The present work introduces and validates an artificial cell free system for the synthesis of acetoin from ethanol, representing a greener alternative to conventional chemical synthesis. The one pot multi-enzymatic system, which employs pyruvate decarboxylase from Zymobacter palmae (ZpPDC), alcohol dehydrogenase from Saccharomyces cerevisiae (ScADH), and NADH oxidase from Streptococcus pyogenes (SpNOX), achieves nearly 100 % substrate conversion and reaction yield within 6 h under optimal conditions (pH 7.5, enzyme activities: ZpPDC 100 U·mL-1, ScADH 50 U·mL-1, SpNOX 127 U·mL-1, and 1 mM NAD+). Using air for oxygen supply mitigates enzyme inactivation while effectively accelerating the regeneration of NAD+. The use of bioethanol as a substrate demonstrates the robustness and sustainability of the bioprocess, enabling the production of natural acetoin from renewable resources. This environmentally friendly approach offers significant advantages for industrial applications, aligning with green chemistry principles.
Direct interspecies electron transfer (DIET) enhances anaerobic digestion by facilitating electron exchange between electroactive bacteria and methanogenic archaea. While Geobacter species are recognized for donating electrons to methanogens via DIET, they are rarely detected in mixed microbial communities. This study examined various non-electrode biological carriers (zeolite, carbon cloth, activated carbon and biochar) to promote Geobacter cultivation under anaerobic conditions and identify pivotal factors influencing their symbiosis with methanogens. Capacitive materials, such as activated carbon and biochar, significantly enriched Geobacter populations and strengthened DIET-based mutualism with Methanosarcina, both in the presence and absence of electric fields. Partial least-squares path modeling revealed that the porous structure and functional groups of materials positively and directly influenced the abundance of Geobacter and Methanosarcina. These findings contribute to a deeper understanding of critical properties of capacitive materials for screening functional microorganisms and guiding the design of electroactive materials to augment anaerobic treatment processes.