmful effects, including the destruction of host cell membrane receptors, changes in cell membrane components, cell fusion, and the production of neoantigens on the cell surface. Therefore, competition between the host and the virus arises. The virus starts gaining control of critical cellular functions of the host cells and ultimately affects the fate of the targeted host plants. Among these critical cellular processes, alternative splicing (AS) is an essential posttranscriptional regulation process in RNA maturation, which amplify host protein diversity and manipulates transcript abundance in response to plant pathogens. AS is widespread in nearly all human genes and critical in regulating animal-virus interactions. In particular, an animal virus can hijack the host splicing machinery to re-organize its compartments for propagation. Changes in AS are known to cause human disease, and various AS events have been reported to regulate tissue specificity, development, tumour proliferation, and multi-functionality. However, the mechanisms underlying plant-virus interactions are poorly understood. Here, we summarize the current understanding of how viruses interact with their plant hosts compared with humans, analyze currently used and putative candidate agrochemicals to treat plant-viral infections, and finally discussed the potential research hotspots in the future. This article is categorized under: RNA Processing > Splicing Mechanisms RNA Processing > Splicing Regulation/Alternative Splicing.</p>","PeriodicalId":23886,"journal":{"name":"Wiley Interdisciplinary Reviews: RNA","volume":null,"pages":null},"PeriodicalIF":7.3,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10290449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-01Epub Date: 2023-04-11DOI: 10.1002/wrna.1788
Tayvia Brownmiller, Natasha J Caplen
The members of the HNRNPF/H family of heterogeneous nuclear RNA proteins-HNRNPF, HNRNPH1, HNRNPH2, HNRNPH3, and GRSF1, are critical regulators of RNA maturation. Documented functions of these proteins include regulating splicing, particularly alternative splicing, 5' capping and 3' polyadenylation of RNAs, and RNA export. The assignment of these proteins to the HNRNPF/H protein family members relates to differences in the amino acid composition of their RNA recognition motifs, which differ from those of other RNA binding proteins (RBPs). HNRNPF/H proteins typically bind RNA sequences enriched with guanine (G) residues, including sequences that, in the presence of a cation, have the potential to form higher-order G-quadruplex structures. The need to further investigate members of the HNRNPF/H family of RBPs has intensified with the recent descriptions of their involvement in several disease states, including the pediatric tumor Ewing sarcoma and the hematological malignancy mantle cell lymphoma; newly described groups of developmental syndromes; and neuronal-related disorders, including addictive behavior. Here, to foster the study of the HNRNPF/H family of RBPs, we discuss features of the genes encoding these proteins, their structures and functions, and emerging contributions to disease. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Processing > Splicing Regulation/Alternative Splicing RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
{"title":"The HNRNPF/H RNA binding proteins and disease.","authors":"Tayvia Brownmiller, Natasha J Caplen","doi":"10.1002/wrna.1788","DOIUrl":"10.1002/wrna.1788","url":null,"abstract":"<p><p>The members of the HNRNPF/H family of heterogeneous nuclear RNA proteins-HNRNPF, HNRNPH1, HNRNPH2, HNRNPH3, and GRSF1, are critical regulators of RNA maturation. Documented functions of these proteins include regulating splicing, particularly alternative splicing, 5' capping and 3' polyadenylation of RNAs, and RNA export. The assignment of these proteins to the HNRNPF/H protein family members relates to differences in the amino acid composition of their RNA recognition motifs, which differ from those of other RNA binding proteins (RBPs). HNRNPF/H proteins typically bind RNA sequences enriched with guanine (G) residues, including sequences that, in the presence of a cation, have the potential to form higher-order G-quadruplex structures. The need to further investigate members of the HNRNPF/H family of RBPs has intensified with the recent descriptions of their involvement in several disease states, including the pediatric tumor Ewing sarcoma and the hematological malignancy mantle cell lymphoma; newly described groups of developmental syndromes; and neuronal-related disorders, including addictive behavior. Here, to foster the study of the HNRNPF/H family of RBPs, we discuss features of the genes encoding these proteins, their structures and functions, and emerging contributions to disease. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Processing > Splicing Regulation/Alternative Splicing RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.</p>","PeriodicalId":23886,"journal":{"name":"Wiley Interdisciplinary Reviews: RNA","volume":null,"pages":null},"PeriodicalIF":6.4,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10523889/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10289963","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PIWI-interacting RNAs (piRNAs) play an important role in the defense against transposons in the germline and stem cells of animals. To what extent other transcripts are also regulated by piRNAs is an ongoing topic of debate. The amount of sequence complementarity between piRNA and target that is required for effective downregulation of the targeted transcript is guiding in this discussion. Over the years, various methods have been applied to infer targeting requirements from the collections of piRNAs and potential target transcripts, and recent structural studies of the PIWI proteins have provided an additional perspective. In this review, I summarize the findings from these studies and propose a set of requirements that can be used to predict targets to the best of our current abilities. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA-Based Catalysis > RNA-Mediated Cleavage.
