首页 > 最新文献

Chemosphere最新文献

英文 中文
High removal of PS and PET microplastics from tap water by using Fe2O3 porous microparticles and photothermal irradiation with NIR light 利用 Fe2O3 多孔微颗粒和近红外光热辐照技术高效去除自来水中的 PS 和 PET 微塑料。
IF 8.1 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Pub Date : 2024-11-01 DOI: 10.1016/j.chemosphere.2024.143538
J.M. Sanchez , J. Oliva , C. Gomez-Solis , E. Puentes-Prado , E. Montes , I. Juárez-Ramírez , C.R. Garcia , J. Moreno Palmerin
This work reports the synthesis of Fe2O3 (FeO) microparticles using the Pechini method and their use to remove microplastics from tap water. The analysis by electronic microscopy revealed that the FeO microparticles (FeMicroPs) have a porous structure and are formed by interconnected grains with sizes of 80–120 nm. In addition, the X-ray diffraction analysis pointed out that the FeMicroPs are composed of γ- Fe2O3 and α- Fe2O3 phases. To remove the PS and PET microplastics with sizes of 0.1–3 μm from the tap water, FeO was added to the contaminated water and the mixture of FeO + microplastics was irradiated with focused NIR light (980 nm). This provoked the melting of the microplastics on the FeO surface. Later, the FeMicroPs with adsorbed microplastics was recovered with magnets. This last procedure permitted a high removal of microplastics from the tap water, and the adsorption capacity was 1000 mg/g. In the next step, the microplastics adsorbed on the FeO were irradiated with NIR light to induce its thermal decomposition by photothermal irradiation, this in turn, produced the elimination of the microplastics from the FeO surface and allowed its reuse to remove more microplastics from the tap water. The elimination of the microplastics from the FeO surface was confirmed by the FTIR and Raman techniques, since the vibrational peaks associated with the microplastics disappeared from the FeO surface after the photothermal irradiation. Thus, the results of this investigation suggest that the photothermal irradiation with NIR light not only facilitates the removal of microplastics from the tap water, but also, it was useful to degrade the microplastics definitively without producing more contamination. This technique could be used to remove microplastics in water treatment plants.
本研究报告介绍了利用 Pechini 方法合成 Fe2O3(FeO)微粒并将其用于去除自来水中的微塑料。电子显微镜分析表明,氧化铁微粒(FeMicroPs)具有多孔结构,由尺寸为 80-120 纳米的晶粒相互连接而成。此外,X 射线衍射分析表明,FeMicroPs 由 γ- Fe2O3 和 α- Fe2O3 两相组成。为了去除自来水中尺寸为 0.1-3 μm 的 PS 和 PET 微塑料,在受污染的水中加入了 FeO,并用聚焦近红外光(980 nm)照射 FeO+ 微塑料的混合物。这促使氧化铁表面的微塑料融化。随后,用磁铁回收吸附了微塑料的 FeMicroPs。最后一道工序可以大量去除自来水中的微塑料,吸附容量为 1000 毫克/克。下一步,用近红外光照射吸附在氧化铁上的微塑料,通过光热辐照诱导其热分解,进而消除氧化铁表面的微塑料,使其能够重新用于去除自来水中的更多微塑料。傅立叶变换红外光谱和拉曼技术证实了微塑料从氧化铁表面消除的事实,因为在光热辐照后,与微塑料相关的振动峰从氧化铁表面消失了。因此,这项研究结果表明,用近红外光进行光热辐照不仅有助于去除自来水中的微塑料,而且还能在不产生更多污染的情况下彻底降解微塑料。这项技术可用于去除水处理厂中的微塑料。
{"title":"High removal of PS and PET microplastics from tap water by using Fe2O3 porous microparticles and photothermal irradiation with NIR light","authors":"J.M. Sanchez ,&nbsp;J. Oliva ,&nbsp;C. Gomez-Solis ,&nbsp;E. Puentes-Prado ,&nbsp;E. Montes ,&nbsp;I. Juárez-Ramírez ,&nbsp;C.R. Garcia ,&nbsp;J. Moreno Palmerin","doi":"10.1016/j.chemosphere.2024.143538","DOIUrl":"10.1016/j.chemosphere.2024.143538","url":null,"abstract":"<div><div>This work reports the synthesis of Fe<sub>2</sub>O<sub>3</sub> (FeO) microparticles using the Pechini method and their use to remove microplastics from tap water. The analysis by electronic microscopy revealed that the FeO microparticles (FeMicroPs) have a porous structure and are formed by interconnected grains with sizes of 80–120 nm. In addition, the X-ray diffraction analysis pointed out that the FeMicroPs are composed of γ- Fe<sub>2</sub>O<sub>3</sub> and α- Fe<sub>2</sub>O<sub>3</sub> phases. To remove the PS and PET microplastics with sizes of 0.1–3 μm from the tap water, FeO was added to the contaminated water and the mixture of FeO + microplastics was irradiated with focused NIR light (980 nm). This provoked the melting of the microplastics on the FeO surface. Later, the FeMicroPs with adsorbed microplastics was recovered with magnets. This last procedure permitted a high removal of microplastics from the tap water, and the adsorption capacity was 1000 mg/g. In the next step, the microplastics adsorbed on the FeO were irradiated with NIR light to induce its thermal decomposition by photothermal irradiation, this in turn, produced the elimination of the microplastics from the FeO surface and allowed its reuse to remove more microplastics from the tap water. The elimination of the microplastics from the FeO surface was confirmed by the FTIR and Raman techniques, since the vibrational peaks associated with the microplastics disappeared from the FeO surface after the photothermal irradiation. Thus, the results of this investigation suggest that the photothermal irradiation with NIR light not only facilitates the removal of microplastics from the tap water, but also, it was useful to degrade the microplastics definitively without producing more contamination. This technique could be used to remove microplastics in water treatment plants.</div></div>","PeriodicalId":276,"journal":{"name":"Chemosphere","volume":"367 ","pages":"Article 143538"},"PeriodicalIF":8.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142483096","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Glyphosate formulations cause mortality and diverse sublethal defects during embryonic development of the amphibian Xenopus laevis 草甘膦制剂会导致两栖动物 Xenopus laevis 胚胎发育过程中的死亡和多种亚致死缺陷。
IF 8.1 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Pub Date : 2024-11-01 DOI: 10.1016/j.chemosphere.2024.143624
Hannah Flach, Sarah Pfeffer, Petra Dietmann, Michael Kühl, Susanne J. Kühl
The human impact on environmental landscapes, such as land use, climate change or pollution, is threatening global biodiversity and ecosystems maintenance. Pesticides like the herbicide glyphosate have garnered considerable attention due to their well-documented harmful effects on non-target species. During application, the active ingredient glyphosate is utilized in various formulations, each containing different additive adjuvants. However, the possible effects of these formulations on amphibians - the group with the highest decline rates among vertebrates - remain largely unknown.
