Pub Date : 2024-11-01DOI: 10.1016/j.chemosphere.2024.143714
Valentina Perc , Veno Kononenko , Nina Jeliazkova , Matej Hočevar , Slavko Kralj , Darko Makovec , Maja Caf , Damjana Drobne , Sara Novak
Microplastics is recognized as an emerging pollutant and adapting and harmonizing existing test methods is essential to advancing research. The aim of our work was to provide a case study on how to ensure quality and FAIR data in the assessment of microplastic hazards with the unicellular organism Tetrahymena thermophila (Protozoa, Ciliata). We selected high density polyethylene (HDPE) microplastics as a model material. In the study design we followed the quality criteria recommended for studies on particle effects, specifically emphasizing the reporting of experimental design and data. Our experimental work was based on ISO 4988 (2022) multigeneration tests with T. thermophila that was upgraded with additional cytotoxicity tests (protocols have been made available on Zenodo). In addition, we used microscopy to inspect material-organism interaction. The results show that 24 h exposure of T. thermophila to HDPE microparticles did not induce changes in metabolic activity, viability, or proliferation up to exposure concentration 100 mg/L. Microscopy analyses confirmed ingestion of the test material but no adsorption of HDPE particles to the cell surfaces confirming that HDPE microplastics present a low hazard to T. thermophila. To maximize the impact of the generated data, we made all the produced data FAIR via the eNanoMapper repository.
{"title":"Cytotoxicity assessment of HDPE microplastic on Tetrahymena thermophila (Protozoa, Ciliate): Assuring quality and FAIR data","authors":"Valentina Perc , Veno Kononenko , Nina Jeliazkova , Matej Hočevar , Slavko Kralj , Darko Makovec , Maja Caf , Damjana Drobne , Sara Novak","doi":"10.1016/j.chemosphere.2024.143714","DOIUrl":"10.1016/j.chemosphere.2024.143714","url":null,"abstract":"<div><div>Microplastics is recognized as an emerging pollutant and adapting and harmonizing existing test methods is essential to advancing research. The aim of our work was to provide a case study on how to ensure quality and FAIR data in the assessment of microplastic hazards with the unicellular organism <em>Tetrahymena thermophila</em> (Protozoa, Ciliata). We selected high density polyethylene (HDPE) microplastics as a model material. In the study design we followed the quality criteria recommended for studies on particle effects, specifically emphasizing the reporting of experimental design and data. Our experimental work was based on ISO 4988 (2022) multigeneration tests with <em>T. thermophila</em> that was upgraded with additional cytotoxicity tests (protocols have been made available on Zenodo). In addition, we used microscopy to inspect material-organism interaction. The results show that 24 h exposure of <em>T. thermophila</em> to HDPE microparticles did not induce changes in metabolic activity, viability, or proliferation up to exposure concentration 100 mg/L. Microscopy analyses confirmed ingestion of the test material but no adsorption of HDPE particles to the cell surfaces confirming that HDPE microplastics present a low hazard to <em>T. thermophila</em>. To maximize the impact of the generated data, we made all the produced data FAIR via the eNanoMapper repository.</div></div>","PeriodicalId":276,"journal":{"name":"Chemosphere","volume":"368 ","pages":"Article 143714"},"PeriodicalIF":8.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142634467","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1016/j.chemosphere.2024.143780
Zhi-Lun Wu, Yu-Jen Shih, Dong-Ming Chao
High-strength wastewater containing elevated levels of chloride salt and N, N-dimethylformamide (DMF) solvent was collected from manufacturing of sunscreen cream (for UVA/UVB protection) at a cosmetic factory. In evaporation process, precipitates, formed due to the high chloride content (around 160 g/L), clog the pipeline, seriously reducing the treatment efficiency. This study aimed to develop a two-stage process integrating chemical precipitation and electrochemical oxidation to specifically remove the concentrated chloride salt and organic compounds (COD >100 g/L). Chloride ions were initially recovered as insoluble Friedel's salt using calcium hydroxide (Ca(OH)2) and sodium aluminate (NaAlO2) as the precipitants. The [Cl]/[Ca]/[Al] ratio and solution pH were optimized to obtain a pure crystallized phase of Ca2AlCl(OH)6•2H2O. Afterwards, the organic compound were treated by a Fered-Fenton with the addition of H2O2 and FeSO4 to degrade the remaining COD. The cost and energy consumption of this integrated processes were evaluated, compared to the conventional evaporation method.