{"title":"Insights in piRNA targeting rules.","authors":"Josien C van Wolfswinkel","doi":"10.1002/wrna.1811","DOIUrl":"10.1002/wrna.1811","url":null,"abstract":"<p><p>PIWI-interacting RNAs (piRNAs) play an important role in the defense against transposons in the germline and stem cells of animals. To what extent other transcripts are also regulated by piRNAs is an ongoing topic of debate. The amount of sequence complementarity between piRNA and target that is required for effective downregulation of the targeted transcript is guiding in this discussion. Over the years, various methods have been applied to infer targeting requirements from the collections of piRNAs and potential target transcripts, and recent structural studies of the PIWI proteins have provided an additional perspective. In this review, I summarize the findings from these studies and propose a set of requirements that can be used to predict targets to the best of our current abilities. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA-Based Catalysis > RNA-Mediated Cleavage.</p>","PeriodicalId":23886,"journal":{"name":"Wiley Interdisciplinary Reviews: RNA","volume":null,"pages":null},"PeriodicalIF":7.3,"publicationDate":"2023-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10895071/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10071186","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jin-Guang Chen, Shuang-Chun Liu, Qing Nie, Yun-Ting Du, Yin-Yi Lv, Lian-Ping He, Guang Chen
Overcoming challenges associated with malaria eradication proves to be a formidable task due to the complicated life cycle exhibited by the malaria parasite and the lack of safe and enduring vaccines against malaria. Investigating the interplay between Plasmodium parasites and their mammalian hosts is crucial for the development of novel vaccines. Long noncoding RNAs (lncRNAs) derived from Plasmodium parasites or host cells have emerged as potential signaling molecules involved in the trafficking of proteins, RNA (mRNAs, miRNAs, and ncRNAs), and DNA. These lncRNAs facilitate the interaction between hosts and parasites, impacting normal physiology or pathology in malaria-infected individuals. Moreover, they possess the capacity to regulate immune responses and associated signaling pathways, thus potentially influencing chromatin organization, epigenetic modifications, mRNA processing, splicing, and translation. However, the functional role of exosomal lncRNAs in malaria remains poorly understood. This review offers a comprehensive analysis of lncRNA and exosomal lncRNA profiles during malaria infection. It presents an overview of recent progress in elucidating the involvement of exosomal lncRNAs in host-parasite interactions. Additionally, potential exosomal lncRNAs linked to the domains of innate and adaptive immunity in the context of malaria are proposed. These findings may contribute to the discovery of new diagnostic and therapeutic strategies for malaria. Furthermore, the need for additional research was highlighted that aimed to elucidate the mechanisms underlying lncRNA transportation into host cells and their targeting of specific genes to regulate the host's immune response. This knowledge gap presents an opportunity for future investigations, offering innovative approaches to enhance malarial control. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Small Molecule-RNA Interactions RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA in Disease and Development > RNA in Disease.
