首页 > 最新文献

Chemosphere最新文献

英文 中文
A convenient reduction method for the detection of low concentration free available chlorine——utilizing sodium sulfite as a quencher 一种检测低浓度游离可得氯的简便还原法--利用亚硫酸钠作为淬灭剂。
IF 8.1 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Pub Date : 2024-11-01 DOI: 10.1016/j.chemosphere.2024.143631
Meiyao Han , Shiyue Huang , Xiaoxiao Zhang , Ke Zhang
Chlorine, serving as the mainstream disinfectant, can react with dissolved organic matter (DOM) to form undeserved disinfection by-products (DBPs). Free available chlorine (FAC) concentration is crucial to ensure effective disinfection while minimizing the formation of toxic DBPs. In this study, we propose a convenient method using sodium sulfite (Na2SO3) to reduce oxidized chlorine in FAC. The molar concentration of reduced chloride ion (Cl) was quantified directly by ion chromatography to reflect FAC concentration. Compared with common FAC detection techniques including DPD colorimetry, iodometry, and UV methods, this novel reduction method exhibits a lower detection limit and is more resistant to interference. Common water matrices, such as DOM and anions did not affect the method accuracy (< 3.6%). Furthermore, carbonaceous DBPs (C-DBPs) like regulated trihalomethanes and halogenacetic acids, unregulated aromatic chlorophenols, did not interfere with the determination of FAC by using this reduction method. This lack of interference can be attributed to the low redox potential of Na2SO3, which does not readily react with these C-DBPs. However, nitrogenated DBPs (N-DBPs) like dichloroacetonitrile displayed slight interference (the effect of common dichloroacetonitrile concentration in water on FAC was less than 0.0007 μM). This suggests that this method is well-suited for determining FAC in chlorination processes where the C-DBPs predominated. Overall, the reduction method enables precise determination of FAC and proves valuable in assessing residual chlorine levels in both laboratory and real disinfected water samples dominated by C-DBPs.
作为主流消毒剂的氯会与溶解有机物 (DOM) 发生反应,形成不应有的消毒副产物 (DBP)。游离可得氯(FAC)的浓度对于确保有效消毒,同时最大限度地减少有毒 DBPs 的形成至关重要。在这项研究中,我们提出了一种使用亚硫酸钠(Na2SO3)还原游离可得氯中氧化氯的简便方法。还原氯离子(Cl-)的摩尔浓度通过离子色谱法直接定量,以反映 FAC 的浓度。与常见的 FAC 检测技术(包括 DPD 比色法、碘测定法和紫外法)相比,这种新型还原法的检测限更低,抗干扰能力更强。常见的水基质(如 DOM 和阴离子)不会影响该方法的准确性(< 3.6%)。此外,采用这种还原法测定碳质 DBP(C-DBP),如受管制的三卤甲烷和卤乙酸、未受管制的芳香族氯酚,也不会对 FAC 的测定产生干扰。这种不干扰可归因于 Na2SO3 的氧化还原电位较低,不易与这些 C-DBPs 发生反应。然而,二氯乙腈等氮化 DBPs(N-DBPs)则显示出轻微的干扰(水中普通二氯乙腈浓度对 FAC 的影响小于 0.0007 μM)。这表明该方法非常适合在氯化过程中测定以 C-DBPs 为主的 FAC。总之,还原法可以精确测定 FAC,对于评估实验室和以 C-DBPs 为主的实际消毒水样中的余氯水平都很有价值。
{"title":"A convenient reduction method for the detection of low concentration free available chlorine——utilizing sodium sulfite as a quencher","authors":"Meiyao Han ,&nbsp;Shiyue Huang ,&nbsp;Xiaoxiao Zhang ,&nbsp;Ke Zhang","doi":"10.1016/j.chemosphere.2024.143631","DOIUrl":"10.1016/j.chemosphere.2024.143631","url":null,"abstract":"<div><div>Chlorine, serving as the mainstream disinfectant, can react with dissolved organic matter (DOM) to form undeserved disinfection by-products (DBPs). Free available chlorine (FAC) concentration is crucial to ensure effective disinfection while minimizing the formation of toxic DBPs. In this study, we propose a convenient method using sodium sulfite (Na<sub>2</sub>SO<sub>3</sub>) to reduce oxidized chlorine in FAC. The molar concentration of reduced chloride ion (Cl<sup>−</sup>) was quantified directly by ion chromatography to reflect FAC concentration. Compared with common FAC detection techniques including DPD colorimetry, iodometry, and UV methods, this novel reduction method exhibits a lower detection limit and is more resistant to interference. Common water matrices, such as DOM and anions did not affect the method accuracy (&lt; 3.6%). Furthermore, carbonaceous DBPs (C-DBPs) like regulated trihalomethanes and halogenacetic acids, unregulated aromatic chlorophenols, did not interfere with the determination of FAC by using this reduction method. This lack of interference can be attributed to the low redox potential of Na<sub>2</sub>SO<sub>3</sub>, which does not readily react with these C-DBPs. However, nitrogenated DBPs (N-DBPs) like dichloroacetonitrile displayed slight interference (the effect of common dichloroacetonitrile concentration in water on FAC was less than 0.0007 μM). This suggests that this method is well-suited for determining FAC in chlorination processes where the C-DBPs predominated. Overall, the reduction method enables precise determination of FAC and proves valuable in assessing residual chlorine levels in both laboratory and real disinfected water samples dominated by C-DBPs.</div></div>","PeriodicalId":276,"journal":{"name":"Chemosphere","volume":"367 ","pages":"Article 143631"},"PeriodicalIF":8.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142514643","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Parabens, triclosan, and triclocarban in aquatic products from Shenzhen, China and the relative health risk 中国深圳水产品中的对羟基苯甲酸酯、三氯生和三氯卡班及其相对健康风险。
IF 8.1 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Pub Date : 2024-11-01 DOI: 10.1016/j.chemosphere.2024.143652
Qinru Xiao , Xiaoqiong Xu , Leyi Chen , Bingyi Fu , Jiajun Cao , Jiayi Liu , Han Zhang , Shaoyou Lu
The consumption of contaminated aquatic products may expose humans to residues of parabens, triclosan (TCS), and triclocarban (TCC). Despite its significance, empirical research on this issue remains limited. In this study, we employed high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) to analyze extracts from 245 aquatic product samples collected randomly from local markets in Shenzhen, Guangdong Province. Our analysis detected at least one of the five parabens—methyl 4-hydroxybenzoate (MeP), ethyl 4-hydroxybenzoate (EtP), propyl 4-hydroxybenzoate (PrP), butyl 4-hydroxybenzoate (BuP), and benzyl 4-hydroxybenzoate (BeP)—in 88 samples (35.9%). TCS and TCC were found in 50.6% and 51.4% of the samples, respectively, with MeP being the most frequently detected paraben. Significant negative correlations were observed between TCS and MeP (r = −0.129, p < 0.05) and between TCC and MeP (r = −0.176, p < 0.05), indicating potential different sources for these contaminants. Residue levels varied among different types of aquatic products, with TCS and TCC concentrations being higher in fish compared to crustaceans and bivalves. The health risk associated with consuming these contaminants was found to be minimal for both males and females. This study provides valuable insights into the dietary risks associated with exposure to parabens, TCS, and TCC.