Therefore, the present study investigated the effects of four glyphosate formulations (Glyphosat TF, Durano TF, Helosate 450 TF, Kyleo) on the embryonic development of the model organism Xenopus laevis (South African clawed frog). Embryos at the 2-cell stage were exposed to various concentrations of glyphosate formulations (glyphosate: 0.01–100 mg/L), and mortality as well as sublethal effects on different organs and tissues were analyzed. The results indicated that the formulations had different effects, particularly on the mortality of Xenopus laevis embryos. At sublethal concentrations, the formulations altered the embryos' external appearance, leading to malformations such as reduced eye and head size. In addition, exposure to formulations impaired heart morphology and function, and the expression of heart-specific genes was altered at a molecular level.
Our results confirmed that glyphosate formulations had a stronger effect on Xenopus laevis embryogenesis than pure glyphosate. Therefore, it is crucial to evaluate the active ingredient and the co-formulations independently, as well as the combined, commercially available products, during pesticide risk assessments and renewal procedures of agrochemicals. The severe global decline of amphibians, partly due to herbicide use, highlights the need for strict and efficient monitoring of environmental pesticide loads and application areas.
人类对环境景观的影响,如土地使用、气候变化或污染,正在威胁着全球生物多样性和生态系统的维护。除草剂草甘膦等杀虫剂因其对非目标物种的有害影响而备受关注。在施用过程中,活性成分草甘膦被用于各种配方中,每种配方都含有不同的添加佐剂。然而,这些制剂对两栖动物--脊椎动物中衰退率最高的类群--可能产生的影响在很大程度上仍然未知。因此,本研究调查了四种草甘膦制剂(Glyphosat TF、Durano TF、Helosate 450 TF 和 Kyleo)对模式生物爪蛙(南非爪蛙)胚胎发育的影响。将处于 2 细胞阶段的胚胎暴露于不同浓度的草甘膦制剂(草甘膦:0.01 - 100 毫克/升)中,分析其死亡率以及对不同器官和组织的亚致死效应。结果表明,这些制剂具有不同的影响,特别是对爪蟾胚胎的死亡率的影响。在亚致死浓度下,制剂会改变胚胎的外观,导致畸形,如眼睛和头部缩小。此外,接触草甘膦制剂还会损害心脏的形态和功能,并在分子水平上改变心脏特异基因的表达。我们的研究结果证实,草甘膦制剂比纯草甘膦对爪蟾胚胎发育的影响更大。因此,在农药风险评估和农用化学品更新程序中,对活性成分和共同制剂以及市售组合产品进行独立评估至关重要。两栖动物在全球范围内的严重减少,部分原因是除草剂的使用,这凸显了对环境农药负荷和施用区域进行严格有效监测的必要性。
{"title":"Glyphosate formulations cause mortality and diverse sublethal defects during embryonic development of the amphibian Xenopus laevis","authors":"Hannah Flach,&nbsp;Sarah Pfeffer,&nbsp;Petra Dietmann,&nbsp;Michael Kühl,&nbsp;Susanne J. Kühl","doi":"10.1016/j.chemosphere.2024.143624","DOIUrl":"10.1016/j.chemosphere.2024.143624","url":null,"abstract":"<div><div>The human impact on environmental landscapes, such as land use, climate change or pollution, is threatening global biodiversity and ecosystems maintenance. Pesticides like the herbicide glyphosate have garnered considerable attention due to their well-documented harmful effects on non-target species. During application, the active ingredient glyphosate is utilized in various formulations, each containing different additive adjuvants. However, the possible effects of these formulations on amphibians - the group with the highest decline rates among vertebrates - remain largely unknown.</div><div>Therefore, the present study investigated the effects of four glyphosate formulations (Glyphosat TF, Durano TF, Helosate 450 TF, Kyleo) on the embryonic development of the model organism <em>Xenopus laevis</em> (South African clawed frog). Embryos at the 2-cell stage were exposed to various concentrations of glyphosate formulations (glyphosate: 0.01–100 mg/L), and mortality as well as sublethal effects on different organs and tissues were analyzed. The results indicated that the formulations had different effects, particularly on the mortality of <em>Xenopus laevis</em> embryos. At sublethal concentrations, the formulations altered the embryos' external appearance, leading to malformations such as reduced eye and head size. In addition, exposure to formulations impaired heart morphology and function, and the expression of heart-specific genes was altered at a molecular level.</div><div>Our results confirmed that glyphosate formulations had a stronger effect on <em>Xenopus laevis</em> embryogenesis than pure glyphosate. Therefore, it is crucial to evaluate the active ingredient and the co-formulations independently, as well as the combined, commercially available products, during pesticide risk assessments and renewal procedures of agrochemicals. The severe global decline of amphibians, partly due to herbicide use, highlights the need for strict and efficient monitoring of environmental pesticide loads and application areas.</div></div>","PeriodicalId":276,"journal":{"name":"Chemosphere","volume":"367 ","pages":"Article 143624"},"PeriodicalIF":8.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142514668","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hydrothermal synthesis and characterization of samarium molybdate nanosheets modified multi-walled carbon nanotubes: Real-time analysis of dimetridazole in environmental and biological samples 钼酸钐纳米片修饰多壁碳纳米管的水热合成与表征:实时分析环境和生物样品中的二甲哒唑。
IF 8.1 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Pub Date : 2024-11-01 DOI: 10.1016/j.chemosphere.2024.143616
Yanting Li , Lihua Deng , Yaxi Jiang , Xinhui Jiang
Dimetridazole (DMZ) is commonly used as a veterinary drug, resulting in high emissions and environmental pollution and DMZ residues are carcinogenic, genotoxic, and mutagenic to humans. Therefore, it is essential to construct a fast, sensitive and simple sensor to monitor DMZ. In this study, samarium molybdate nanosheets modified multi-walled carbon nanotube composites (SmM/MWCNT) were synthesized to modify GCE for detecting DMZ. The SmM/MWCNT material was also characterized by various analytical and spectroscopic techniques, such as FE-SEM, HRTEM, FT-IR, Raman spectroscopy, XRD, elemental mapping and XPS, to demonstrate the successful synthesis of the composite. Besides, the electrochemical behavior of SmM/MWCNT/GCE for DMZ was also investigated using CV and DPV, and the modified electrode showed good electrochemical sensing performance for DMZ with a low detection limit (0.08 μM), a wide linear range (0.1∼1000 μM), and excellent selectivity. Finally, the SmM/MWCNT/GCE was successfully applied to detect DMZ in environmental and biological samples, and satisfactory recoveries (95%∼105%) were obtained. To the best of our knowledge, the synthesis of SmM/MWCNT and its application in electrochemical sensors are reported for the first time, which demonstrates that it can provide a new route for real-time monitoring of environmental pollutants.