{"title":"Exosome-derived long noncoding RNAs: Mediators of host-Plasmodium parasite communication.","authors":"Jin-Guang Chen, Shuang-Chun Liu, Qing Nie, Yun-Ting Du, Yin-Yi Lv, Lian-Ping He, Guang Chen","doi":"10.1002/wrna.1808","DOIUrl":"https://doi.org/10.1002/wrna.1808","url":null,"abstract":"<p><p>Overcoming challenges associated with malaria eradication proves to be a formidable task due to the complicated life cycle exhibited by the malaria parasite and the lack of safe and enduring vaccines against malaria. Investigating the interplay between Plasmodium parasites and their mammalian hosts is crucial for the development of novel vaccines. Long noncoding RNAs (lncRNAs) derived from Plasmodium parasites or host cells have emerged as potential signaling molecules involved in the trafficking of proteins, RNA (mRNAs, miRNAs, and ncRNAs), and DNA. These lncRNAs facilitate the interaction between hosts and parasites, impacting normal physiology or pathology in malaria-infected individuals. Moreover, they possess the capacity to regulate immune responses and associated signaling pathways, thus potentially influencing chromatin organization, epigenetic modifications, mRNA processing, splicing, and translation. However, the functional role of exosomal lncRNAs in malaria remains poorly understood. This review offers a comprehensive analysis of lncRNA and exosomal lncRNA profiles during malaria infection. It presents an overview of recent progress in elucidating the involvement of exosomal lncRNAs in host-parasite interactions. Additionally, potential exosomal lncRNAs linked to the domains of innate and adaptive immunity in the context of malaria are proposed. These findings may contribute to the discovery of new diagnostic and therapeutic strategies for malaria. Furthermore, the need for additional research was highlighted that aimed to elucidate the mechanisms underlying lncRNA transportation into host cells and their targeting of specific genes to regulate the host's immune response. This knowledge gap presents an opportunity for future investigations, offering innovative approaches to enhance malarial control. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Small Molecule-RNA Interactions RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA in Disease and Development > RNA in Disease.</p>","PeriodicalId":23886,"journal":{"name":"Wiley Interdisciplinary Reviews: RNA","volume":null,"pages":null},"PeriodicalIF":7.3,"publicationDate":"2023-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9960188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shuyun Lin, Haijiao Long, Lianjie Hou, Ming Zhang, Jiang Ting, Haiyue Lin, Pan Zheng, Weixing Lei, Kai Yin, Guojun Zhao
Cells are exposed to various pathological stimulus within the cardiovascular system that challenge cells to adapt and survive. Several of these pathological stimulus alter the normal function of the endoplasmic reticulum (ER), leading to the accumulation of unfolded and misfolded proteins, thus triggering the unfolded protein response (UPR) to cope with the stress or trigger apoptosis of damaged cells. Downstream components of the UPR regulate transcription and translation reprogramming to ensure selective gene expression in response to pathological stimulus, including the expression of non-coding RNAs (ncRNAs). The ncRNAs play crucial roles in regulating transcription and translation, and their aberrant expression is associated with the development of cardiovascular disease (CVD). Notably, ncRNAs and ER stress can modulate each other and synergistically affect the development of CVD. Therefore, studying the interaction between ER stress and ncRNAs is necessary for effective prevention and treatment of CVD. In this review, we discuss the UPR signaling pathway and ncRNAs followed by the interplay regulation of ER stress and ncRNAs in CVD, which provides further insights into the understanding of the pathogenesis of CVD and therapeutic strategies. This article is categorized under: RNA in Disease and Development > RNA in Disease.
细胞暴露于心血管系统内的各种病理刺激,挑战细胞适应和生存。这些病理刺激改变了内质网(ER)的正常功能,导致未折叠和错误折叠蛋白的积累,从而触发未折叠蛋白反应(UPR)来应对应激或触发受损细胞的凋亡。UPR的下游组分调节转录和翻译重编程,以确保在病理刺激下选择性表达基因,包括非编码rna (ncRNAs)的表达。ncrna在调节转录和翻译中起着至关重要的作用,它们的异常表达与心血管疾病(CVD)的发生有关。值得注意的是,ncrna和内质网应激可以相互调节,协同影响CVD的发展。因此,研究内质网应激与ncrna的相互作用对于有效预防和治疗CVD是必要的。在这篇综述中,我们讨论了UPR信号通路和ncRNAs,以及内质网应激和ncRNAs在CVD中的相互作用调控,从而进一步了解CVD的发病机制和治疗策略。本文分类为:RNA in Disease and Development > RNA in Disease。