食用受污染的水产品可能会使人类接触到对羟基苯甲酸酯、三氯生(TCS)和三氯卡班(TCC)的残留物。尽管其意义重大,但有关这一问题的实证研究仍然有限。在这项研究中,我们采用高效液相色谱-串联质谱法(HPLC-MS/MS)分析了从广东省深圳市当地市场随机采集的 245 份水产品样品的提取物。我们的分析在 88 个样品(35.9%)中检测到至少一种对羟基苯甲酸酯--4-羟基苯甲酸甲酯(MeP)、4-羟基苯甲酸乙酯(EtP)、4-羟基苯甲酸丙酯(PrP)、4-羟基苯甲酸丁酯(BuP)和 4-羟基苯甲酸苄酯(BeP)。在 50.6% 和 51.4% 的样品中分别发现了对羟基苯甲酸三辛酯和对羟基苯甲酸三CC,其中 MeP 是最常检测到的对羟基苯甲酸酯。TCS 和 MeP 之间(r = -0.129,p < 0.05)以及 TCC 和 MeP 之间(r = -0.176,p < 0.05)呈显著负相关,表明这些污染物的潜在来源不同。不同类型水产品的残留水平各不相同,与甲壳类动物和双壳类动物相比,鱼类体内的三氯碳氢化合物和三氯苯甲醚浓度较高。研究发现,摄入这些污染物对男性和女性造成的健康风险都很小。这项研究为了解与接触对羟基苯甲酸酯、三氯碳氢化合物和三氯苯甲醚有关的膳食风险提供了宝贵的见解。
{"title":"Parabens, triclosan, and triclocarban in aquatic products from Shenzhen, China and the relative health risk","authors":"Qinru Xiao ,&nbsp;Xiaoqiong Xu ,&nbsp;Leyi Chen ,&nbsp;Bingyi Fu ,&nbsp;Jiajun Cao ,&nbsp;Jiayi Liu ,&nbsp;Han Zhang ,&nbsp;Shaoyou Lu","doi":"10.1016/j.chemosphere.2024.143652","DOIUrl":"10.1016/j.chemosphere.2024.143652","url":null,"abstract":"<div><div>The consumption of contaminated aquatic products may expose humans to residues of parabens, triclosan (TCS), and triclocarban (TCC). Despite its significance, empirical research on this issue remains limited. In this study, we employed high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) to analyze extracts from 245 aquatic product samples collected randomly from local markets in Shenzhen, Guangdong Province. Our analysis detected at least one of the five parabens—methyl 4-hydroxybenzoate (MeP), ethyl 4-hydroxybenzoate (EtP), propyl 4-hydroxybenzoate (PrP), butyl 4-hydroxybenzoate (BuP), and benzyl 4-hydroxybenzoate (BeP)—in 88 samples (35.9%). TCS and TCC were found in 50.6% and 51.4% of the samples, respectively, with MeP being the most frequently detected paraben. Significant negative correlations were observed between TCS and MeP (<em>r</em> = −0.129, <em>p</em> &lt; 0.05) and between TCC and MeP (<em>r</em> = −0.176, <em>p</em> &lt; 0.05), indicating potential different sources for these contaminants. Residue levels varied among different types of aquatic products, with TCS and TCC concentrations being higher in fish compared to crustaceans and bivalves. The health risk associated with consuming these contaminants was found to be minimal for both males and females. This study provides valuable insights into the dietary risks associated with exposure to parabens, TCS, and TCC.</div></div>","PeriodicalId":276,"journal":{"name":"Chemosphere","volume":"367 ","pages":"Article 143652"},"PeriodicalIF":8.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142549459","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluating the impact of residual low chlorine concentration on phytoplankton communities by flow cytometry 通过流式细胞仪评估低浓度余氯对浮游植物群落的影响。
IF 8.1 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Pub Date : 2024-11-01 DOI: 10.1016/j.chemosphere.2024.143634
Marta Vannoni , Alastair Grant , Dave Sheahan , Véronique Créach
Chlorination is widely used to prevent biological fouling in power station cooling water systems. It may impact non-target organisms both within the cooling system and after discharge (primary and secondary entrainment). However, there is a lack of data on the impacts of the low chlorine concentrations that occur in the discharged plume on marine phytoplankton community structure and function.
We examine the impacts on natural phytoplankton communities of single and multiple exposures to chlorination at concentrations between 0.02 and 0.1 mg/L total residual oxidants (TRO). Low-level chlorination causes limited changes in diversity and has no impact on total biomass. However, changes in size structure and functional diversity quantified using flow cytometry do show a reduction in smaller cells, particularly eukaryote picophytoplankton.
These impacts are not detectable using chlorophyll a concentration alone, so flow cytometry provides important additional information over more standard ecotoxicological methods.
The effects are likely to be localised in the vicinity of the discharges (mixing zone) where the environmental quality standard (EQS) of 10 μg/L for chlorine is exceeded, but impacts on coastal food webs and biogeochemical cycles should be further evaluated.