二甲硝咪唑(DMZ)是一种常用的兽药,会造成大量排放和环境污染,而且 DMZ 残留物对人体具有致癌、遗传毒性和诱变性。因此,构建一种快速、灵敏、简单的传感器来监测 DMZ 至关重要。本研究合成了钼酸钐纳米片修饰多壁碳纳米管复合材料(SmM/MWCNT)来修饰 GCE,用于检测 DMZ。研究人员还利用各种分析和光谱技术,如 FE-SEM、HRTEM、傅立叶变换红外光谱、拉曼光谱、XRD、元素图谱和 XPS 等,对 SmM/MWCNT 材料进行了表征,以证明该复合材料的成功合成。此外,还利用 CV 和 DPV 研究了 SmM/MWCNT /GCE 对 DMZ 的电化学行为,结果表明改性电极对 DMZ 具有良好的电化学传感性能,检出限低(0.08 μM),线性范围宽(0.1∼1000 μM),选择性好。最后,SmM/MWCNT/GCE 被成功应用于环境和生物样品中 DMZ 的检测,并获得了令人满意的回收率(95%∼105%)。据我们所知,SmM/MWCNT 的合成及其在电化学传感器中的应用尚属首次报道,这为环境污染物的实时监测提供了一条新的途径。
{"title":"Hydrothermal synthesis and characterization of samarium molybdate nanosheets modified multi-walled carbon nanotubes: Real-time analysis of dimetridazole in environmental and biological samples","authors":"Yanting Li ,&nbsp;Lihua Deng ,&nbsp;Yaxi Jiang ,&nbsp;Xinhui Jiang","doi":"10.1016/j.chemosphere.2024.143616","DOIUrl":"10.1016/j.chemosphere.2024.143616","url":null,"abstract":"<div><div>Dimetridazole (DMZ) is commonly used as a veterinary drug, resulting in high emissions and environmental pollution and DMZ residues are carcinogenic, genotoxic, and mutagenic to humans. Therefore, it is essential to construct a fast, sensitive and simple sensor to monitor DMZ. In this study, samarium molybdate nanosheets modified multi-walled carbon nanotube composites (SmM/MWCNT) were synthesized to modify GCE for detecting DMZ. The SmM/MWCNT material was also characterized by various analytical and spectroscopic techniques, such as FE-SEM, HRTEM, FT-IR, Raman spectroscopy, XRD, elemental mapping and XPS, to demonstrate the successful synthesis of the composite. Besides, the electrochemical behavior of SmM/MWCNT/GCE for DMZ was also investigated using CV and DPV, and the modified electrode showed good electrochemical sensing performance for DMZ with a low detection limit (0.08 μM), a wide linear range (0.1∼1000 μM), and excellent selectivity. Finally, the SmM/MWCNT/GCE was successfully applied to detect DMZ in environmental and biological samples, and satisfactory recoveries (95%∼105%) were obtained. To the best of our knowledge, the synthesis of SmM/MWCNT and its application in electrochemical sensors are reported for the first time, which demonstrates that it can provide a new route for real-time monitoring of environmental pollutants.</div></div>","PeriodicalId":276,"journal":{"name":"Chemosphere","volume":"367 ","pages":"Article 143616"},"PeriodicalIF":8.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142514670","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structure–reactivity relationships in the removal efficiency of catechol and hydroquinone by structurally diverse Mn-oxides 结构不同的锰氧化物去除邻苯二酚和对苯二酚效率中的结构-反应关系。
IF 8.1 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Pub Date : 2024-11-01 DOI: 10.1016/j.chemosphere.2024.143602
Hui Li , Benjamin Atkins , Benjamin Reinhart , Elizabeth Herndon
Catechol and hydroquinone are widely present hydroxybenzene isomers in the natural environment that induce environmental toxicities. These hydroxybenzene compounds can be effectively removed by manganese (Mn)-oxides via sorption and oxidative degradation processes. In the present study, we investigated the structure–reactivity relationships in the sorption and oxidation of catechol and hydroquinone on Mn-oxide surfaces. Two widely present Mn-oxides, including hydrous Mn oxide (HMO) and cryptomelane, comprised of layer and tunnel structures, respectively, are specifically studied. Effects of Mn-oxide structures and environmental pH conditions on the removal efficiency of these hydroxybenzene compounds, via sorption and oxidative degradation, are investigated. Cryptomelane, which has a higher specific surface area than HMO, possesses a higher sorption and oxidation capacity. The complexation mechanisms of catechol and hydroquinone vary due to their structure-induced difference in reactivity. Catechol reduced and dissolved more Mn from Mn-oxides than hydroquinone, accompanied by a higher C loss of catechol-C, suggesting a higher reactivity of catechol. Structural changes occurred in the Mn-oxides resulting from reaction with catechol and hydroquinone: reduction of Mn(IV), corresponding formation of Mn(III) and Mn(II) in the mineral, and free Mn2+ ions released into the suspension. These insights could help us better understand and predict the fate of hydroxybenzene compounds in Mn-oxide-rich soils and wastewater treatment systems that generate Mn-oxides via Mn removal and the associated environmental toxicity.
邻苯二酚和对苯二酚是自然环境中广泛存在的羟苯异构体,会对环境造成毒害。锰(Mn)氧化物可通过吸附和氧化降解过程有效去除这些羟苯化合物。在本研究中,我们研究了邻苯二酚和对苯二酚在锰氧化物表面吸附和氧化过程中的结构-反应关系。具体研究了两种广泛存在的氧化锰,包括水合氧化锰(HMO)和隐锰,它们分别由层结构和隧道结构组成。研究了氧化锰结构和环境 pH 条件通过吸附和氧化降解对这些羟苯化合物去除效率的影响。与 HMO 相比,比表面积更大的隐色美兰具有更高的吸附和氧化能力。儿茶酚和对苯二酚的络合机制因其结构引起的反应性差异而不同。与对苯二酚相比,儿茶酚从锰氧化物中还原和溶解的锰更多,同时儿茶酚-C 的 C 损失更高,这表明儿茶酚的反应活性更高。与邻苯二酚和对苯二酚反应后,Mn-氧化物的结构发生了变化:Mn(IV)还原,矿物中相应形成了 Mn(III)和 Mn(II),悬浮液中释放出游离的 Mn2+ 离子。这些见解有助于我们更好地理解和预测羟苯化合物在富含锰氧化物的土壤和废水处理系统中的命运,这些土壤和废水处理系统通过除锰产生锰氧化物,并产生相关的环境毒性。
{"title":"Structure–reactivity relationships in the removal efficiency of catechol and hydroquinone by structurally diverse Mn-oxides","authors":"Hui Li ,&nbsp;Benjamin Atkins ,&nbsp;Benjamin Reinhart ,&nbsp;Elizabeth Herndon","doi":"10.1016/j.chemosphere.2024.143602","DOIUrl":"10.1016/j.chemosphere.2024.143602","url":null,"abstract":"<div><div>Catechol and hydroquinone are widely present hydroxybenzene isomers in the natural environment that induce environmental toxicities. These hydroxybenzene compounds can be effectively removed by manganese (Mn)-oxides via sorption and oxidative degradation processes. In the present study, we investigated the structure–reactivity relationships in the sorption and oxidation of catechol and hydroquinone on Mn-oxide surfaces. Two widely present Mn-oxides, including hydrous Mn oxide (HMO) and cryptomelane, comprised of layer and tunnel structures, respectively, are specifically studied. Effects of Mn-oxide structures and environmental pH conditions on the removal efficiency of these hydroxybenzene compounds, via sorption and oxidative degradation, are investigated. Cryptomelane, which has a higher specific surface area than HMO, possesses a higher sorption and oxidation capacity. The complexation mechanisms of catechol and hydroquinone vary due to their structure-induced difference in reactivity. Catechol reduced and dissolved more Mn from Mn-oxides than hydroquinone, accompanied by a higher C loss of catechol-C, suggesting a higher reactivity of catechol. Structural changes occurred in the Mn-oxides resulting from reaction with catechol and hydroquinone: reduction of Mn(IV), corresponding formation of Mn(III) and Mn(II) in the mineral, and free Mn<sup>2+</sup> ions released into the suspension. These insights could help us better understand and predict the fate of hydroxybenzene compounds in Mn-oxide-rich soils and wastewater treatment systems that generate Mn-oxides via Mn removal and the associated environmental toxicity.</div></div>","PeriodicalId":276,"journal":{"name":"Chemosphere","volume":"367 ","pages":"Article 143602"},"PeriodicalIF":8.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142514678","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Guidance on aqueous matrices for evaluating novel precipitants and adsorbents for phosphorus removal and recovery 用于评估新型沉淀剂和吸附剂除磷和磷回收的水介质指南。