{"title":"Crosstalk between endoplasmic reticulum stress and non-coding RNAs in cardiovascular diseases.","authors":"Shuyun Lin, Haijiao Long, Lianjie Hou, Ming Zhang, Jiang Ting, Haiyue Lin, Pan Zheng, Weixing Lei, Kai Yin, Guojun Zhao","doi":"10.1002/wrna.1767","DOIUrl":"https://doi.org/10.1002/wrna.1767","url":null,"abstract":"<p><p>Cells are exposed to various pathological stimulus within the cardiovascular system that challenge cells to adapt and survive. Several of these pathological stimulus alter the normal function of the endoplasmic reticulum (ER), leading to the accumulation of unfolded and misfolded proteins, thus triggering the unfolded protein response (UPR) to cope with the stress or trigger apoptosis of damaged cells. Downstream components of the UPR regulate transcription and translation reprogramming to ensure selective gene expression in response to pathological stimulus, including the expression of non-coding RNAs (ncRNAs). The ncRNAs play crucial roles in regulating transcription and translation, and their aberrant expression is associated with the development of cardiovascular disease (CVD). Notably, ncRNAs and ER stress can modulate each other and synergistically affect the development of CVD. Therefore, studying the interaction between ER stress and ncRNAs is necessary for effective prevention and treatment of CVD. In this review, we discuss the UPR signaling pathway and ncRNAs followed by the interplay regulation of ER stress and ncRNAs in CVD, which provides further insights into the understanding of the pathogenesis of CVD and therapeutic strategies. This article is categorized under: RNA in Disease and Development > RNA in Disease.</p>","PeriodicalId":23886,"journal":{"name":"Wiley Interdisciplinary Reviews: RNA","volume":null,"pages":null},"PeriodicalIF":7.3,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10144270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-01Epub Date: 2023-01-30DOI: 10.1002/wrna.1776
Johan Busselez, Rustem E Uzbekov, Brunella Franco, Massimo Pancione
Biomolecular condensates are membrane-less assemblies of proteins and nucleic acids. Centrosomes are biomolecular condensates that play a crucial role in nuclear division, cytoskeletal remodeling, and cilia formation in animal cells. Spatial omics technology is providing new insights into the dynamic exchange of spliceosome components between the nucleus and the centrosome/cilium. Intriguingly, centrosomes are emerging as cytoplasmic sites for information storage, enriched with RNA molecules and RNA-processing proteins. Furthermore, growing evidence supports the view that nuclear spliceosome components assembled at the centrosome function as potential coordinators of splicing subprograms, pluripotency, and cell differentiation. In this article, we first discuss the current understanding of the centrosome/cilium complex, which controls both stem cell differentiation and pluripotency. We next explore the molecular mechanisms that govern splicing factor assembly and disassembly around the centrosome and examine how RNA processing pathways contribute to ciliogenesis. Finally, we discuss numerous unresolved compelling questions regarding the centrosome-associated spliceosome components and transcript variants within the cytoplasm as sources of RNA-based secondary messages in the regulation of cell identity and cell fate determination. This article is categorized under: RNA-Based Catalysis > RNA Catalysis in Splicing and Translation RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes RNA Processing > Splicing Regulation/Alternative Splicing RNA Processing > RNA Processing.
{"title":"New insights into the centrosome-associated spliceosome components as regulators of ciliogenesis and tissue identity.","authors":"Johan Busselez, Rustem E Uzbekov, Brunella Franco, Massimo Pancione","doi":"10.1002/wrna.1776","DOIUrl":"10.1002/wrna.1776","url":null,"abstract":"<p><p>Biomolecular condensates are membrane-less assemblies of proteins and nucleic acids. Centrosomes are biomolecular condensates that play a crucial role in nuclear division, cytoskeletal remodeling, and cilia formation in animal cells. Spatial omics technology is providing new insights into the dynamic exchange of spliceosome components between the nucleus and the centrosome/cilium. Intriguingly, centrosomes are emerging as cytoplasmic sites for information storage, enriched with RNA molecules and RNA-processing proteins. Furthermore, growing evidence supports the view that nuclear spliceosome components assembled at the centrosome function as potential coordinators of splicing subprograms, pluripotency, and cell differentiation. In this article, we first discuss the current understanding of the centrosome/cilium complex, which controls both stem cell differentiation and pluripotency. We next explore the molecular mechanisms that govern splicing factor assembly and disassembly around the centrosome and examine how RNA processing pathways contribute to ciliogenesis. Finally, we discuss numerous unresolved compelling questions regarding the centrosome-associated spliceosome components and transcript variants within the cytoplasm as sources of RNA-based secondary messages in the regulation of cell identity and cell fate determination. This article is categorized under: RNA-Based Catalysis > RNA Catalysis in Splicing and Translation RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes RNA Processing > Splicing Regulation/Alternative Splicing RNA Processing > RNA Processing.</p>","PeriodicalId":23886,"journal":{"name":"Wiley Interdisciplinary Reviews: RNA","volume":null,"pages":null},"PeriodicalIF":7.3,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10145375","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-01Epub Date: 2022-12-07DOI: 10.1002/wrna.1770