一家化妆品工厂在生产防晒霜(用于 UVA/UVB 防护)时收集了高强度废水,其中含有大量氯盐和 N, N-二甲基甲酰胺 (DMF) 溶剂。在蒸发过程中,由于氯化物含量高(约 160 g L-1)而形成的沉淀物堵塞了管道,严重降低了处理效率。本研究旨在开发一种集化学沉淀和电化学氧化于一体的两阶段工艺,专门去除高浓度氯盐和有机化合物(COD > 100 g L-1)。以氢氧化钙 (Ca(OH)2) 和铝酸钠 (NaAlO2) 作为沉淀剂,氯离子最初以不溶性弗里德尔盐的形式被回收。通过优化[Cl]/[Ca]/[Al]比率和溶液 pH 值,获得了 Ca2AlCl(OH)6-2H2O 的纯结晶相。之后,有机化合物通过加入 H2O2 和 FeSO4 的铁-芬顿法进行处理,以降解剩余的 COD。与传统的蒸发法相比,对这种综合工艺的成本和能耗进行了评估。
{"title":"Treatment of cosmetic wastewater containing N, N-dimethylformamide and high concentration of chloride salt by chemical precipitation and electrochemical method","authors":"Zhi-Lun Wu, Yu-Jen Shih, Dong-Ming Chao","doi":"10.1016/j.chemosphere.2024.143780","DOIUrl":"10.1016/j.chemosphere.2024.143780","url":null,"abstract":"<div><div>High-strength wastewater containing elevated levels of chloride salt and N, N-dimethylformamide (DMF) solvent was collected from manufacturing of sunscreen cream (for UVA/UVB protection) at a cosmetic factory. In evaporation process, precipitates, formed due to the high chloride content (around 160 g/L), clog the pipeline, seriously reducing the treatment efficiency. This study aimed to develop a two-stage process integrating chemical precipitation and electrochemical oxidation to specifically remove the concentrated chloride salt and organic compounds (COD >100 g/L). Chloride ions were initially recovered as insoluble Friedel's salt using calcium hydroxide (Ca(OH)<sub>2</sub>) and sodium aluminate (NaAlO<sub>2</sub>) as the precipitants. The [Cl]/[Ca]/[Al] ratio and solution pH were optimized to obtain a pure crystallized phase of Ca<sub>2</sub>AlCl(OH)<sub>6</sub>•2H<sub>2</sub>O. Afterwards, the organic compound were treated by a Fered-Fenton with the addition of H<sub>2</sub>O<sub>2</sub> and FeSO<sub>4</sub> to degrade the remaining COD. The cost and energy consumption of this integrated processes were evaluated, compared to the conventional evaporation method.</div></div>","PeriodicalId":276,"journal":{"name":"Chemosphere","volume":"368 ","pages":"Article 143780"},"PeriodicalIF":8.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142690138","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1016/j.chemosphere.2024.143572
Suraj Venkat Pochampally , Emma Letourneau , Ismail Abdulraheem , Joshua Monk , Douglas Sims , Simona E. Hunyadi Murph , Erica J. Marti , Jaeyun Moon
Extensive research in recent years has explored the realm of porous carbon composites for various applications, including electrochemistry, structural materials, environmental remediation, and more. In particular, the fabrication of porous carbon composites using a metal-organic framework (MOF) and biochar (BC) for aqueous remediation is a fairly new avenue of research. In this study, a MOF-BC composite was synthesized with unmodified and chemically modified BCs using solvothermal synthesis. The composites were used as adsorbents to remediate heavy metals, such as lead (II) and chromium (VI), from aqueous environments. It was verified that the MOF was homogeneously deposited onto the BC's surface using various material characterization techniques. Lead and chromium adsorption studies revealed a high adsorption capacity with greater than 99% removal for lead and ∼65% for chromium, respectively. Impressively, for lead, the highest observed experimental adsorption capacity of the MOF-chemically modified BC composite was 535 mg/g, compared to 240 mg/g for pristine BC. Meanwhile, the adsorption capacity of the same MOF-BC composite for chromium ions was low at 18 mg/g, compared to 80 mg/g for the chemically modified BC. The MOF-BC had a rapid adsorption rate, achieving equilibrium at only 150 min of reaction time for lead ions. MOF-BCs have higher adsorption for cationic lead through physisorption and ion-exchange mechanisms, whereas, for anionic chromium, removal is dominated only by physisorption mechanisms. The outcomes and methodological developments attained in this study offer a novel and compelling approach for synthesizing MOF-BC composites for aqueous remediation applications.
近年来的大量研究探索了多孔碳复合材料的各种应用领域,包括电化学、结构材料、环境修复等。其中,利用金属有机框架(MOF)和生物炭(BC)制造多孔碳复合材料用于水体修复是一个相当新的研究方向。本研究采用溶热合成法合成了一种 MOF-BC 复合材料,其中包括未改性和化学改性的生物炭。该复合材料被用作吸附剂,以去除水环境中的铅(II)和铬(VI)等重金属。利用各种材料表征技术验证了 MOF 在 BC 表面的均匀沉积。铅和铬的吸附研究表明,MOF 具有很高的吸附能力,对铅和铬的去除率分别超过 99% 和 65%。令人印象深刻的是,对于铅,MOF-化学修饰 BC 复合材料的最高实验吸附容量为 535 mg/g,而原始 BC 为 240 mg/g。同时,同一种 MOF-BC 复合材料对铬离子的吸附容量较低,仅为 18 毫克/克,而化学修饰 BC 的吸附容量为 80 毫克/克。MOF-BC 的吸附速度很快,对铅离子的吸附仅在 150 分钟的反应时间内就达到了平衡。MOF-BC 通过物理吸附和离子交换机制对阳离子铅具有较高的吸附能力,而对阴离子铬的去除仅以物理吸附机制为主。本研究的成果和方法论的发展为合成 MOF-BC 复合材料用于水体修复应用提供了一种新颖而有吸引力的方法。
{"title":"Metal-organic-framework and walnut shell biochar composites for lead and hexavalent chromium removal from aqueous environments","authors":"Suraj Venkat Pochampally , Emma Letourneau , Ismail Abdulraheem , Joshua Monk , Douglas Sims , Simona E. Hunyadi Murph , Erica J. Marti , Jaeyun Moon","doi":"10.1016/j.chemosphere.2024.143572","DOIUrl":"10.1016/j.chemosphere.2024.143572","url":null,"abstract":"<div><div>Extensive research in recent years has explored the realm of porous carbon composites for various applications, including electrochemistry, structural materials, environmental remediation, and more. In particular, the fabrication of porous carbon composites using a metal-organic framework (MOF) and biochar (BC) for aqueous remediation is a fairly new avenue of research. In this study, a MOF-BC composite was synthesized with unmodified and chemically modified BCs using solvothermal synthesis. The composites were used as adsorbents to remediate heavy metals, such as lead (II) and chromium (VI), from aqueous environments. It was verified that the MOF was homogeneously deposited onto the BC's surface using various material characterization techniques. Lead and chromium adsorption studies revealed a high adsorption capacity with greater than 99% removal for lead and ∼65% for chromium, respectively. Impressively, for lead, the highest observed experimental adsorption capacity of the MOF-chemically modified BC composite was 535 mg/g, compared to 240 mg/g for pristine BC. Meanwhile, the adsorption capacity of the same MOF-BC composite for chromium ions was low at 18 mg/g, compared to 80 mg/g for the chemically modified BC. The MOF-BC had a rapid adsorption rate, achieving equilibrium at only 150 min of reaction time for lead ions. MOF-BCs have higher adsorption for cationic lead through physisorption and ion-exchange mechanisms, whereas, for anionic chromium, removal is dominated only by physisorption mechanisms. The outcomes and methodological developments attained in this study offer a novel and compelling approach for synthesizing MOF-BC composites for aqueous remediation applications.