IF 8.1 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Pub Date : 2024-11-01 DOI: 10.1016/j.chemosphere.2024.143648
Treavor H. Boyer , Emily Briese , Lucas Crane , Jehangir Bhadha , Douglas F. Call , Eric S. McLamore , Bruce Rittmann , Shea Tuberty , Paul Westerhoff , Owen W. Duckworth
Phosphorus (P) removal from water and recovery into useable forms is a critical component of creating a sustainable P cycle, although mature technologies for P removal and recovery are still lacking. The goal of this paper was to advance the testing of novel materials for P removal and recovery from water by providing guidance on the development of more realistic aqueous matrices used during materials development. Literature reports of “new” materials to remove P from water are often difficult to compare in terms of performance because authors use a myriad of water chemistries containing P concentrations, pH, and competing ions. Moreover, many tests are conducted in simplified matrices that do not reflect conditions in real systems. To address this critical gap, the research herein developed a systematic approach of identifying aqueous matrices relevant to P recovery, including key components in the aqueous matrices having the greatest influence on the mechanisms of P removal with emphasis on phosphate precipitation and phosphate adsorption, and providing guidelines on relevant “recipes” for aqueous solutions for testing novel materials. Key components in the aqueous matrices included hydrogen ion (i.e., pH), multivalent metal cations, and dissolved organic matter due to their influence on phosphate precipitation and adsorption mechanisms. Recipes for buffer solution and synthetic groundwater, surface water, anaerobic digestate, and stored urine are discussed in the context of P removal and recovery processes. Wherein the adoption of standard matrices in other fields have permitted direct comparison of processes or materials, it is anticipated that adoption of relevant aqueous matrix recipes for P removal and recovery will improve the ability to directly compare novel materials and processes.
从水中去除磷(P)并将其回收为可用形式是建立可持续磷循环的重要组成部分,但目前仍缺乏成熟的磷去除和回收技术。本文的目的是通过为材料开发过程中使用的更符合实际的水基质的开发提供指导,推进用于从水中去除和回收磷的新型材料的测试。有关从水中去除 P 的 "新型 "材料的文献报告通常很难在性能方面进行比较,因为作者使用了大量含有 P 浓度、pH 值和竞争离子的水化学成分。此外,许多测试都是在简化的基质中进行的,不能反映真实系统的条件。为了弥补这一重大缺陷,本文的研究开发了一种系统方法,用于确定与磷回收相关的水基质,包括对磷去除机制影响最大的水基质中的关键成分,重点是磷酸盐沉淀和磷酸盐吸附,并为测试新型材料提供相关水溶液 "配方 "指南。水基质中的关键成分包括氢离子(即 pH 值)、多价金属阳离子和溶解有机物,因为它们对磷酸盐沉淀和吸附机制有影响。结合磷的去除和回收过程,讨论了缓冲溶液和合成地下水、地表水、厌氧沼渣和储存尿液的配方。在其他领域采用标准基质可以对工艺或材料进行直接比较,而在去除和回收磷方面采用相关的水基质配方预计将提高对新型材料和工艺进行直接比较的能力。
{"title":"Guidance on aqueous matrices for evaluating novel precipitants and adsorbents for phosphorus removal and recovery","authors":"Treavor H. Boyer ,&nbsp;Emily Briese ,&nbsp;Lucas Crane ,&nbsp;Jehangir Bhadha ,&nbsp;Douglas F. Call ,&nbsp;Eric S. McLamore ,&nbsp;Bruce Rittmann ,&nbsp;Shea Tuberty ,&nbsp;Paul Westerhoff ,&nbsp;Owen W. Duckworth","doi":"10.1016/j.chemosphere.2024.143648","DOIUrl":"10.1016/j.chemosphere.2024.143648","url":null,"abstract":"<div><div>Phosphorus (P) removal from water and recovery into useable forms is a critical component of creating a sustainable P cycle, although mature technologies for P removal and recovery are still lacking. The goal of this paper was to advance the testing of novel materials for P removal and recovery from water by providing guidance on the development of more realistic aqueous matrices used during materials development. Literature reports of “new” materials to remove P from water are often difficult to compare in terms of performance because authors use a myriad of water chemistries containing P concentrations, pH, and competing ions. Moreover, many tests are conducted in simplified matrices that do not reflect conditions in real systems. To address this critical gap, the research herein developed a systematic approach of identifying aqueous matrices relevant to P recovery, including key components in the aqueous matrices having the greatest influence on the mechanisms of P removal with emphasis on phosphate precipitation and phosphate adsorption, and providing guidelines on relevant “recipes” for aqueous solutions for testing novel materials. Key components in the aqueous matrices included hydrogen ion (i.e., pH), multivalent metal cations, and dissolved organic matter due to their influence on phosphate precipitation and adsorption mechanisms. Recipes for buffer solution and synthetic groundwater, surface water, anaerobic digestate, and stored urine are discussed in the context of P removal and recovery processes. Wherein the adoption of standard matrices in other fields have permitted direct comparison of processes or materials, it is anticipated that adoption of relevant aqueous matrix recipes for P removal and recovery will improve the ability to directly compare novel materials and processes.</div></div>","PeriodicalId":276,"journal":{"name":"Chemosphere","volume":"367 ","pages":"Article 143648"},"PeriodicalIF":8.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142549444","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Polyimide-multiwalled carbon nanotubes composite as electrochemical sensing platform for the simultaneous detection of nitrophenol isomers 聚酰亚胺-多壁碳纳米管复合材料作为同时检测硝基苯酚异构体的电化学传感平台。
IF 8.1 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Pub Date : 2024-11-01 DOI: 10.1016/j.chemosphere.2024.143654
Jianzheng Wang , Chunying Liu , Ziao Di , Jiayu Huang , Hongjun Wei , Minjie Guo , Xiaoliang Yu , Nan Li , Jin Zhao , Bowen Cheng
Developing novel electrode materials plays a crucial role in enhancing the electrochemical sensing performance of chemically modified electrodes. This research presents a composite electrode material based on polyimide incorporated with multiwalled carbon nanotubes (PI-MWCNT) for the simultaneous detection of three nitrophenol isomers (NPs). First, the composite was prepared and characterized using microscopies, spectroscopic techniques, and electrochemical experiments. The results indicated that the PI-MWCNT exhibited porosity and roughness, which facilitated the enhancement of its sensing performance. Afterward, the detection capabilities of PI-MWCNT towards NPs were evaluated through voltammetry experiments under optimal conditions. The differential pulse voltammetry (DPV) curves revealed three distinct anodic peaks in the NPs solution, with linear ranges of 1–300 μM for 2-NP, 0.25–250 μM for 3-NP, and 0.25–400 μM for 4-NP. The limits of detection (LOD) were 0.50 μM for both 2-NP and 3-NP, and 0.64 μM for 4-NP. Furthermore, the proposed electrode material was successfully applied to real samples, achieving recovery rates ranging from 92.9% to 106%. This study could contribute to the development of more efficient and sensitive electrochemical sensors.