氯化被广泛用于防止电站冷却水系统中的生物污垢。它可能会对冷却系统内和排放后(一次和二次夹带)的非目标生物产生影响。然而,关于排放羽流中低浓度氯对海洋浮游植物群落结构和功能的影响,目前还缺乏相关数据。我们研究了单次和多次暴露于 0.02 至 0.1 毫克/升总残留氧化剂 (TRO) 浓度的氯化对自然浮游植物群落的影响。低浓度氯化对多样性的影响有限,对总生物量也没有影响。不过,使用流式细胞仪量化的大小结构和功能多样性的变化确实显示出较小细胞的减少,尤其是真核浮游微藻。仅使用叶绿素 a 浓度无法检测到这些影响,因此流式细胞仪提供了比标准生态毒理学方法更重要的额外信息。这些影响很可能局限在排放口附近(混合区),那里的氯含量超过了 10 μg/L 的环境质量标准 (EQS),但对沿岸食物网和生物地球化学循环的影响还需进一步评估。
{"title":"Evaluating the impact of residual low chlorine concentration on phytoplankton communities by flow cytometry","authors":"Marta Vannoni ,&nbsp;Alastair Grant ,&nbsp;Dave Sheahan ,&nbsp;Véronique Créach","doi":"10.1016/j.chemosphere.2024.143634","DOIUrl":"10.1016/j.chemosphere.2024.143634","url":null,"abstract":"<div><div>Chlorination is widely used to prevent biological fouling in power station cooling water systems. It may impact non-target organisms both within the cooling system and after discharge (primary and secondary entrainment). However, there is a lack of data on the impacts of the low chlorine concentrations that occur in the discharged plume on marine phytoplankton community structure and function.</div><div>We examine the impacts on natural phytoplankton communities of single and multiple exposures to chlorination at concentrations between 0.02 and 0.1 mg/L total residual oxidants (TRO). Low-level chlorination causes limited changes in diversity and has no impact on total biomass. However, changes in size structure and functional diversity quantified using flow cytometry do show a reduction in smaller cells, particularly eukaryote picophytoplankton.</div><div>These impacts are not detectable using chlorophyll <em>a</em> concentration alone, so flow cytometry provides important additional information over more standard ecotoxicological methods.</div><div>The effects are likely to be localised in the vicinity of the discharges (mixing zone) where the environmental quality standard (EQS) of 10 μg/L for chlorine is exceeded, but impacts on coastal food webs and biogeochemical cycles should be further evaluated.</div></div>","PeriodicalId":276,"journal":{"name":"Chemosphere","volume":"367 ","pages":"Article 143634"},"PeriodicalIF":8.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142559735","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New insights into the improved contaminants removal in SBR by intermittently weak ultrasound 间歇性弱超声改善 SBR 中污染物去除的新见解。
IF 8.1 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Pub Date : 2024-11-01 DOI: 10.1016/j.chemosphere.2024.143674
Jingshen Zhang , Jinlin Wang , Guirong Li , Shengyong Jia , Hongjun Han , Fengchang Wu , Yuanhu Pei
The combination of intermittently weak ultrasound and sequencing batch reactor was thoroughly investigated to elucidate the relationship between enhanced contaminants removal and activated sludge characteristics, microbial composition, and regulation of differentially expressed genes (DEGs). At 12 °C, irradiation with an ultrasound intensity of 9.68 W/L, an irradiation time of 10 min, and an interval time of 24 h led to significant increases in COD, NH4+−N, and TP removals with the rates of 93.10 ± 1.51%, 95.75 ± 0.76%, and 92.52 ± 0.95%, respectively. The intermittently weak ultrasound enhanced contaminants removal was primarily attributed to the stimulated microbial metabolism, in which the mechanical oscillation rather than free radical oxidation facilitated the loosening of activated sludge flocs and promoted microorganism proliferation. Elevating the ultrasound intensity or irradiation time could weaken the effect of enhancing ammonia−oxidizing bacteria activity and suppressing nitrite−oxidizing bacteria activity. The results revealed that intermittently weak ultrasound primarily affected the extracellular polymeric substances (EPS), with protein nitrogen playing a more significant role than polysaccharide within EPS against ultrasound−induced stress. Furthermore, ultrasound irradiation elevated the energy barrier in total−binding EPS interaction energy curves, thereby inhibiting activated sludge aggregation. Over prolonged operation, the relative abundance of the prevalent denitrifying genus Thauera increased by 90.3%, whereas that of the fully aerobic denitrifier and nitrite producer Dokdonella increased by 68.7%. The intermittently weak ultrasound induced enhancement of microbial metabolism−related DEGs pathways, which served as the main contributor to the improved contaminants removal. These findings provide novel insights into the mechanisms by which intermittently weak ultrasound enhances the effectiveness of biological wastewater treatment.
为了阐明污染物去除率的提高与活性污泥特性、微生物组成以及差异表达基因(DEGs)调控之间的关系,我们对间歇性弱超声波与序批式反应器的结合进行了深入研究。在 12 °C、超声强度为 9.68 W/L、辐照时间为 10 分钟、间隔时间为 24 小时的条件下,COD、NH4+-N 和 TP 的去除率显著提高,分别为 93.10±1.51%、95.75±0.76% 和 92.52±0.95%。间歇性微弱超声波增强污染物去除的主要原因是刺激了微生物的新陈代谢,其中机械振荡而非自由基氧化促进了活性污泥絮体的松动,并促进了微生物的增殖。提高超声波强度或辐照时间可削弱增强氨氧化细菌活性和抑制亚硝酸盐氧化细菌活性的效果。结果表明,间歇性弱超声主要影响胞外聚合物(EPS),EPS 中的蛋白质氮比多糖对超声诱导的应激有更显著的作用。此外,超声辐照提高了 EPS 总结合相互作用能量曲线的能量势垒,从而抑制了活性污泥的聚集。在长时间的运行过程中,盛行的反硝化菌属 Thauera 的相对丰度增加了 90.3%,而完全好氧反硝化菌和亚硝酸盐产生菌 Dokdonella 的相对丰度增加了 68.7%。间歇性微弱超声诱导了微生物代谢相关 DEGs 途径的增强,这是污染物去除率提高的主要原因。这些发现为研究间歇性弱超声增强生物废水处理效果的机制提供了新的视角。
{"title":"New insights into the improved contaminants removal in SBR by intermittently weak ultrasound","authors":"Jingshen Zhang ,&nbsp;Jinlin Wang ,&nbsp;Guirong Li ,&nbsp;Shengyong Jia ,&nbsp;Hongjun Han ,&nbsp;Fengchang Wu ,&nbsp;Yuanhu Pei","doi":"10.1016/j.chemosphere.2024.143674","DOIUrl":"10.1016/j.chemosphere.2024.143674","url":null,"abstract":"<div><div>The combination of intermittently weak ultrasound and sequencing batch reactor was thoroughly investigated to elucidate the relationship between enhanced contaminants removal and activated sludge characteristics, microbial composition, and regulation of differentially expressed genes (DEGs). At 12 °C, irradiation with an ultrasound intensity of 9.68 W/L, an irradiation time of 10 min, and an interval time of 24 h led to significant increases in COD, NH<sub>4</sub><sup>+</sup>−N, and TP removals with the rates of 93.10 ± 1.51%, 95.75 ± 0.76%, and 92.52 ± 0.95%, respectively. The intermittently weak ultrasound enhanced contaminants removal was primarily attributed to the stimulated microbial metabolism, in which the mechanical oscillation rather than free radical oxidation facilitated the loosening of activated sludge flocs and promoted microorganism proliferation. Elevating the ultrasound intensity or irradiation time could weaken the effect of enhancing ammonia−oxidizing bacteria activity and suppressing nitrite−oxidizing bacteria activity. The results revealed that intermittently weak ultrasound primarily affected the extracellular polymeric substances (EPS), with protein nitrogen playing a more significant role than polysaccharide within EPS against ultrasound−induced stress. Furthermore, ultrasound irradiation elevated the energy barrier in total−binding EPS interaction energy curves, thereby inhibiting activated sludge aggregation. Over prolonged operation, the relative abundance of the prevalent denitrifying genus <em>Thauera</em> increased by 90.3%, whereas that of the fully aerobic denitrifier and nitrite producer <em>Dokdonella</em> increased by 68.7%. The intermittently weak ultrasound induced enhancement of microbial metabolism−related DEGs pathways, which served as the main contributor to the improved contaminants removal. These findings provide novel insights into the mechanisms by which intermittently weak ultrasound enhances the effectiveness of biological wastewater treatment.