</div></div>","PeriodicalId":276,"journal":{"name":"Chemosphere","volume":"367 ","pages":"Article 143572"},"PeriodicalIF":8.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142483104","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1016/j.chemosphere.2024.143612
Hugo Moro , Raquel Vaya , Marta Casado , Benjamín Piña , Pol Domínguez-García , Cristian Gómez-Canela , Carlos Barata
A cost-effective Daphnia magna testing framework was applied to identify emerging hazards such as neurological and cardiovascular defects as well as antibiotic resistant genes (ARGs), related to pharmaceuticals present in waste water treated (WWTP) effluent discharged into rivers. D. magna juveniles were exposed during 48 h to water samples from three rivers in the vicinity of Barcelona (NE Spain), Besós, Llobregat and Onyar, upstream and downstream of WWTP discharging points. The analyses included measuring levels of 80 pharmaceutical residues in water samples by HPLC-MS, determination of the loads of different clinically relevant antibiotic resistant genes (ARGs) in both water samples and exposed animals, and assessment of toxic effects in feeding, heartbeat responses, and behavioural indicators. ARG prevalence in water, but not in gut microbiomes, was associated with the presence of bactericides in water. These results suggest that their levels were high enough to put a selective pressure over river microbial populations, but that Daphnia guts were not easily populated by environmental bacteria. Toxic effects were found in 20–43% of water samples, depending on the river, and related to water quality parameters and to pollutant levels. For example, heartbeats were correlated with salinity, whereas feeding impairment did so with high loads of suspended solids. In contrast, behavioural alterations were associated to the concentration of neuroactive chemicals. Accordingly, we hypothesize that measured neuroactive chemicals have caused the observed effects. If this also applies to local invertebrate populations, the environmental consequences may be severe and unpredictable.
{"title":"Biomonitoring emerging hazards of pharmaceuticals in river water using gut microbiome and behavioural Daphnia magna responses","authors":"Hugo Moro , Raquel Vaya , Marta Casado , Benjamín Piña , Pol Domínguez-García , Cristian Gómez-Canela , Carlos Barata","doi":"10.1016/j.chemosphere.2024.143612","DOIUrl":"10.1016/j.chemosphere.2024.143612","url":null,"abstract":"<div><div>A cost-effective <em>Daphnia magna</em> testing framework was applied to identify emerging hazards such as neurological and cardiovascular defects as well as antibiotic resistant genes (ARGs), related to pharmaceuticals present in waste water treated (WWTP) effluent discharged into rivers. <em>D. magna</em> juveniles were exposed during 48 h to water samples from three rivers in the vicinity of Barcelona (NE Spain), Besós, Llobregat and Onyar, upstream and downstream of WWTP discharging points. The analyses included measuring levels of 80 pharmaceutical residues in water samples by HPLC-MS, determination of the loads of different clinically relevant antibiotic resistant genes (ARGs) in both water samples and exposed animals, and assessment of toxic effects in feeding, heartbeat responses, and behavioural indicators. ARG prevalence in water, but not in gut microbiomes, was associated with the presence of bactericides in water. These results suggest that their levels were high enough to put a selective pressure over river microbial populations, but that <em>Daphnia</em> guts were not easily populated by environmental bacteria. Toxic effects were found in 20–43% of water samples, depending on the river, and related to water quality parameters and to pollutant levels. For example, heartbeats were correlated with salinity, whereas feeding impairment did so with high loads of suspended solids. In contrast, behavioural alterations were associated to the concentration of neuroactive chemicals. Accordingly, we hypothesize that measured neuroactive chemicals have caused the observed effects. If this also applies to local invertebrate populations, the environmental consequences may be severe and unpredictable.</div></div>","PeriodicalId":276,"journal":{"name":"Chemosphere","volume":"367 ","pages":"Article 143612"},"PeriodicalIF":8.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142514648","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1016/j.chemosphere.2024.143627
Yuqing Ma, Qiao Tao, Lei Huang, Qiangwei Wang