开发新型电极材料对于提高化学修饰电极的电化学传感性能至关重要。本研究提出了一种基于聚酰亚胺与多壁碳纳米管(PI-MWCNT)的复合电极材料,用于同时检测三种硝基苯酚异构体(NPs)。首先,制备了该复合材料,并利用显微镜、光谱技术和电化学实验对其进行了表征。结果表明,PI-MWCNT 具有多孔性和粗糙度,这有利于提高其传感性能。随后,在最佳条件下通过伏安实验评估了 PI-MWCNT 对 NPs 的检测能力。微分脉冲伏安法(DPV)曲线显示了 NPs 溶液中三个不同的阳极峰,2-NP 的线性范围为 1-300 μM,3-NP 为 0.25-250 μM,4-NP 为 0.25-400 μM。2-NP 和 3-NP 的检测限均为 0.50 μM,4-NP 为 0.64 μM。此外,所提出的电极材料还成功地应用于实际样品,实现了 92.9% 至 106% 的回收率。这项研究有助于开发更高效、更灵敏的电化学传感器。
{"title":"Polyimide-multiwalled carbon nanotubes composite as electrochemical sensing platform for the simultaneous detection of nitrophenol isomers","authors":"Jianzheng Wang ,&nbsp;Chunying Liu ,&nbsp;Ziao Di ,&nbsp;Jiayu Huang ,&nbsp;Hongjun Wei ,&nbsp;Minjie Guo ,&nbsp;Xiaoliang Yu ,&nbsp;Nan Li ,&nbsp;Jin Zhao ,&nbsp;Bowen Cheng","doi":"10.1016/j.chemosphere.2024.143654","DOIUrl":"10.1016/j.chemosphere.2024.143654","url":null,"abstract":"<div><div>Developing novel electrode materials plays a crucial role in enhancing the electrochemical sensing performance of chemically modified electrodes. This research presents a composite electrode material based on polyimide incorporated with multiwalled carbon nanotubes (PI-MWCNT) for the simultaneous detection of three nitrophenol isomers (NPs). First, the composite was prepared and characterized using microscopies, spectroscopic techniques, and electrochemical experiments. The results indicated that the PI-MWCNT exhibited porosity and roughness, which facilitated the enhancement of its sensing performance. Afterward, the detection capabilities of PI-MWCNT towards NPs were evaluated through voltammetry experiments under optimal conditions. The differential pulse voltammetry (DPV) curves revealed three distinct anodic peaks in the NPs solution, with linear ranges of 1–300 μM for 2-NP, 0.25–250 μM for 3-NP, and 0.25–400 μM for 4-NP. The limits of detection (LOD) were 0.50 μM for both 2-NP and 3-NP, and 0.64 μM for 4-NP. Furthermore, the proposed electrode material was successfully applied to real samples, achieving recovery rates ranging from 92.9% to 106%. This study could contribute to the development of more efficient and sensitive electrochemical sensors.</div></div>","PeriodicalId":276,"journal":{"name":"Chemosphere","volume":"367 ","pages":"Article 143654"},"PeriodicalIF":8.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142565336","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genome-wide analysis of detoxification genes conferring diamide insecticide resistance in Spodoptera exigua identifies CYP9A40 对使 Spodoptera exigua 对二胺类杀虫剂产生抗性的解毒基因进行全基因组分析,发现了 CYP9A40。
IF 8.1 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Pub Date : 2024-11-01 DOI: 10.1016/j.chemosphere.2024.143623
Changhee Han , Md-Mafizur Rahman , Juil Kim , Bettina Lueke , Ralf Nauen
For over a decade, diamide insecticides have been effective against lepidopteran pests like beet armyworm, Spodoptera exigua (Hübner, 1808). However, the evolution of resistance poses a challenge to their sustainable use. We identified an I4790 M mutation in the S. exigua ryanodine receptor (RyR) gene, but its correlation with resistance varied across the field-collected Korean populations of S. exigua. RNA sequencing and differential gene expression analysis were performed to investigate other resistance mechanisms. Diamide-resistant and susceptible strains and F1 hybrids were compared by mapping RNA-seq reads to the S. exigua reference genome. CYP9A40 was identified as a critical gene in diamide resistance due to its high expression in the resistant strains. Synergist bioassays with piperonyl butoxide supported the role of P450s in diamide metabolic resistance in S. exigua. A strong positive correlation between CYP9A40 over-expression levels (up to 80-fold) and diamide LC50 values was obtained for field-collected populations uniformly showing a 100% frequency of the RyR I4790 M target-site resistance allele. To validate the function of CYP9A40 in diamide detoxification, we recombinantly expressed the gene and tested its ability to bind and degrade chlorantraniliprole as a substrate. The results confirmed its catalytic role in diamide metabolism. CYP9A40 has been identified and validated to confer metabolic resistance in Korean S. exigua populations. It works alongside the RyR target-site I4790 M mutation to enhance diamide resistance. These mechanisms offer insights for resistance monitoring and support insecticide resistance management programs to improve control strategies for S. exigua.