</div></div>","PeriodicalId":276,"journal":{"name":"Chemosphere","volume":"367 ","pages":"Article 143674"},"PeriodicalIF":8.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142570624","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Role of polylactic acid microplastics during anaerobic co-digestion of cow manure and Chinese cabbage waste enhanced by nanobubble 纳米气泡强化的聚乳酸微塑料在牛粪和大白菜废弃物厌氧共消化过程中的作用
IF 8.1 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Pub Date : 2024-11-01 DOI: 10.1016/j.chemosphere.2024.143639
Peilin Guo, Tianfeng Wang, Jie Wang, Jiazi Niu, Cheng Peng, Jiabei Shan, Yu Zhang, Haizhou Huang, Jixiang Chen
With the increasing use of plastic products globally, environmental pollution by plastic waste is becoming increasingly problematic. This study investigated the impacts of two types of polylactic acid microplastics, clear microplastics and aluminised film microplastics, on methane yield, microbial community, and volatile fatty acid accumulation during anaerobic co-digestion of cow manure and Chinese cabbage waste under different temperature conditions. The influence of the addition of air nanobubbles on microplastic degradation in the anaerobic digestion system we also examined. The results revealed that under thermophilic conditions, clear and aluminised film microplastics increased the methane yield, with the latter resulting in greater improvement. Conversely, under mesophilic conditions, the presence of microplastics reduced the methane yield, but the addition of air-nanobubble partially mitigated this effect. Microplastics also affected the microbial community, with specific species showing correlations with methane yield. Methanothermobacter, which is linked to lactic acid conversion, was positively correlated with methane yield, whereas Methanomassiliicoccus levels increased in the presence of microplastics, particularly in the inhibited state of the digester. These results suggest that, under thermophilic conditions, microplastics may increase the cumulative methane yield by facilitating the degradation of lactic acid monomers. Furthermore, the aluminised film on microplastics could serve as an electrically conductive material during anaerobic digestion, potentially increasing the methane yield.
随着全球塑料产品使用量的不断增加,塑料垃圾对环境的污染问题日益严重。本研究调查了两种聚乳酸微塑料(透明微塑料和镀铝膜微塑料)在不同温度条件下厌氧协同消化牛粪和大白菜废弃物过程中对甲烷产量、微生物群落和挥发性脂肪酸积累的影响。我们还研究了在厌氧消化系统中添加纳米气泡对微塑料降解的影响。结果显示,在嗜热条件下,透明膜和镀铝膜微塑料增加了甲烷产量,后者的改善幅度更大。相反,在中嗜热条件下,微塑料的存在降低了甲烷产量,但空气纳米气泡的加入部分缓解了这种影响。微塑料还影响了微生物群落,特定物种与甲烷产量相关。与乳酸转化有关的甲烷热杆菌与甲烷产量呈正相关,而甲烷纤毛球菌的含量在微塑料存在时有所增加,尤其是在消化器的抑制状态下。这些结果表明,在嗜热条件下,微塑料可通过促进乳酸单体的降解来增加累积甲烷产量。此外,在厌氧消化过程中,微塑料上的镀铝膜可作为导电材料,从而有可能增加甲烷产量。
{"title":"Role of polylactic acid microplastics during anaerobic co-digestion of cow manure and Chinese cabbage waste enhanced by nanobubble","authors":"Peilin Guo,&nbsp;Tianfeng Wang,&nbsp;Jie Wang,&nbsp;Jiazi Niu,&nbsp;Cheng Peng,&nbsp;Jiabei Shan,&nbsp;Yu Zhang,&nbsp;Haizhou Huang,&nbsp;Jixiang Chen","doi":"10.1016/j.chemosphere.2024.143639","DOIUrl":"10.1016/j.chemosphere.2024.143639","url":null,"abstract":"<div><div>With the increasing use of plastic products globally, environmental pollution by plastic waste is becoming increasingly problematic. This study investigated the impacts of two types of polylactic acid microplastics, clear microplastics and aluminised film microplastics, on methane yield, microbial community, and volatile fatty acid accumulation during anaerobic co-digestion of cow manure and Chinese cabbage waste under different temperature conditions. The influence of the addition of air nanobubbles on microplastic degradation in the anaerobic digestion system we also examined. The results revealed that under thermophilic conditions, clear and aluminised film microplastics increased the methane yield, with the latter resulting in greater improvement. Conversely, under mesophilic conditions, the presence of microplastics reduced the methane yield, but the addition of air-nanobubble partially mitigated this effect. Microplastics also affected the microbial community, with specific species showing correlations with methane yield. <em>Methanothermobacter</em>, which is linked to lactic acid conversion, was positively correlated with methane yield, whereas <em>Methanomassiliicoccus</em> levels increased in the presence of microplastics, particularly in the inhibited state of the digester. These results suggest that, under thermophilic conditions, microplastics may increase the cumulative methane yield by facilitating the degradation of lactic acid monomers. Furthermore, the aluminised film on microplastics could serve as an electrically conductive material during anaerobic digestion, potentially increasing the methane yield.</div></div>","PeriodicalId":276,"journal":{"name":"Chemosphere","volume":"367 ","pages":"Article 143639"},"PeriodicalIF":8.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142570647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Performance, progress, and mechanism of g-C3N4-based photocatalysts in the degradation of pesticides: A systematic review 基于 g-C3N4 的光催化剂在降解农药方面的性能、进展和机理:系统综述。
IF 8.1 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Pub Date : 2024-11-01 DOI: 10.1016/j.chemosphere.2024.143667
Samaneh Taghilou , Pegah Nakhjirgan , Ali Esrafili , Emad Dehghanifard , Majid Kermani , Babak Kakavandi , Rasool Pelalak