Chronic exposure to pesticides is believed to be associated with various human diseases, including cardiovascular diseases. However, the mechanisms by which pesticides lead to cardiovascular diseases remain unclear. In our study, we selected the following commonly used pesticides as typical examples: the herbicides glyphosate (GLY) and glufosinate ammonium (GLA); the insecticides imidacloprid (IMI) and thiamethoxam (THM); and the fungicides pyraclostrobin (PYR) and azoxystrobin (AZO). We employed H9c2 cells as a model to investigate the cytotoxic effects of these pesticides on myocardial cells at concentrations of 1, 10, 100, and 1000 mg/L. The results indicate that these pesticides can affect cell viability, alter the cell cycle, and significantly impact ATP content and mitochondrial complex levels, ultimately triggering oxidative stress responses in the cells. However, compared to herbicides GLY and GLA, insecticides IMI and THM, and fungicides PYR and AZO pesticides are more toxic to H9c2 cells. Additionally, GLY, GLA, IMI, THM, PYR, and AZO were found to cause structural changes in the mitochondria of H9c2 cells. Molecular docking results suggest that these pesticides can bind to proteins related to mitochondrial dynamics. Furthermore, IMI, THM, PYR, and AZO exhibit stronger binding abilities to mitochondrial dynamics-related proteins. These findings indicate that these pesticides significantly adverse effects on myocardial cells, mainly by causing mitochondrial dysfunction and inducing oxidative stress. Our findings highlight the importance of considering the differential toxicity of various classes of pesticides when assessing their risks to human health, particularly concerning cardiovascular diseases.
{"title":"Comparative cytotoxicity and mitochondrial disruption in H9c2 cardiomyocytes induced by common pesticides","authors":"Yuqing Ma, Qiao Tao, Lei Huang, Qiangwei Wang","doi":"10.1016/j.chemosphere.2024.143627","DOIUrl":"10.1016/j.chemosphere.2024.143627","url":null,"abstract":"<div><div>Chronic exposure to pesticides is believed to be associated with various human diseases, including cardiovascular diseases. However, the mechanisms by which pesticides lead to cardiovascular diseases remain unclear. In our study, we selected the following commonly used pesticides as typical examples: the herbicides glyphosate (GLY) and glufosinate ammonium (GLA); the insecticides imidacloprid (IMI) and thiamethoxam (THM); and the fungicides pyraclostrobin (PYR) and azoxystrobin (AZO). We employed H9c2 cells as a model to investigate the cytotoxic effects of these pesticides on myocardial cells at concentrations of 1, 10, 100, and 1000 mg/L. The results indicate that these pesticides can affect cell viability, alter the cell cycle, and significantly impact ATP content and mitochondrial complex levels, ultimately triggering oxidative stress responses in the cells. However, compared to herbicides GLY and GLA, insecticides IMI and THM, and fungicides PYR and AZO pesticides are more toxic to H9c2 cells. Additionally, GLY, GLA, IMI, THM, PYR, and AZO were found to cause structural changes in the mitochondria of H9c2 cells. Molecular docking results suggest that these pesticides can bind to proteins related to mitochondrial dynamics. Furthermore, IMI, THM, PYR, and AZO exhibit stronger binding abilities to mitochondrial dynamics-related proteins. These findings indicate that these pesticides significantly adverse effects on myocardial cells, mainly by causing mitochondrial dysfunction and inducing oxidative stress. Our findings highlight the importance of considering the differential toxicity of various classes of pesticides when assessing their risks to human health, particularly concerning cardiovascular diseases.</div></div>","PeriodicalId":276,"journal":{"name":"Chemosphere","volume":"367 ","pages":"Article 143627"},"PeriodicalIF":8.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142514660","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Trace element dynamics in the soil-plant system depends on multiple parameters, including chelating organic compounds from natural or synthetic organic matters. In this study, we evaluated the influence of one of the most common pesticides—glyphosate—on the mobility of trace elements considering contrasted soils (uncontaminated, anthropogenically contaminated, and naturally-enriched) in a greenhouse experiment. Four modalities have been tested: one control without any application, two with different glyphosate doses (1 and 3 times the authorised field dose), and one with compost addition to evaluate its potential ability to mitigate the impact of glyphosate on trace element mobility. Both, trace element and glyphosate concentrations were measured in the soil solutions and trace element contents were determined in plants at the end of the experiment. The results showed that, although glyphosate concentrations rapidly decreased in soil solutions, glyphosate application still influenced the transfer of trace elements to both soil solution (up to 12-times higher) and plant (up to 5.2-times higher). This influence was highly dependent on both the specific elements and the type of soils considered. For instance, in uncontaminated soils, glyphosate especially increased the mobilization of Mn, Co, Zn, Mo, and Pb to soil solution. This effect diminished of 2.5 times on average with increasing soil contamination. A similar trend was observed for the transfer of trace elements from soil to plant (i.e., on average 2.2-times lower in the most contaminated compared to the uncontaminated soil). However, in the naturally-enriched soil, opposing trends were noticed between soil solution and plant. The impact of compost addition on the transfer of trace elements to plants remains unclear: compost enhanced the transfer of trace elements to soil solution in uncontaminated and naturally-enriched soils likely due to trace element input through the compost, but decreased the transfer in anthropogenically-contaminated soils likely due to adsorption processes. Therefore, glyphosate could potentially increase the exposure of trace elements through food consumption and their transfer to the ecosystem, particularly in uncontaminated and weakly contaminated soils. In highly contaminated soils, compost could mitigate the glyphosate-induced enhancement of trace element mobility to soil solution.