十多年来,二酰胺类杀虫剂一直对甜菜夜蛾等鳞翅目害虫有效。然而,抗药性的演变对其可持续使用构成了挑战。我们在 S. exigua 的雷诺丁受体(RyR)基因中发现了一个 I4790M 突变,但在田间采集的韩国 S. exigua 种群中,该突变与抗性的相关性各不相同。为了研究其他抗性机制,进行了 RNA 测序和差异基因表达分析。通过将 RNA-seq 读数映射到 S. exigua 参考基因组,对二胺抗性和易感株系及 F1 杂交种进行了比较。由于 CYP9A40 在抗性菌株中的高表达,它被确定为二酰胺抗性的关键基因。用胡椒基丁醚进行的增效剂生物测定证实了 P450s 在 S. exigua 的二酰胺代谢抗性中的作用。在田间采集的种群中,CYP9A40的过量表达水平(高达80倍)与二酰胺的半致死浓度值之间存在很强的正相关性,这些种群中RyR I4790M靶位抗性等位基因的频率均为100%。为了验证 CYP9A40 在二酰胺解毒中的功能,我们重组表达了该基因,并测试了其结合和降解作为底物的氯虫苯甲酰胺的能力。结果证实了它在二酰胺代谢中的催化作用。经鉴定和验证,CYP9A40 在韩国 S. exigua 群体中具有代谢抗性。它与 RyR 靶位点 I4790M 突变一起增强了二酰胺的抗性。这些机制为抗药性监测提供了启示,并支持杀虫剂抗药性管理计划,以改进对 S. exigua 的控制策略。
{"title":"Genome-wide analysis of detoxification genes conferring diamide insecticide resistance in Spodoptera exigua identifies CYP9A40","authors":"Changhee Han ,&nbsp;Md-Mafizur Rahman ,&nbsp;Juil Kim ,&nbsp;Bettina Lueke ,&nbsp;Ralf Nauen","doi":"10.1016/j.chemosphere.2024.143623","DOIUrl":"10.1016/j.chemosphere.2024.143623","url":null,"abstract":"<div><div>For over a decade, diamide insecticides have been effective against lepidopteran pests like beet armyworm, <em>Spodoptera exigua</em> (Hübner, 1808). However, the evolution of resistance poses a challenge to their sustainable use. We identified an I4790 M mutation in the <em>S. exigua</em> ryanodine receptor (RyR) gene, but its correlation with resistance varied across the field-collected Korean populations of <em>S. exigua</em>. RNA sequencing and differential gene expression analysis were performed to investigate other resistance mechanisms. Diamide-resistant and susceptible strains and F1 hybrids were compared by mapping RNA-seq reads to the <em>S. exigua</em> reference genome. <em>CYP9A40</em> was identified as a critical gene in diamide resistance due to its high expression in the resistant strains. Synergist bioassays with piperonyl butoxide supported the role of P450s in diamide metabolic resistance in <em>S. exigua</em>. A strong positive correlation between <em>CYP9A40</em> over-expression levels (up to 80-fold) and diamide LC<sub>50</sub> values was obtained for field-collected populations uniformly showing a 100% frequency of the RyR I4790 M target-site resistance allele. To validate the function of <em>CYP9A40</em> in diamide detoxification, we recombinantly expressed the gene and tested its ability to bind and degrade chlorantraniliprole as a substrate. The results confirmed its catalytic role in diamide metabolism. <em>CYP9A40</em> has been identified and validated to confer metabolic resistance in Korean <em>S. exigua</em> populations. It works alongside the RyR target-site I4790 M mutation to enhance diamide resistance. These mechanisms offer insights for resistance monitoring and support insecticide resistance management programs to improve control strategies for <em>S. exigua</em>.</div></div>","PeriodicalId":276,"journal":{"name":"Chemosphere","volume":"367 ","pages":"Article 143623"},"PeriodicalIF":8.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142559736","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assessment of interfering/synergistic effects in the adsorption between polar and non-polar VOCs on a commercial biomass-based microporous carbon 评估极性和非极性挥发性有机化合物在商用生物质微孔碳上吸附时的干扰/协同效应。
IF 8.1 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Pub Date : 2024-11-01 DOI: 10.1016/j.chemosphere.2024.143701
Lu Liu , Younes Ahmadi , Ki-Hyun Kim , Deepak Kukkar , Jan Szulejko
This research has been carried out to investigate unique relationships in adsorption behavior between polar and non-polar volatile organic compounds (VOCs: formaldehyde (FA) versus toluene) using commercial macadamia nutshell (MNS)-based microporous activated carbon (i.e., Procarb-900: namely, P900). The breakthrough (BT) volume, adsorption capacity, and partition coefficient of P900 are estimated for 100 ppm FA as a single component and as a binary phase with 100 ppm toluene. The contrasting features of adsorption (such as interfering/synergistic relationships) for VOC mixtures with different polarities are accounted for in terms of interaction between the key variables (e.g., pore size distribution, adsorbent particle size, surface element compositions, and sorbent bed mass). Accordingly, the powdered P900 (0.212–0.6 mm: 150 mg) exhibits an adsorption capacity of 5.7 mg g−1 and a partition coefficient of 0.19 mol kg−1 Pa−1 for single-phase FA at the 10% BT level. Interestingly, its FA adsorption performance is synergistically improved in the presence of toluene (e.g., > 150%) in the early stage of adsorption (e.g., 10% BT), although their competition reduced its performance at 99% BT. The apparent synergistic trend in the early BT stage may possibly reflect diffusion resistance of the adsorbent (e.g., small particle size and developed ultra-micropore structure) and natural attributes of FA (e.g., low affinity and smaller kinetic diameter). The overall results of this study are expected to offer a better understanding of the mechanisms underlying the interactions between the mixed VOC system and microporous adsorbents.
本研究使用基于商用澳洲坚果壳(MNS)的微孔活性炭(即 Procarb-900:即 P900),对极性和非极性挥发性有机化合物(VOC:甲醛(FA)和甲苯)之间的吸附行为的干扰/协同关系进行了研究。我们估算了 P900 在 100 ppm FA 作为单组分和 100 ppm 甲苯作为二元相时的突破 (BT) 量、吸附容量和分配系数。从关键变量(如孔径分布、吸附剂粒度、表面元素组成和吸附剂床层质量)之间的相互作用角度,说明了 P900 吸附剂对 FA 吸附的基本特征。因此,粉末状 P900(0.212-0.6 毫米:150 毫克)的吸附容量为 5.7 毫克 g-1,在 10% BT 水平下,对单相 FA 的分配系数为 0.19 摩尔 kg-1 Pa-1。有趣的是,在吸附的早期阶段(如 10% BT),当甲苯存在时(如 >150%),它的性能得到了协同改善,这可能反映了吸附剂的扩散阻力(如小粒径和发达的超微孔结构)和 FA 的天然属性(如低亲和力和较小的动力学直径)。这项研究的总体结果有望让人们更好地了解混合挥发性有机化合物体系与微孔吸附剂之间的相互作用机制。
{"title":"Assessment of interfering/synergistic effects in the adsorption between polar and non-polar VOCs on a commercial biomass-based microporous carbon","authors":"Lu Liu ,&nbsp;Younes Ahmadi ,&nbsp;Ki-Hyun Kim ,&nbsp;Deepak Kukkar ,&nbsp;Jan Szulejko","doi":"10.1016/j.chemosphere.2024.143701","DOIUrl":"10.1016/j.chemosphere.2024.143701","url":null,"abstract":"<div><div>This research has been carried out to investigate unique relationships in adsorption behavior between polar and non-polar volatile organic compounds (VOCs: formaldehyde (FA) versus toluene) using commercial macadamia nutshell (MNS)-based microporous activated carbon (i.e., Procarb-900: namely, P900). The breakthrough (BT) volume, adsorption capacity, and partition coefficient of P900 are estimated for 100 ppm FA as a single component and as a binary phase with 100 ppm toluene. The contrasting features of adsorption (such as interfering/synergistic relationships) for VOC mixtures with different polarities are accounted for