Trace amounts of oxygen stimulate facultative anaerobic bacteria (FAB) within anaerobic bioreactors, which was shown to correlate with enhanced methane production from long-chain fatty acids. The relationship between FAB and fatty acid-degrading syntrophic communities under micro-aerobic conditions is still not clear. In this work, two syntrophic co-cultures, Syntrophomonas wolfei + Methanospirillum hungatei and Syntrophomonas zehnderi + Methanobacterium formicicum, were assembled and incubated with short, medium and long-chain fatty acids, with 0-10 % O2, in the presence and absence of FAB, here represented by Pseudomonas spp. Without Pseudomonas, the syntrophic activity was inhibited by 79 % at 0.5 %O2, but with Pseudomonas, the syntrophic co-cultures successfully converted the fatty acids to methane with up to 2 %O2. These findings underscore the pivotal role of FAB in the protection of syntrophic fatty acid-degrading communities under micro-aerobic conditions and emphasizes its significance in real-scale anaerobic digesters where strictly anaerobic conditions may not consistently be maintained.
This study investigated compost quality and gaseous emissions during the algal sludge composting. The experiment explored the feasibility of low initial carbon to nitrogen (C/N) ratio composting by using different volume ratios of algal sludge and spent mushroom substrates (1:1, 1:2, 1:3, and 1:4, corresponding to C/N ratios of 9.5, 12.3, 14.6, 16.0, respectively). The results showed that increasing the proportion of algal sludge in the initial material led to a longer maturation time and higher nitrogen losses but also enhanced the mineralization of organic nitrogen (converted to NH4+ and NO3-) and reduced carbon losses. The addition of carbon-rich bulking agents within a certain range improved the diversity and interactions of bacterial communities during algal sludge composting. In conclusion, considering the nitrogen and carbon lost, retained, and made available across the four treatments, treatment 3 (C/N = 14.6) appears to be the optimal choice for low C/N composting.
Global rubber industry, growing 4-6 % annually with 13.76 million Mt of rubber produced in 2019, significantly impacts the economy. This study explores coupling sulfate-dependent ammonium oxidation (Sulfammox) and sulfide-driven autotrophic denitrification (SDAD) within an anaerobic membrane bioreactor (AnMBR) to treat high-strength natural rubber wastewater. Over 225 days, the AnMBR system achieved maximal chemical oxygen demand (COD), total nitrogen (TN), ammonium nitrogen (NH4+-N), and sulfate sulfur (SO42--S) removal efficiencies of 58 %, 31 %, 13 %, and 45 %, respectively. TN is predominantly removed through Sulfammox (accounting for 49 % of NH4+-N removal), SDAD, and conventional denitrification pathways. Sulfate removal is achieved via Sulfammox (responsible for 43 % of SO42--S removal), and Dissimilatory sulfate-reducing (DSR) processes (contributing 57 % of SO42--S removal). Microbial analysis identified Desulfovibrio and Sulfurospirillum as key microbes, while metagenomic analysis highlighted crucial sulfur and nitrogen cycling pathways. The findings support Sulfammox and SDAD as promising eco-friendly strategies for treating ammonia- and sulfate-rich industrial wastewater.