{"title":"Glyphosate application may influence the transfer of trace elements from soils to both soil solutions and plants","authors":"Nathan Bemelmans, Rosalie Dejardin, Bryan Arbalestrie, Yannick Agnan","doi":"10.1016/j.chemosphere.2024.143603","DOIUrl":"10.1016/j.chemosphere.2024.143603","url":null,"abstract":"<div><div>Trace element dynamics in the soil-plant system depends on multiple parameters, including chelating organic compounds from natural or synthetic organic matters. In this study, we evaluated the influence of one of the most common pesticides—glyphosate—on the mobility of trace elements considering contrasted soils (uncontaminated, anthropogenically contaminated, and naturally-enriched) in a greenhouse experiment. Four modalities have been tested: one control without any application, two with different glyphosate doses (1 and 3 times the authorised field dose), and one with compost addition to evaluate its potential ability to mitigate the impact of glyphosate on trace element mobility. Both, trace element and glyphosate concentrations were measured in the soil solutions and trace element contents were determined in plants at the end of the experiment. The results showed that, although glyphosate concentrations rapidly decreased in soil solutions, glyphosate application still influenced the transfer of trace elements to both soil solution (up to 12-times higher) and plant (up to 5.2-times higher). This influence was highly dependent on both the specific elements and the type of soils considered. For instance, in uncontaminated soils, glyphosate especially increased the mobilization of Mn, Co, Zn, Mo, and Pb to soil solution. This effect diminished of 2.5 times on average with increasing soil contamination. A similar trend was observed for the transfer of trace elements from soil to plant (i.e., on average 2.2-times lower in the most contaminated compared to the uncontaminated soil). However, in the naturally-enriched soil, opposing trends were noticed between soil solution and plant. The impact of compost addition on the transfer of trace elements to plants remains unclear: compost enhanced the transfer of trace elements to soil solution in uncontaminated and naturally-enriched soils likely due to trace element input through the compost, but decreased the transfer in anthropogenically-contaminated soils likely due to adsorption processes. Therefore, glyphosate could potentially increase the exposure of trace elements through food consumption and their transfer to the ecosystem, particularly in uncontaminated and weakly contaminated soils. In highly contaminated soils, compost could mitigate the glyphosate-induced enhancement of trace element mobility to soil solution.</div></div>","PeriodicalId":276,"journal":{"name":"Chemosphere","volume":"367 ","pages":"Article 143603"},"PeriodicalIF":8.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142514667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1016/j.chemosphere.2024.143653
Zhenjun Liu , Yunhui Li , Dayong Wang
In Caenorhabditis elegans, 6-PPD quinine (6-PPDQ) could cause several aspects of toxicity together with alteration in glucose metabolism. However, transgenerational alteration in glucose metabolism remains still unknown after 6-PPDQ exposure. In the current study, we further observed transgenerational increase in glucose content induced by 6-PPDQ (1–10 μg/L). After 1–10 μg/L 6-PPDQ exposure, although expressions of genes controlling gluconeogenesis were not changed in the offspring, expressions of hxk-1, hxk-3, pyk-1, and pyk-2 controlling glycolysis could be decreased in the offspring. Meanwhile, transgenerational decrease in expressions of daf-16 encoding FOXO transcriptional factor and aak-2 encoding AMPK was detected in the offspring of 6-PPDQ (1–10 μg/L) exposed nematodes. RNAi of daf-16 and aak-2 led to more severe transgenerational increase in glucose content and reduction in expressions of hxk-1 and hxk-3 induced by 6-PPDQ. Moreover, RNAi of daf-16, aak-2, hxk-1, hxk-3, pyk-1, and pyk-2 caused susceptibility to transgenerational 6-PPDQ toxicity on locomotion and reproduction. Additionally, 6-PPDQ induced activation of SOD-3 and HSP-6 reflecting anti-oxidation and mitochondrial UPR responses could be inhibited by RNAi of daf-16, aak-2, hxk-1, hxk-3, pyk-1, and pyk-2. Therefore, exposure to 6-PPDQ potentially resulted in transgenerational alteration in glucose metabolism, which provided the possible link to induction of transgenerational 6-PPDQ toxicity in organisms.