in terms of interaction between the key variables (e.g., pore size distribution, adsorbent particle size, surface element compositions, and sorbent bed mass). Accordingly, the powdered P900 (0.212–0.6 mm: 150 mg) exhibits an adsorption capacity of 5.7 mg g<sup>−1</sup> and a partition coefficient of 0.19 mol kg<sup>−1</sup> Pa<sup>−1</sup> for single-phase FA at the 10% BT level. Interestingly, its FA adsorption performance is synergistically improved in the presence of toluene (e.g., &gt; 150%) in the early stage of adsorption (e.g., 10% BT), although their competition reduced its performance at 99% BT. The apparent synergistic trend in the early BT stage may possibly reflect diffusion resistance of the adsorbent (e.g., small particle size and developed ultra-micropore structure) and natural attributes of FA (e.g., low affinity and smaller kinetic diameter). The overall results of this study are expected to offer a better understanding of the mechanisms underlying the interactions between the mixed VOC system and microporous adsorbents.</div></div>","PeriodicalId":276,"journal":{"name":"Chemosphere","volume":"368 ","pages":"Article 143701"},"PeriodicalIF":8.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142633664","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Determination of persistent and mobile organic compounds in the river–groundwater interface of the Besòs river delta, Spain, using a wide extraction approach 采用广泛萃取法测定西班牙贝索斯河三角洲河流-地下水界面中的持久性和流动性有机化合物。
IF 8.1 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Pub Date : 2024-11-01 DOI: 10.1016/j.chemosphere.2024.143673
Arianna Bautista , Maria Björnsdotter , Carmen Sáez , Anna Jurado , Marta Llorca , Estanislao Pujades , Marinella Farré
Climate change impacts the Mediterranean region, transforming it from region with a semi-arid climate to a region with an arid climate. Under this situation, while groundwater is an essential hydric resource, its existence is in danger due to anthropogenic pressures. Persistent mobile organic compounds (PMOCs) have recently been recognised as an emerging problem; however, PMOCs in groundwater need to be better characterised. Here, we present a new analytical method to characterise the profile of PMOCs in groundwater based on two parallel solid-phase extraction (SPE), using weak anion exchange and weak cation exchange. Extracts were analysed by ultraperformance liquid chromatography (UPLC) using mix-mode chromatography for those compounds analysed under negative ionisation conditions and hydrophilic interaction liquid chromatography (HILIC) under positive conditions coupled to high-resolution mass-spectrometry (HRMS) using a Q-Exactive Orbitrap™ analyser. For the suspect screening of PMOCs in groundwater, the acquisition mode was in full scan (FS) by “independent scan of all ion fragmentation”. For the tentative identification, different online databases such as Environmental and Food Safety (EFS) HRAM Compound database, PFAS NIST database, ChemSpider for chemical structural information, MzCloud as a mass spectral database, and an in-house list with 1280 PMOC structures have been used. The performance of the method was assessed with 29 representative PMOCs which were selected based on the previous literature. The recovery rates have been between 63 and 110 % for 90 % of the target compounds and method limits of quantification (MLQ) between 0.3 and 10.5 ng/L.
The optimised approach was applied to assess PMOCs in the Besòs River aquifer, NE Spain, showing 148 tentatively identified structures at confidence levels 1–3. Among them, 66 suspects were tentatively identified at level 3, 54 at level 2, and 28 confirmed at level 1. Most of these compounds were polar and highly polar compounds which are difficult to retain with other extraction approaches. Major detected compounds were pharmaceuticals and personal care products (46), followed by perfluoroalkyl and polyfluoroalkyl substances (PFAS) (32), industrial additives (27), and pesticides (23), among other groups. Some compounds, such as ultrashort chain PFAS and fluorinated betaines, were detected for the first time in groundwaters in Spain.
气候变化影响着地中海地区,使其从半干旱气候地区转变为干旱气候地区。在这种情况下,虽然地下水是一种重要的水文资源,但由于人为压力,地下水的存在岌岌可危。持久性移动有机化合物(PMOCs)最近已被认为是一个新出现的问题;然而,地下水中的 PMOCs 还需要更好地定性。在此,我们提出了一种新的分析方法,利用弱阴离子交换和弱阳离子交换两种平行的固相萃取(SPE)来描述地下水中 PMOCs 的特征。萃取物采用超高效液相色谱法(UPLC)进行分析,在负离子条件下采用混合模式色谱法分析化合物,在正离子条件下采用亲水作用液相色谱法(HILIC),并使用 Q-Exactive Orbitrap™ 分析仪进行高分辨率质谱分析(HRMS)。在对地下水中的 PMOCs 进行可疑筛选时,采用了 "所有离子碎片独立扫描 "的全扫描(FS)采集模式。为了进行初步鉴定,使用了不同的在线数据库,如环境与食品安全(EFS)HRAM 化合物数据库、PFAS NIST 数据库、化学结构信息 ChemSpider、作为质谱数据库的 MzCloud 以及包含 1280 种 PMOC 结构的内部列表。根据以前的文献资料,选择了 29 种有代表性的 PMOC 对该方法的性能进行了评估。90% 目标化合物的回收率在 63-110% 之间,方法定量限 (MLQ) 在 0.3-10.5 纳克/升之间。该优化方法被用于评估西班牙东北部贝索斯河含水层中的 PMOCs,结果显示,在置信度为 1-3 级的情况下,有 148 个结构被初步确定。其中,66 个疑似结构被初步确定为第 3 级,54 个被确定为第 2 级,28 个被确定为第 1 级。这些化合物大多是极性和高极性化合物,其他萃取方法难以保留。检测到的主要化合物是药品和个人护理产品(46 种),其次是全氟烷基和多氟烷基物质(PFAS)(32 种)、工业添加剂(27 种)和杀虫剂(23 种)等。西班牙首次在地下水中检测到超短链 PFAS 和含氟甜菜碱等化合物。
{"title":"Determination of persistent and mobile organic compounds in the river–groundwater interface of the Besòs river delta, Spain, using a wide extraction approach","authors":"Arianna Bautista ,&nbsp;Maria Björnsdotter ,&nbsp;Carmen Sáez ,&nbsp;Anna Jurado ,&nbsp;Marta Llorca ,&nbsp;Estanislao Pujades ,&nbsp;Marinella Farré","doi":"10.1016/j.chemosphere.2024.143673","DOIUrl":"10.1016/j.chemosphere.2024.143673","url":null,"abstract":"<div><div>Climate change impacts the Mediterranean region, transforming it from region with a semi-arid climate to a region with an arid climate. Under this situation, while groundwater is an essential hydric resource, its existence is in danger due to anthropogenic pressures. Persistent mobile organic compounds (PMOCs) have recently been recognised as an emerging problem; however, PMOCs in groundwater need to be better characterised. Here, we present a new analytical method to characterise the profile of PMOCs in groundwater based on two parallel solid-phase extraction (SPE), using weak anion exchange and weak cation exchange. Extracts were analysed by ultraperformance liquid chromatography (UPLC) using mix-mode chromatography for those compounds analysed under negative ionisation conditions and hydrophilic interaction liquid chromatography (HILIC) under positive conditions coupled to high-resolution mass-spectrometry (HRMS) using a Q-Exactive Orbitrap™ analyser. For the suspect screening of PMOCs in groundwater, the acquisition mode was in full scan (FS) by “independent scan of all ion fragmentation”. For the tentative identification, different online databases such as Environmental and Food Safety (EFS) HRAM Compound database, PFAS NIST database, ChemSpider for chemical structural information, MzCloud as a mass spectral database, and an in-house list with 1280 PMOC structures have been used. The performance of the method was assessed with 29 representative PMOCs which were selected based on the previous literature. The recovery rates have been between 63 and 110 % for 90 % of the target compounds and method limits of quantification (MLQ) between 0.3 and 10.5 ng/L.