James M Burke
In response to viral infection, mammalian cells activate several innate immune pathways to antagonize viral gene expression. Upon recognition of viral double-stranded RNA, protein kinase R (PKR) phosphorylates the alpha subunit of eukaryotic initiation factor 2 (eIF2α) on serine 51. This inhibits canonical translation initiation, which broadly antagonizes viral protein synthesis. It also promotes the assembly of cytoplasmic ribonucleoprotein complexes termed stress granules (SGs). SGs are widely thought to promote cell survival and antiviral signaling. However, co-activation of the OAS/RNase L antiviral pathway inhibits the assembly of SGs and promotes the assembly of an alternative ribonucleoprotein complex termed an RNase L-dependent body (RLB). The formation of RLBs has been observed in response to double-stranded RNA, dengue virus infection, or SARS-CoV-2 infection. Herein, we review the distinct biogenesis pathways and properties of SGs and RLBs, and we provide perspective on their potential functions during the antiviral response. This article is categorized under: RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes RNA Turnover and Surveillance > Regulation of RNA Stability RNA Export and Localization > RNA Localization.
{"title":"Regulation of ribonucleoprotein condensates by RNase L during viral infection.","authors":"James M Burke","doi":"10.1002/wrna.1770","DOIUrl":"10.1002/wrna.1770","url":null,"abstract":"<p><p>In response to viral infection, mammalian cells activate several innate immune pathways to antagonize viral gene expression. Upon recognition of viral double-stranded RNA, protein kinase R (PKR) phosphorylates the alpha subunit of eukaryotic initiation factor 2 (eIF2α) on serine 51. This inhibits canonical translation initiation, which broadly antagonizes viral protein synthesis. It also promotes the assembly of cytoplasmic ribonucleoprotein complexes termed stress granules (SGs). SGs are widely thought to promote cell survival and antiviral signaling. However, co-activation of the OAS/RNase L antiviral pathway inhibits the assembly of SGs and promotes the assembly of an alternative ribonucleoprotein complex termed an RNase L-dependent body (RLB). The formation of RLBs has been observed in response to double-stranded RNA, dengue virus infection, or SARS-CoV-2 infection. Herein, we review the distinct biogenesis pathways and properties of SGs and RLBs, and we provide perspective on their potential functions during the antiviral response. This article is categorized under: RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes RNA Turnover and Surveillance > Regulation of RNA Stability RNA Export and Localization > RNA Localization.</p>","PeriodicalId":23886,"journal":{"name":"Wiley Interdisciplinary Reviews: RNA","volume":null,"pages":null},"PeriodicalIF":6.4,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10244490/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9776603","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Early detection of BK polyomavirus (BKPyV) infection in kidney transplant recipients (KTRs) would enhance their quality of life and save the allograft. Still, many patients lose their grafted kidneys because of this infection. BKPyV microRNAs (miRNAs) have been detected in KTRs during viral infection. BKPyV produces two mature miRNAs that are named BKV-miR-B1-5p and BKV-miR-B1-3p. Additionally, BKPyV associated nephropathy (BKVAN) in kidney transplanted patients cause changes in the expression level of host genes and miRNAs such as IFN-ɣ, BCLA2A1, has-miR-10, and has-miR-30a. BKVAN can alter viral genes and miRNAs expression level, too, like viral miRNAs and T-Ag. However, their potential value as viral infection markers and the regulatory network produced by their expression during viral-host interactions needs more consideration since there are no approved medications for treating BKPyV-related diseases in KTRs. Hence, it is vital to recognize complicated facts regarding the impact of BKPyV infection on the distribution of miRNAs and mRNAs within the host cell and the virus. This article is categorized under: Translation > Regulation RNA Processing > Processing of Small RNAs RNA in Disease and Development > RNA in Disease.