{"title":"Transgenerational response of glucose metabolism in Caenorhabditis elegans exposed to 6-PPD quinone","authors":"Zhenjun Liu , Yunhui Li , Dayong Wang","doi":"10.1016/j.chemosphere.2024.143653","DOIUrl":"10.1016/j.chemosphere.2024.143653","url":null,"abstract":"<div><div>In <em>Caenorhabditis elegans</em>, 6-PPD quinine (6-PPDQ) could cause several aspects of toxicity together with alteration in glucose metabolism. However, transgenerational alteration in glucose metabolism remains still unknown after 6-PPDQ exposure. In the current study, we further observed transgenerational increase in glucose content induced by 6-PPDQ (1–10 μg/L). After 1–10 μg/L 6-PPDQ exposure, although expressions of genes controlling gluconeogenesis were not changed in the offspring, expressions of <em>hxk-1</em>, <em>hxk-3</em>, <em>pyk-1</em>, and <em>pyk-2</em> controlling glycolysis could be decreased in the offspring. Meanwhile, transgenerational decrease in expressions of <em>daf-16</em> encoding FOXO transcriptional factor and <em>aak-2</em> encoding AMPK was detected in the offspring of 6-PPDQ (1–10 μg/L) exposed nematodes. RNAi of <em>daf-16</em> and <em>aak-2</em> led to more severe transgenerational increase in glucose content and reduction in expressions of <em>hxk-1</em> and <em>hxk-3</em> induced by 6-PPDQ. Moreover, RNAi of <em>daf-16</em>, <em>aak-2</em>, <em>hxk-1</em>, <em>hxk-3</em>, <em>pyk-1</em>, and <em>pyk-2</em> caused susceptibility to transgenerational 6-PPDQ toxicity on locomotion and reproduction. Additionally, 6-PPDQ induced activation of SOD-3 and HSP-6 reflecting anti-oxidation and mitochondrial UPR responses could be inhibited by RNAi of <em>daf-16</em>, <em>aak-2</em>, <em>hxk-1</em>, <em>hxk-3</em>, <em>pyk-1</em>, and <em>pyk-2</em>. Therefore, exposure to 6-PPDQ potentially resulted in transgenerational alteration in glucose metabolism, which provided the possible link to induction of transgenerational 6-PPDQ toxicity in organisms.</div></div>","PeriodicalId":276,"journal":{"name":"Chemosphere","volume":"367 ","pages":"Article 143653"},"PeriodicalIF":8.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142565340","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1016/j.chemosphere.2024.143669
Dajeong Ham , Hyun-Joo Bae , Soontae Kim , Hyungryul Lim , Jonghyuk Choi , Ho-Jang Kwon , Sanghyuk Bae
Air pollution, particularly fine particulate matter less than 2.5 μm in diameter (PM2.5), contributes to respiratory and cardiovascular diseases and poses significant public health risks worldwide. This study evaluated the short-term effects of PM2.5 on hospital admissions for cardiovascular and respiratory diseases, with additional analyses to identify vulnerable populations based on regional characteristics.
The present study analyzed data from 249 Korean communities between 2006 and 2021. Data on daily hospital admissions for cardiovascular and respiratory diseases were obtained from the National Health Insurance Service. Data on PM2.5 concentrations were sourced from air quality modeling. Additional data on regional characteristics, including the regional deprivation index, proportion of elderly residents, education levels, and greenness levels, were also collected. We used case time series analysis to assess the associations between PM2.5 concentrations and hospital admissions for cardiovascular and respiratory diseases and explored effect modification by regional characteristics with stratified analyses.
The mean numbers of daily cardiovascular admissions and respiratory admissions were 5.68 ± 5.46 and 6.46 ± 8.03, respectively. The mean PM2.5 concentrations were 23.58 ± 13.66 μg/m3. A10 μg/m³ increment in daily PM2.5 concentration was associated with increase of cardiovascular and respiratory hospitalization by 0.94% (95% CI: 0.84%, 1.04%) and 1.43% (95% CI: 1.34%, 1.52%), respectively. Regional characteristics analysis showed significant disparities, with higher risks for hospital admissions in areas with lower deprivation and low greenness.
This study highlights the significant short-term health impacts of PM2.5 on respiratory and cardiovascular hospital admissions in Korean communities. The findings underscore the critical role of regional and demographic factors in modulating these effects, identifying socio-economic areas, age structure of the population, lower education levels, and low greenness as key vulnerability factors.