In the modern world, humans are exposed to an enormous number of pesticides discharged into the environment. Exposure to pesticides causes many health disorders, such as cancer, mental retardation, and endocrine disruption. Therefore, it is a priority to eliminate pesticides from contaminated water before discharge into aquatic environments. Conventional treatment systems do not efficiently accomplish pesticide remediation. Applying graphitic carbon nitride (g-C3N4; GCN)-based materials as highly efficient and low-cost catalysts can be one of the best methods for adequately removing pesticides. This study aims to review the most relevant studies on the use of GCN-based photocatalytic processes for degrading well-known pesticides in aqueous solutions. Thus, in the current state-of-the-art review, an overview is focused not only on how to use GCN-based photocatalysts towards the degradation of pesticides, but also discusses the impact of important operational factors like solution pH, mixture temperature, catalyst dosage, pesticide concentration, photocatalyst morphology, light intensity, reaction time, oxidant concentration, and coexisting anions. In this context, four common pesticides were reviewed, namely 2,4-dichlorophenoxyacetic acid (2,4-D), malathion (MTN), diazinon (DZN), and atrazine (ATZ). Following the screening procedure, 55 full-text papers were chosen, of which the most were published in 2023 (n = 10), and the most publications focused on the elimination of ATZ (n = 33). Among the GCN modification methods, integrating GCN with other photocatalysts showed the best performance in enhancing photocatalytic activity towards the degradation of pesticides. All GCN-based photocatalysts showed a degradation efficiency of > 90% for pesticides under optimum operating conditions. This review provides a detailed summary of different GCN modification methods to select the most promising and cost-effective photocatalyst degradation of pesticides.
在现代社会,人类接触到大量排放到环境中的杀虫剂。接触杀虫剂会导致许多健康问题,如癌症、智力迟钝和内分泌紊乱。因此,在将农药排入水生环境之前,消除受污染水体中的农药是当务之急。传统的处理系统无法有效地实现杀虫剂修复。应用石墨氮化碳(g-C3N4;GCN)基材料作为高效、低成本的催化剂,是充分去除农药的最佳方法之一。本研究旨在回顾利用基于 GCN 的光催化过程降解水溶液中知名农药的最相关研究。因此,在当前的最新综述中,不仅重点概述了如何使用基于 GCN 的光催化剂降解农药,还讨论了重要操作因素的影响,如溶液 pH 值、混合物温度、催化剂用量、农药浓度、光催化剂形态、光照强度、反应时间、氧化剂浓度和共存阴离子。在此背景下,对四种常见农药进行了综述,即 2,4-二氯苯氧乙酸(2,4-D)、马拉硫磷(MTN)、二嗪农(DZN)和阿特拉津(ATZ)。经过筛选,共选出55篇全文论文,其中2023年发表的论文最多(10篇),以消除阿特拉津为主题的论文最多(33篇)。在 GCN 改性方法中,将 GCN 与其他光催化剂整合在一起在提高降解农药的光催化活性方面表现最佳。在最佳操作条件下,所有基于 GCN 的光催化剂对农药的降解效率都大于 90%。本综述详细总结了不同的 GCN 改性方法,以选择最有前景、最具成本效益的农药降解光催化剂。
{"title":"Performance, progress, and mechanism of g-C3N4-based photocatalysts in the degradation of pesticides: A systematic review","authors":"Samaneh Taghilou ,&nbsp;Pegah Nakhjirgan ,&nbsp;Ali Esrafili ,&nbsp;Emad Dehghanifard ,&nbsp;Majid Kermani ,&nbsp;Babak Kakavandi ,&nbsp;Rasool Pelalak","doi":"10.1016/j.chemosphere.2024.143667","DOIUrl":"10.1016/j.chemosphere.2024.143667","url":null,"abstract":"<div><div>In the modern world, humans are exposed to an enormous number of pesticides discharged into the environment. Exposure to pesticides causes many health disorders, such as cancer, mental retardation, and endocrine disruption. Therefore, it is a priority to eliminate pesticides from contaminated water before discharge into aquatic environments. Conventional treatment systems do not efficiently accomplish pesticide remediation. Applying graphitic carbon nitride (g-C<sub>3</sub>N<sub>4</sub>; GCN)-based materials as highly efficient and low-cost catalysts can be one of the best methods for adequately removing pesticides. This study aims to review the most relevant studies on the use of GCN-based photocatalytic processes for degrading well-known pesticides in aqueous solutions. Thus, in the current state-of-the-art review, an overview is focused not only on how to use GCN-based photocatalysts towards the degradation of pesticides, but also discusses the impact of important operational factors like solution pH, mixture temperature, catalyst dosage, pesticide concentration, photocatalyst morphology, light intensity, reaction time, oxidant concentration, and coexisting anions. In this context, four common pesticides were reviewed, namely 2,4-dichlorophenoxyacetic acid (2,4-D), malathion (MTN), diazinon (DZN), and atrazine (ATZ). Following the screening procedure, 55 full-text papers were chosen, of which the most were published in 2023 (n = 10), and the most publications focused on the elimination of ATZ (n = 33). Among the GCN modification methods, integrating GCN with other photocatalysts showed the best performance in enhancing photocatalytic activity towards the degradation of pesticides. All GCN-based photocatalysts showed a degradation efficiency of &gt; 90% for pesticides under optimum operating conditions. This review provides a detailed summary of different GCN modification methods to select the most promising and cost-effective photocatalyst degradation of pesticides.</div></div>","PeriodicalId":276,"journal":{"name":"Chemosphere","volume":"368 ","pages":"Article 143667"},"PeriodicalIF":8.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142634359","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent advances in catalysts for toluene elimination via catalytic oxidation 通过催化氧化消除甲苯的催化剂的最新进展。
IF 8.1 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Pub Date : 2024-11-01 DOI: 10.1016/j.chemosphere.2024.143720
Xinkang Wang , Yulin Luo , Yihang Gao , Dongxue Han , Zhuozhi Wang , Boxiong Shen , Xiaoxiang Wang
Aromatic VOCs, like toluene, have recently attracted increasing attention for the treatment under the carbon peaking and neutrality policy. Catalytic oxidation, characterized by high efficiency and low production of secondary pollutants, has become the mainstream technology for toluene elimination. Thereinto, developing efficient and stable catalysts is essential. This work overviewed different types catalysts for oxidizing toluene, including multi-metal catalysts, high-entropy catalysts, core-shell catalysts, and post-treatment techniques for synthesized catalysts. Additionally, the catalytic reaction mechanisms and catalyst stability were elaborated. Based on the investigations, the ideas for designing novel catalysts in the future were tried to be proposed that the high-entropy catalysts and the integration of heterogeneous elements, morphology adjustment, and surface treatment should be appreciated. Meanwhile, operando or quasi-in situ technology combining with the simulation must be performed for deeply comprehending the oxidation reaction mechanisms. For the investigation of poisoning resistance, one more toxic substance should be considered, which needed to explore new anti-poisoning strategies and methods for essential resistance. All these aspects might promote developing catalyst and understanding catalysis in the field of catalytic oxidation for toluene.