</div><div>The optimised approach was applied to assess PMOCs in the Besòs River aquifer, NE Spain, showing 148 tentatively identified structures at confidence levels 1–3. Among them, 66 suspects were tentatively identified at level 3, 54 at level 2, and 28 confirmed at level 1. Most of these compounds were polar and highly polar compounds which are difficult to retain with other extraction approaches. Major detected compounds were pharmaceuticals and personal care products (46), followed by perfluoroalkyl and polyfluoroalkyl substances (PFAS) (32), industrial additives (27), and pesticides (23), among other groups. Some compounds, such as ultrashort chain PFAS and fluorinated betaines, were detected for the first time in groundwaters in Spain.</div></div>","PeriodicalId":276,"journal":{"name":"Chemosphere","volume":"368 ","pages":"Article 143673"},"PeriodicalIF":8.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142634039","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Efficient oxidative remediation of polycyclic aromatic hydrocarbons (PAHs)-contaminated soil: A thorough comprehension of Fe-loaded biochar activated persulfate 多环芳烃(PAHs)污染土壤的高效氧化修复:对含铁生物炭活化过硫酸盐的透彻理解。
IF 8.1 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Pub Date : 2024-11-01 DOI: 10.1016/j.chemosphere.2024.143699
Lei Wu , Yuan Gao , Siwen Qiu , Zixuan Hu , Changbo Liu , Changsheng Yue , Jun Zhou
The porous and defective structure of biochar (BC) can accelerate surface electron transfer, promote the generation of more reactive oxygen species (ROS) by persulfate (PS), and effectively degrade organic pollutants in the soil. Electron transfer is a crucial link in this process, directly determining its oxidative degradation efficiency. In this study, using a novel strategy of enhancing electron transfer on the surface of BC by loading iron, three Fe-loaded BC activators (Fe-FeOx@BC, Fe2O3@BC and Fe3O4@BC) were synthesized to support the oxidative remediation of benzo(a)pyrene (BaP, Model compound of PAHs)-contaminated soil by PS. The results showed that Fe3O4@BC supported PS oxidation and remediation of BaP-contaminated soil had the best effect among the three BC-based activators, and the reuse effect was stable. Under the conditions of Fe3O4@BC addition of 1.00 wt%, PS addition of 0.75 wt%, reaction temperature of 35 °C, and solid-liquid ratio of 1:2.5, the removal rate of BaP in the soil reached the maximum of 93.84% at 120 min, and the soil toxicity was significantly reduced after remediation. The defect structure, conductive magnetic particles, and active functional groups on the surface of Fe3O4@BC were the key factors for activating PS to degrade BaP. With the combined action of the free radical pathway caused by ROS and the non-free radical pathway caused by 1O2, electron transfer, and active functional groups, BaP was degraded to small molecules such as CO2 and H2O, achieving rapid and efficient remediation of organic contaminated soil.
生物炭(BC)的多孔缺陷结构可加速表面电子传递,促进过硫酸盐(PS)生成更多活性氧(ROS),有效降解土壤中的有机污染物。电子传递是这一过程中的关键环节,直接决定了其氧化降解效率。本研究采用一种通过负载铁来增强萃取剂表面电子传递的新策略,合成了三种负载铁的萃取剂活化剂(Fe-FeOx@BC、Fe2O3@BC 和 Fe3O4@BC),以支持 PS 对苯并(a)芘(BaP,多环芳烃的模式化合物)污染土壤的氧化修复。结果表明,Fe3O4@BC支持PS氧化修复BaP污染土壤的效果在三种BC基活化剂中最好,且重复利用效果稳定。在Fe3O4@BC添加量为1.00 wt%、PS添加量为0.75 wt%、反应温度为35 ℃、固液比为1:2.5的条件下,土壤中BaP的去除率在120 min时达到最大值93.84%,修复后土壤毒性明显降低。Fe3O4@BC表面的缺陷结构、导电磁性颗粒和活性官能团是激活PS降解BaP的关键因素。在 ROS 引起的自由基途径和 1O2 引起的非自由基途径、电子传递和活性官能团的共同作用下,BaP 被降解为 CO2 和 H2O 等小分子物质,实现了对有机污染土壤的快速高效修复。
{"title":"Efficient oxidative remediation of polycyclic aromatic hydrocarbons (PAHs)-contaminated soil: A thorough comprehension of Fe-loaded biochar activated persulfate","authors":"Lei Wu ,&nbsp;Yuan Gao ,&nbsp;Siwen Qiu ,&nbsp;Zixuan Hu ,&nbsp;Changbo Liu ,&nbsp;Changsheng Yue ,&nbsp;Jun Zhou","doi":"10.1016/j.chemosphere.2024.143699","DOIUrl":"10.1016/j.chemosphere.2024.143699","url":null,"abstract":"<div><div>The porous and defective structure of biochar (BC) can accelerate surface electron transfer, promote the generation of more reactive oxygen species (ROS) by persulfate (PS), and effectively degrade organic pollutants in the soil. Electron transfer is a crucial link in this process, directly determining its oxidative degradation efficiency. In this study, using a novel strategy of enhancing electron transfer on the surface of BC by loading iron, three Fe-loaded BC activators (Fe-FeO<sub>x</sub>@BC, Fe<sub>2</sub>O<sub>3</sub>@BC and Fe<sub>3</sub>O<sub>4</sub>@BC) were synthesized to support the oxidative remediation of benzo(<em>a</em>)pyrene (BaP, Model compound of PAHs)-contaminated soil by PS. The results showed that Fe<sub>3</sub>O<sub>4</sub>@BC supported PS oxidation and remediation of BaP-contaminated soil had the best effect among the three BC-based activators, and the reuse effect was stable. Under the conditions of Fe<sub>3</sub>O<sub>4</sub>@BC addition of 1.00 wt%, PS addition of 0.75 wt%, reaction temperature of 35 °C, and solid-liquid ratio of 1:2.5, the removal rate of BaP in the soil reached the maximum of 93.84% at 120 min, and the soil toxicity was significantly reduced after remediation. The defect structure, conductive magnetic particles, and active functional groups on the surface of Fe<sub>3</sub>O<sub>4</sub>@BC were the key factors for activating PS to degrade BaP. With the combined action of the free radical pathway caused by ROS and the non-free radical pathway caused by <sup>1</sup>O<sub>2</sub>, electron transfer, and active functional groups, BaP was degraded to small molecules such as CO<sub>2</sub> and H<sub>2</sub>O, achieving rapid and efficient remediation of organic contaminated soil.</div></div>","PeriodicalId":276,"journal":{"name":"Chemosphere","volume":"368 ","pages":"Article 143699"},"PeriodicalIF":8.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142634483","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Chemosphere
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1