{"title":"Spatial associations of daily PM2.5 concentration with cardiovascular and pulmonary morbidity in Korea","authors":"Dajeong Ham , Hyun-Joo Bae , Soontae Kim , Hyungryul Lim , Jonghyuk Choi , Ho-Jang Kwon , Sanghyuk Bae","doi":"10.1016/j.chemosphere.2024.143669","DOIUrl":"10.1016/j.chemosphere.2024.143669","url":null,"abstract":"<div><div>Air pollution, particularly fine particulate matter less than 2.5 μm in diameter (PM<sub>2.5</sub>), contributes to respiratory and cardiovascular diseases and poses significant public health risks worldwide. This study evaluated the short-term effects of PM<sub>2.5</sub> on hospital admissions for cardiovascular and respiratory diseases, with additional analyses to identify vulnerable populations based on regional characteristics.</div><div>The present study analyzed data from 249 Korean communities between 2006 and 2021. Data on daily hospital admissions for cardiovascular and respiratory diseases were obtained from the National Health Insurance Service. Data on PM<sub>2.5</sub> concentrations were sourced from air quality modeling. Additional data on regional characteristics, including the regional deprivation index, proportion of elderly residents, education levels, and greenness levels, were also collected. We used case time series analysis to assess the associations between PM<sub>2.5</sub> concentrations and hospital admissions for cardiovascular and respiratory diseases and explored effect modification by regional characteristics with stratified analyses.</div><div>The mean numbers of daily cardiovascular admissions and respiratory admissions were 5.68 ± 5.46 and 6.46 ± 8.03, respectively. The mean PM<sub>2.5</sub> concentrations were 23.58 ± 13.66 μg/m<sup>3</sup>. A10 μg/m³ increment in daily PM<sub>2.5</sub> concentration was associated with increase of cardiovascular and respiratory hospitalization by 0.94% (95% CI: 0.84%, 1.04%) and 1.43% (95% CI: 1.34%, 1.52%), respectively. Regional characteristics analysis showed significant disparities, with higher risks for hospital admissions in areas with lower deprivation and low greenness.</div><div>This study highlights the significant short-term health impacts of PM<sub>2.5</sub> on respiratory and cardiovascular hospital admissions in Korean communities. The findings underscore the critical role of regional and demographic factors in modulating these effects, identifying socio-economic areas, age structure of the population, lower education levels, and low greenness as key vulnerability factors.</div></div>","PeriodicalId":276,"journal":{"name":"Chemosphere","volume":"367 ","pages":"Article 143669"},"PeriodicalIF":8.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142590775","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rivers are critical ecosystems that support biodiversity and local livelihoods. This study aimed to evaluate the effects of metal contamination and anthropogenic activities on microbial and phage community dynamics within major Indian river ecosystems, focusing on the Ganga, Narmada, Cauvery, and Gomti rivers -using metagenomic techniques, Biolog, and ICP-MS analysis. Significant variations in microbial communities were observed both within each river and across the four systems, influenced by ecological factors like geography and hydrology, as well as anthropogenic pressures. Downstream sites consistently exhibited higher microbial diversity, with prevalence of Acidobacteria, Actinobacteria, Verrucomicrobia, Firmicutes, and Nitrospirae dominating, while Proteobacteria and Bacteroides declined. The Ganga River showed a higher abundance of bacteriophages compared to other rivers, which gradually reduced with the increment of anthropogenic impact. Functional gene analysis revealed correlations between carbon utilization and metal resistance in contaminated sites. ICP-MS analysis indicates elevated chromium and lead levels in downstream sites of all rivers compared to upstream sites. Interestingly, pristine upstream sites in the Ganga had higher trace element levels than those in Narmada and Cauvery, likely due to its Himalayan origin. Both the Ganga and Cauvery rivers contained numerous metal resistance genes. The Alaknanda was identified as the primary source of microbial communities, bacteriophages, trace elements, and heavy metals in the Ganga. These findings offer new insights into anthropogenic influences on river microbial dynamics and highlight the need for targeted monitoring and management strategies to preserve river health.
{"title":"Microbiome divergence across four major Indian riverine water ecosystems impacted by anthropogenic contamination: A comparative metagenomic analysis","authors":"Raj Kumar Regar , Mohan Kamthan , Vivek Kumar Gaur , Satyendra Pratap Singh , Seema Mishra , Sanjay Dwivedi , Aradhana Mishra , Natesan Manickam , Chandra Shekhar Nautiyal","doi":"10.1016/j.chemosphere.2024.143672","DOIUrl":"10.1016/j.chemosphere.2024.143672","url":null,"abstract":"<div><div>Rivers are critical ecosystems that support biodiversity and local livelihoods. This study aimed to evaluate the effects of metal contamination and anthropogenic activities on microbial and phage community dynamics within major Indian river ecosystems, focusing on the Ganga, Narmada, Cauvery, and Gomti rivers -using metagenomic techniques, Biolog, and ICP-MS analysis. Significant variations in microbial communities were observed both within each river and across the four systems, influenced by ecological factors like geography and hydrology, as well as anthropogenic pressures. Downstream sites consistently exhibited higher microbial diversity, with prevalence of <em>Acidobacteria, Actinobacteria, Verrucomicrobia, Firmicutes</em>, and <em>Nitrospirae</em> dominating, while <em>Proteobacteria</em> and <em>Bacteroides</em> declined. The Ganga River showed a higher abundance of bacteriophages compared to other rivers, which gradually reduced with the increment of anthropogenic impact. Functional gene analysis revealed correlations between carbon utilization and metal resistance in contaminated sites. ICP-MS analysis indicates elevated chromium and lead levels in downstream sites of all rivers compared to upstream sites. Interestingly, pristine upstream sites in the Ganga had higher trace element levels than those in Narmada and Cauvery, likely due to its Himalayan origin. Both the Ganga and Cauvery rivers contained numerous metal resistance genes. The Alaknanda was identified as the primary source of microbial communities, bacteriophages, trace elements, and heavy metals in the Ganga. These findings offer new insights into anthropogenic influences on river microbial dynamics and highlight the need for targeted monitoring and management strategies to preserve river health.</div></div>","PeriodicalId":276,"journal":{"name":"Chemosphere","volume":"368 ","pages":"Article 143672"},"PeriodicalIF":8.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142585239","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study investigates the effect of aging of polyethylene (PE) microplastics (MP) on its interaction with organic compounds (OCs). Initially, pristine PE MPs were subjected to UV-aging, followed by characterization of their chemical structure and thermal properties. UV-aging resulted in formation of new functional groups such as carbonyl (CO), –OH, and unsaturation, along with changes in crystallinity and melting temperature. Complimentary sorption experiments were conducted with a suite of environmentally significant and structurally related OCs i.e., phenol, 2,3,6-trichlorophenol, triclosan, 1,1,2,2-tetrachloroethane, tetrachloroethylene and hexachloroethane, using pristine and UV-aged PE MPs. In addition to the distribution coefficients (i.e., KPEW) obtained experimentally, relevant data from the literature was also gathered for the purpose of developing a poly-parametric linear free energy relationship (pp-LFER) model. Two models were developed for predicting sorption onto: (i) only UV-aged PE, yielding an R2 = 0.96, RMSE = 0.19 (n = 16), (ii) PE that has undergone various types of aging, yielding an R2 = 0.83, RMSE = 0.68 (n = 36). Lastly, a direct comparison was performed between two pp-LFERs developed for the interaction of the same OCs with pristine vs. aged PE (n = 7). In addition to the predictive strength, the system coefficients enabled mechanistic inferences to be made; such that while molecular volume or non-specific hydrophobic interactions govern OC-pristine PE interactions, polar interactions and H-bonding also play important roles for OC-aged PE interactions. Overall, findings suggested that changes of MP surfaces under environmentally relevant aging conditions indicated an impact on their interactions with OCs in the environment.