在碳峰值和碳中和政策下,以甲苯为代表的芳香族挥发性有机化合物的处理近来受到越来越多的关注。催化氧化法具有效率高、产生二次污染物少的特点,已成为消除甲苯的主流技术。因此,开发高效稳定的催化剂至关重要。本研究综述了不同类型的甲苯氧化催化剂,包括多金属催化剂、高熵催化剂、核壳催化剂以及合成催化剂的后处理技术。此外,还阐述了催化反应机理和催化剂稳定性。在研究的基础上,尝试提出了未来设计新型催化剂的思路,即应重视高熵催化剂以及异质元素的整合、形态调整和表面处理。同时,为深入理解氧化反应机理,必须结合模拟进行操作性或准原位技术研究。在抗中毒研究方面,应考虑更多的有毒物质,这就需要探索新的抗中毒策略和方法,以获得必要的抗中毒能力。所有这些方面都可能促进甲苯催化氧化领域的催化剂开发和催化认识。
{"title":"Recent advances in catalysts for toluene elimination via catalytic oxidation","authors":"Xinkang Wang ,&nbsp;Yulin Luo ,&nbsp;Yihang Gao ,&nbsp;Dongxue Han ,&nbsp;Zhuozhi Wang ,&nbsp;Boxiong Shen ,&nbsp;Xiaoxiang Wang","doi":"10.1016/j.chemosphere.2024.143720","DOIUrl":"10.1016/j.chemosphere.2024.143720","url":null,"abstract":"<div><div>Aromatic VOCs, like toluene, have recently attracted increasing attention for the treatment under the carbon peaking and neutrality policy. Catalytic oxidation, characterized by high efficiency and low production of secondary pollutants, has become the mainstream technology for toluene elimination. Thereinto, developing efficient and stable catalysts is essential. This work overviewed different types catalysts for oxidizing toluene, including multi-metal catalysts, high-entropy catalysts, core-shell catalysts, and post-treatment techniques for synthesized catalysts. Additionally, the catalytic reaction mechanisms and catalyst stability were elaborated. Based on the investigations, the ideas for designing novel catalysts in the future were tried to be proposed that the high-entropy catalysts and the integration of heterogeneous elements, morphology adjustment, and surface treatment should be appreciated. Meanwhile, operando or quasi-in situ technology combining with the simulation must be performed for deeply comprehending the oxidation reaction mechanisms. For the investigation of poisoning resistance, one more toxic substance should be considered, which needed to explore new anti-poisoning strategies and methods for essential resistance. All these aspects might promote developing catalyst and understanding catalysis in the field of catalytic oxidation for toluene.</div></div>","PeriodicalId":276,"journal":{"name":"Chemosphere","volume":"368 ","pages":"Article 143720"},"PeriodicalIF":8.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142634492","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biochar and nanoscale silicon synergistically alleviate arsenic toxicity and enhance productivity in chili peppers (Capsicum annuum L.) 生物炭和纳米硅协同减轻砷毒性并提高辣椒(Capsicum annuum L.)的产量。
IF 8.1 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Pub Date : 2024-11-01 DOI: 10.1016/j.chemosphere.2024.143682
Natasha Manzoor , Liaqat Ali , Temoor Ahmad , Muhammad Yahya Khan , Hayssam M. Ali , Ying Liu , Gang Wang
Arsenic (As) contamination in agricultural soils threatens crop productivity and food safety. In this study, we examined the efficacy of biochar (BC) and silicon nanoparticles (SiNPs) as environmentally sustainable soil amendments to alleviate As toxicity in chili (Capsicum annuum L.) plants. Our findings revealed that As stress severely inhibited the growth parameters of Capsicum annuum L., and subsequently reduced yield. However, the application of BC and SiNPs into the contaminated soil significantly reversed these negative effects, promoting plant length and biomass, particularly when applied together in a synergistic manner. Arsenic stress led to increased oxidative damage, as evidenced by a 29% increase in leaf malondialdehyde content as compared to the healthy plants. Nevertheless, the synergistic (BC + SiNPs) application effectively modulated antioxidant enzyme activity, resulting in a remarkable 55% and 66% enhancement in the superoxide dismutase and catalase levels, respectively, boosting chili's resistance against oxidative stress. Similarly, BC + SiNPs amendments improved photosynthesis by 52%, stomatal conductance by 39%, soluble sugars by 42%, and proteins by 30% as compared with those of control treatment. Additionally, the combined BC + SiNPs application significantly reduced root As content by 61% and straw As by 37% as compared with the control one. Transmission electron microscopy confirmed that the synergistic use of BC and SiNPs preserved chili leaf ultrastructure, shielding against As-induced damage. Overall, the supplementation of contaminated soil with BC and SiNPs was proved to be a sustainable strategy for mitigating As toxicity in chili peppers, enhancing plant growth, physiology, and yield, and thereby food safety.