{"title":"Host and viral RNA dysregulation during BK polyomavirus infection in kidney transplant recipients.","authors":"Ramin Yaghobi, Afsoon Afshari, Jamshid Roozbeh","doi":"10.1002/wrna.1769","DOIUrl":"https://doi.org/10.1002/wrna.1769","url":null,"abstract":"<p><p>Early detection of BK polyomavirus (BKPyV) infection in kidney transplant recipients (KTRs) would enhance their quality of life and save the allograft. Still, many patients lose their grafted kidneys because of this infection. BKPyV microRNAs (miRNAs) have been detected in KTRs during viral infection. BKPyV produces two mature miRNAs that are named BKV-miR-B1-5p and BKV-miR-B1-3p. Additionally, BKPyV associated nephropathy (BKVAN) in kidney transplanted patients cause changes in the expression level of host genes and miRNAs such as IFN-ɣ, BCLA2A1, has-miR-10, and has-miR-30a. BKVAN can alter viral genes and miRNAs expression level, too, like viral miRNAs and T-Ag. However, their potential value as viral infection markers and the regulatory network produced by their expression during viral-host interactions needs more consideration since there are no approved medications for treating BKPyV-related diseases in KTRs. Hence, it is vital to recognize complicated facts regarding the impact of BKPyV infection on the distribution of miRNAs and mRNAs within the host cell and the virus. This article is categorized under: Translation > Regulation RNA Processing > Processing of Small RNAs RNA in Disease and Development > RNA in Disease.</p>","PeriodicalId":23886,"journal":{"name":"Wiley Interdisciplinary Reviews: RNA","volume":null,"pages":null},"PeriodicalIF":7.3,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10144777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ribosomes are essential macromolecular machines responsible for translating the genetic information encoded in mRNAs into proteins. Ribosomes are composed of ribosomal RNAs and proteins (rRNAs and RPs) and the rRNAs fulfill both catalytic and architectural functions. Excision of the mature eukaryotic rRNAs from their precursor transcript is achieved through a complex series of endoribonucleolytic cleavages and exoribonucleolytic processing steps that are precisely coordinated with other aspects of ribosome assembly. Many ribonucleases involved in pre-rRNA processing have been identified and pre-rRNA processing pathways are relatively well defined. However, momentous advances in cryo-electron microscopy have recently enabled structural snapshots of various pre-ribosomal particles from budding yeast (Saccharomyces cerevisiae) and human cells to be captured and, excitingly, these structures not only allow pre-rRNAs to be observed before and after cleavage events, but also enable ribonucleases to be visualized on their target RNAs. These structural views of pre-rRNA processing in action allow a new layer of understanding of rRNA maturation and how it is coordinated with other aspects of ribosome assembly. They illuminate mechanisms of target recognition by the diverse ribonucleases involved and reveal how the cleavage/processing activities of these enzymes are regulated. In this review, we discuss the new insights into pre-rRNA processing gained by structural analyses and the growing understanding of the mechanisms of ribonuclease regulation. This article is categorized under: Translation > Ribosome Biogenesis RNA Processing > rRNA Processing.