本研究探讨了聚乙烯(PE)微塑料(MP)老化对其与有机化合物(OC)相互作用的影响。首先对原始聚乙烯微塑料进行紫外线老化,然后对其化学结构和热性能进行表征。紫外线老化会形成新的官能团,如羰基(C=O)、-OH 和不饱和,同时结晶度和熔化温度也会发生变化。使用原始和紫外线老化聚乙烯多孔材料,对一系列对环境有重要影响且结构相关的 OC(即苯酚、2,3,6-三氯苯酚、三氯生、1,1,2,2-四氯乙烷、四氯乙烯和六氯乙烷)进行了辅助吸附实验。除了通过实验获得的分布系数(即 KPEW)外,还收集了文献中的相关数据,以建立多参数线性自由能关系(pp-LFER)模型。建立了两个模型来预测聚乙烯的吸附情况:(i) 仅紫外线老化的聚乙烯,R2=0.96,RMSE=0.19(n=16);(ii) 经过各种老化的聚乙烯,R2=0.83,RMSE=0.68(n=36)。最后,直接比较了针对相同 OC 与原始 PE 和老化 PE 的相互作用而开发的两个 pp-LFER (n=7)。除了预测强度外,系统系数还能进行机理推断;例如,虽然分子体积或非特异性疏水相互作用控制着 OC 与原始 PE 的相互作用,但极性相互作用和 H 键也在 OC 与老化 PE 的相互作用中发挥着重要作用。总之,研究结果表明,在与环境相关的老化条件下,聚乙烯表面的变化会对其与环境中的 OC 的相互作用产生影响。
{"title":"Mechanistic inferences from empirical and LSER modeling approaches concerning sorption of organic compounds by pristine and aged PE microplastics","authors":"Elif Yaren Özen , Melek Canbulat Özdemir , Makbule Dilara Hatinoğlu , Onur Güven Apul , İpek İmamoğlu","doi":"10.1016/j.chemosphere.2024.143695","DOIUrl":"10.1016/j.chemosphere.2024.143695","url":null,"abstract":"<div><div>This study investigates the effect of aging of polyethylene (PE) microplastics (MP) on its interaction with organic compounds (OCs). Initially, pristine PE MPs were subjected to UV-aging, followed by characterization of their chemical structure and thermal properties. UV-aging resulted in formation of new functional groups such as carbonyl (C<img>O), –OH, and unsaturation, along with changes in crystallinity and melting temperature. Complimentary sorption experiments were conducted with a suite of environmentally significant and structurally related OCs <em>i.e.</em>, phenol, 2,3,6-trichlorophenol, triclosan, 1,1,2,2-tetrachloroethane, tetrachloroethylene and hexachloroethane, using pristine and UV-aged PE MPs. In addition to the distribution coefficients (<em>i.e.</em>, K<sub>PEW</sub>) obtained experimentally, relevant data from the literature was also gathered for the purpose of developing a poly-parametric linear free energy relationship (pp-LFER) model. Two models were developed for predicting sorption onto: (i) only UV-aged PE, yielding an R<sup>2</sup> = 0.96, RMSE = 0.19 (n = 16), (ii) PE that has undergone various types of aging, yielding an R<sup>2</sup> = 0.83, RMSE = 0.68 (n = 36). Lastly, a direct comparison was performed between two pp-LFERs developed for the interaction of the same OCs with pristine <em>vs.</em> aged PE (n = 7). In addition to the predictive strength, the system coefficients enabled mechanistic inferences to be made; such that while molecular volume or non-specific hydrophobic interactions govern OC-pristine PE interactions, polar interactions and H-bonding also play important roles for OC-aged PE interactions. Overall, findings suggested that changes of MP surfaces under environmentally relevant aging conditions indicated an impact on their interactions with OCs in the environment.</div></div>","PeriodicalId":276,"journal":{"name":"Chemosphere","volume":"368 ","pages":"Article 143695"},"PeriodicalIF":8.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142607760","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}