农业土壤中的砷(As)污染威胁着作物产量和食品安全。在这项研究中,我们考察了生物炭(BC)和硅纳米粒子(SiNPs)作为环境可持续的土壤改良剂对减轻辣椒(Capsicum annuum L.)植物砷毒性的功效。我们的研究结果表明,砷胁迫严重抑制了辣椒(Capsicum annuum L.)的生长参数,进而降低了产量。然而,在受污染的土壤中施用 BC 和 SiNPs 能显著逆转这些负面影响,促进植株长度和生物量的增加,尤其是以协同增效的方式同时施用时。与健康植物相比,砷胁迫导致氧化损伤增加,叶片丙二醛含量增加了 29%。然而,BC + SiNPs 的协同应用有效地调节了抗氧化酶的活性,使超氧化物歧化酶和过氧化氢酶的水平分别显著提高了 55% 和 66%,从而增强了辣椒对氧化胁迫的抵抗力。同样,与对照处理相比,BC + SiNPs 修正案使光合作用提高了 52%,气孔导度提高了 39%,可溶性糖提高了 42%,蛋白质提高了 30%。此外,与对照相比,联合施用 BC+SiNPs 可使根部砷含量显著降低 61%,秸秆砷含量显著降低 37%。透射电子显微镜证实,BC 和 SiNPs 的协同使用保护了辣椒叶片的超微结构,抵御了砷引起的损害。总之,用 BC 和 SiNPs 补充受污染的土壤被证明是一种可持续的策略,可减轻辣椒中的砷毒性,促进植物生长、生理机能和产量,从而提高食品安全。
{"title":"Biochar and nanoscale silicon synergistically alleviate arsenic toxicity and enhance productivity in chili peppers (Capsicum annuum L.)","authors":"Natasha Manzoor ,&nbsp;Liaqat Ali ,&nbsp;Temoor Ahmad ,&nbsp;Muhammad Yahya Khan ,&nbsp;Hayssam M. Ali ,&nbsp;Ying Liu ,&nbsp;Gang Wang","doi":"10.1016/j.chemosphere.2024.143682","DOIUrl":"10.1016/j.chemosphere.2024.143682","url":null,"abstract":"<div><div>Arsenic (As) contamination in agricultural soils threatens crop productivity and food safety. In this study, we examined the efficacy of biochar (BC) and silicon nanoparticles (SiNPs) as environmentally sustainable soil amendments to alleviate As toxicity in chili (<em>Capsicum annuum</em> L.) plants. Our findings revealed that As stress severely inhibited the growth parameters of <em>Capsicum annuum</em> L., and subsequently reduced yield. However, the application of BC and SiNPs into the contaminated soil significantly reversed these negative effects, promoting plant length and biomass, particularly when applied together in a synergistic manner. Arsenic stress led to increased oxidative damage, as evidenced by a 29% increase in leaf malondialdehyde content as compared to the healthy plants. Nevertheless, the synergistic (BC + SiNPs) application effectively modulated antioxidant enzyme activity, resulting in a remarkable 55% and 66% enhancement in the superoxide dismutase and catalase levels, respectively, boosting chili's resistance against oxidative stress. Similarly, BC + SiNPs amendments improved photosynthesis by 52%, stomatal conductance by 39%, soluble sugars by 42%, and proteins by 30% as compared with those of control treatment. Additionally, the combined BC + SiNPs application significantly reduced root As content by 61% and straw As by 37% as compared with the control one. Transmission electron microscopy confirmed that the synergistic use of BC and SiNPs preserved chili leaf ultrastructure, shielding against As-induced damage. Overall, the supplementation of contaminated soil with BC and SiNPs was proved to be a sustainable strategy for mitigating As toxicity in chili peppers, enhancing plant growth, physiology, and yield, and thereby food safety.</div></div>","PeriodicalId":276,"journal":{"name":"Chemosphere","volume":"368 ","pages":"Article 143682"},"PeriodicalIF":8.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142592421","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigating illicit drug hotspots and daily variations using sewer-network wastewater analysis 利用下水道网络废水分析调查非法药物热点和每日变化。
IF 8.1 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Pub Date : 2024-11-01 DOI: 10.1016/j.chemosphere.2024.143690
Hank Hui-Hsiang Lin , Ming-Chi Hsieh , Jennifer Ia Wen Wen Liu , Yu-Hsiang Wang , Shu-Jie Huang , En Lien , Li-Wei Huang , Pei-Te Chiueh , Hsin-Hsin Tung , Angela Yu-Chen Lin
Previous wastewater-based epidemiology (WBE) research on illicit drug use has predominantly focused on wastewater treatment plant (WWTP) influents, but information on sewer-network wastewater is very limited. This study represents a pioneering small-scale WBE investigation based on the analysis of sewer-network wastewater samples from different sewer manholes in suburban (Tamsui region) and urban areas (Zhongshan and Wanhua regions) and a comparison of the results with those obtained from corresponding WWTP influents. Among sixteen illicit drugs, methamphetamine exhibited the highest concentration in sewer-network wastewater across both areas. Suburban–urban variations were observed, with more types of illicit drugs detected in the suburban area. Back-calculation indicated that methamphetamine and ketamine were the most-consumed illicit drugs in both sewer-network wastewaters and WWTP influents. Similar types of illicit drugs were detected in the sewer-network wastewaters and WWTP influents, indicating the representativeness of WWTP influents in assessing regional illicit drug abuse. Nevertheless, the sewer-network wastewater results offered additional information making it possible to pinpoint potential hotspots of illicit drug and identify peak usage periods throughout the day, in contrast to the WWTP influent results. In the non-suspected suburban area of Tamsui, high potential hotspots of methamphetamine (sampling points 3 and 6) and ketamine (sampling points 1 and 8) were identified. Although the Zhongshan and Wanhua regions were chosen as suspected hotspots of illicit drug abuse, more severe illicit drug use was observed in Wanhua. Moreover, a trend toward higher illicit drug use from early morning to morning was observed. Despite sampling challenges and higher costs, small-scale WBE via sewer-network wastewater analysis provides superior identification of drug abuse hotspots and peak usage periods. Therefore, this study provides valuable insights for law enforcement and can help prevent and combat illicit drug abuse by targeting potential hotspots and understanding daily illicit drug use dynamics.