{"title":"Caught in the act-Visualizing ribonucleases during eukaryotic ribosome assembly.","authors":"Claudia Schneider, Katherine E Bohnsack","doi":"10.1002/wrna.1766","DOIUrl":"https://doi.org/10.1002/wrna.1766","url":null,"abstract":"<p><p>Ribosomes are essential macromolecular machines responsible for translating the genetic information encoded in mRNAs into proteins. Ribosomes are composed of ribosomal RNAs and proteins (rRNAs and RPs) and the rRNAs fulfill both catalytic and architectural functions. Excision of the mature eukaryotic rRNAs from their precursor transcript is achieved through a complex series of endoribonucleolytic cleavages and exoribonucleolytic processing steps that are precisely coordinated with other aspects of ribosome assembly. Many ribonucleases involved in pre-rRNA processing have been identified and pre-rRNA processing pathways are relatively well defined. However, momentous advances in cryo-electron microscopy have recently enabled structural snapshots of various pre-ribosomal particles from budding yeast (Saccharomyces cerevisiae) and human cells to be captured and, excitingly, these structures not only allow pre-rRNAs to be observed before and after cleavage events, but also enable ribonucleases to be visualized on their target RNAs. These structural views of pre-rRNA processing in action allow a new layer of understanding of rRNA maturation and how it is coordinated with other aspects of ribosome assembly. They illuminate mechanisms of target recognition by the diverse ribonucleases involved and reveal how the cleavage/processing activities of these enzymes are regulated. In this review, we discuss the new insights into pre-rRNA processing gained by structural analyses and the growing understanding of the mechanisms of ribonuclease regulation. This article is categorized under: Translation > Ribosome Biogenesis RNA Processing > rRNA Processing.</p>","PeriodicalId":23886,"journal":{"name":"Wiley Interdisciplinary Reviews: RNA","volume":null,"pages":null},"PeriodicalIF":7.3,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9785339","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xingtao Zhao, Xinyan Xue, Zhifu Cui, Felix Kwame Amevor, Yan Wan, Ke Fu, Cheng Wang, Cheng Peng, Yunxia Li
Liver fibrosis is a process of over-extracellular matrix (ECM) aggregation and angiogenesis, which develops into cirrhosis and hepatocellular carcinoma (HCC). With the increasing pressure of liver fibrosis, new therapeutics to cure this disease requires much attention. Exosome-cargoed microRNAs (miRNAs) are emerging approaches in the precision of the liver fibrotic paradigm. In this review, we outlined the different types of hepatic cells derived miRNAs that drive intra-/extra-cellular interactive communication in liver fibrosis with different physiological and pathological processes. Specifically, we highlighted the possible mechanism of liver fibrosis pathogenesis associated with immune response and angiogenesis. In addition, potential clinical biomarkers and different stem cell transplant-derived miRNAs-based therapeutic strategies in liver fibrosis were summarized in this review. miRNAs-based approaches might help researchers devise new candidates for the cell-free treatment of liver fibrosis. This article is categorized under: RNA in Disease and Development > RNA in Disease.
肝纤维化是一个过度细胞外基质(ECM)聚集和血管生成的过程,最终发展为肝硬化和肝细胞癌(HCC)。随着肝纤维化压力的增加,新的治疗方法需要引起人们的重视。外泌体装载的microRNAs (miRNAs)是肝纤维化模式精确的新兴方法。在这篇综述中,我们概述了不同类型的肝细胞来源的mirna,这些mirna驱动肝纤维化中具有不同生理和病理过程的细胞内/细胞外相互作用通讯。具体来说,我们强调了与免疫反应和血管生成相关的肝纤维化发病机制。此外,本文还综述了肝纤维化潜在的临床生物标志物和基于干细胞移植来源的mirnas的不同治疗策略。基于mirna的方法可能帮助研究人员设计出无细胞肝纤维化治疗的新候选药物。本文分类为:RNA in Disease and Development > RNA in Disease。
{"title":"microRNAs-based diagnostic and therapeutic applications in liver fibrosis.","authors":"Xingtao Zhao, Xinyan Xue, Zhifu Cui, Felix Kwame Amevor, Yan Wan, Ke Fu, Cheng Wang, Cheng Peng, Yunxia Li","doi":"10.1002/wrna.1773","DOIUrl":"https://doi.org/10.1002/wrna.1773","url":null,"abstract":"<p><p>Liver fibrosis is a process of over-extracellular matrix (ECM) aggregation and angiogenesis, which develops into cirrhosis and hepatocellular carcinoma (HCC). With the increasing pressure of liver fibrosis, new therapeutics to cure this disease requires much attention. Exosome-cargoed microRNAs (miRNAs) are emerging approaches in the precision of the liver fibrotic paradigm. In this review, we outlined the different types of hepatic cells derived miRNAs that drive intra-/extra-cellular interactive communication in liver fibrosis with different physiological and pathological processes. Specifically, we highlighted the possible mechanism of liver fibrosis pathogenesis associated with immune response and angiogenesis. In addition, potential clinical biomarkers and different stem cell transplant-derived miRNAs-based therapeutic strategies in liver fibrosis were summarized in this review. miRNAs-based approaches might help researchers devise new candidates for the cell-free treatment of liver fibrosis. This article is categorized under: RNA in Disease and Development > RNA in Disease.</p>","PeriodicalId":23886,"journal":{"name":"Wiley Interdisciplinary Reviews: RNA","volume":null,"pages":null},"PeriodicalIF":7.3,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10162234","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}