以往有关非法药物使用的废水流行病学(WBE)研究主要集中在污水处理厂(WWTP)的进水方面,但有关下水道网络废水的信息却非常有限。本研究是一项开创性的小规模 WBE 调查,它分析了来自郊区(淡水地区)和市区(中山和万华地区)不同下水道井的下水道网络废水样本,并将结果与相应的污水处理厂进水进行了比较。在 16 种非法药物中,甲基苯丙胺在这两个地区下水道网络废水中的浓度最高。郊区与郊区之间存在差异,郊区检测到的非法药物种类更多。反向计算表明,甲基苯丙胺和氯胺酮是下水道网络废水和污水处理厂进水中消费量最大的非法药物。在下水道网络废水和污水处理厂进水中检测到的非法药物种类相似,这表明污水处理厂进水在评估区域非法药物滥用方面具有代表性。不过,与污水处理厂进水结果相比,下水道网络废水结果提供了更多信息,使我们有可能确定潜在的非法药物热点,并确定全天的使用高峰期。在淡水的非可疑郊区,发现了甲基苯丙胺(采样点 3 和 6)和氯胺酮(采样点 1 和 8)的高潜在热点。虽然中山和万华地区被选为疑似非法药物滥用的热点地区,但在万华地区观察到的非法药物滥用情况更为严重。此外,还观察到从清晨到上午非法药物使用率较高的趋势。尽管取样困难且成本较高,但通过下水道网络废水分析进行的小规模水质检测能更好地识别药物滥用热点和使用高峰期。因此,这项研究为执法部门提供了宝贵的见解,并可通过锁定潜在热点和了解日常非法药物使用动态来帮助预防和打击非法药物滥用。
{"title":"Investigating illicit drug hotspots and daily variations using sewer-network wastewater analysis","authors":"Hank Hui-Hsiang Lin ,&nbsp;Ming-Chi Hsieh ,&nbsp;Jennifer Ia Wen Wen Liu ,&nbsp;Yu-Hsiang Wang ,&nbsp;Shu-Jie Huang ,&nbsp;En Lien ,&nbsp;Li-Wei Huang ,&nbsp;Pei-Te Chiueh ,&nbsp;Hsin-Hsin Tung ,&nbsp;Angela Yu-Chen Lin","doi":"10.1016/j.chemosphere.2024.143690","DOIUrl":"10.1016/j.chemosphere.2024.143690","url":null,"abstract":"<div><div>Previous wastewater-based epidemiology (WBE) research on illicit drug use has predominantly focused on wastewater treatment plant (WWTP) influents, but information on sewer-network wastewater is very limited. This study represents a pioneering small-scale WBE investigation based on the analysis of sewer-network wastewater samples from different sewer manholes in suburban (Tamsui region) and urban areas (Zhongshan and Wanhua regions) and a comparison of the results with those obtained from corresponding WWTP influents. Among sixteen illicit drugs, methamphetamine exhibited the highest concentration in sewer-network wastewater across both areas. Suburban–urban variations were observed, with more types of illicit drugs detected in the suburban area. Back-calculation indicated that methamphetamine and ketamine were the most-consumed illicit drugs in both sewer-network wastewaters and WWTP influents. Similar types of illicit drugs were detected in the sewer-network wastewaters and WWTP influents, indicating the representativeness of WWTP influents in assessing regional illicit drug abuse. Nevertheless, the sewer-network wastewater results offered additional information making it possible to pinpoint potential hotspots of illicit drug and identify peak usage periods throughout the day, in contrast to the WWTP influent results. In the non-suspected suburban area of Tamsui, high potential hotspots of methamphetamine (sampling points 3 and 6) and ketamine (sampling points 1 and 8) were identified. Although the Zhongshan and Wanhua regions were chosen as suspected hotspots of illicit drug abuse, more severe illicit drug use was observed in Wanhua. Moreover, a trend toward higher illicit drug use from early morning to morning was observed. Despite sampling challenges and higher costs, small-scale WBE via sewer-network wastewater analysis provides superior identification of drug abuse hotspots and peak usage periods. Therefore, this study provides valuable insights for law enforcement and can help prevent and combat illicit drug abuse by targeting potential hotspots and understanding daily illicit drug use dynamics.</div></div>","PeriodicalId":276,"journal":{"name":"Chemosphere","volume":"368 ","pages":"Article 143690"},"PeriodicalIF":8.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142607787","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cytotoxicity assessment of HDPE microplastic on Tetrahymena thermophila (Protozoa, Ciliate): Assuring quality and FAIR data 高密度聚乙烯微塑料对嗜热四膜虫(原生动物,纤毛虫)的细胞毒性评估:确保质量和 FAIR 数据。
IF 8.1 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Pub Date : 2024-11-01 DOI: 10.1016/j.chemosphere.2024.143714
Valentina Perc , Veno Kononenko , Nina Jeliazkova , Matej Hočevar , Slavko Kralj , Darko Makovec , Maja Caf , Damjana Drobne , Sara Novak
Microplastics is recognized as an emerging pollutant and adapting and harmonizing existing test methods is essential to advancing research. The aim of our work was to provide a case study on how to ensure quality and FAIR data in the assessment of microplastic hazards with the unicellular organism Tetrahymena thermophila (Protozoa, Ciliata). We selected high density polyethylene (HDPE) microplastics as a model material. In the study design we followed the quality criteria recommended for studies on particle effects, specifically emphasizing the reporting of experimental design and data. Our experimental work was based on ISO 4988 (2022) multigeneration tests with T. thermophila that was upgraded with additional cytotoxicity tests (protocols have been made available on Zenodo). In addition, we used microscopy to inspect material-organism interaction. The results show that 24 h exposure of T. thermophila to HDPE microparticles did not induce changes in metabolic activity, viability, or proliferation up to exposure concentration 100 mg/L. Microscopy analyses confirmed ingestion of the test material but no adsorption of HDPE particles to the cell surfaces confirming that HDPE microplastics present a low hazard to T. thermophila. To maximize the impact of the generated data, we made all the produced data FAIR via the eNanoMapper repository.
微塑料被认为是一种新出现的污染物,调整和统一现有的测试方法对于推动研究至关重要。我们的工作旨在提供一个案例研究,说明在使用单细胞生物嗜热四膜虫(原生动物,纤毛虫)评估微塑料危害时,如何确保数据的质量和公平性。我们选择了高密度聚乙烯(HDPE)微塑料作为模型材料。在研究设计中,我们遵循了颗粒效应研究的质量标准,特别强调了实验设计和数据的报告。我们的实验工作以 ISO 4988(2022 年)多代嗜热菌测试为基础,并进行了额外的细胞毒性测试(实验方案已在 Zenodo 上公布)。此外,我们还使用显微镜检查了材料与有机物之间的相互作用。结果表明,嗜热褐藻与高密度聚乙烯微粒接触 24 小时后,在接触浓度为 100 毫克/升的情况下,其代谢活性、存活率或增殖均未发生变化。显微镜分析证实,嗜热蘑菇摄入了测试材料,但细胞表面没有吸附高密度聚乙烯微粒,这证明高密度聚乙烯微塑料对嗜热蘑菇的危害较低。为了最大限度地扩大所生成数据的影响,我们通过 eNanoMapper 存储库将所有生成的数据作为 FAIR 数据。
{"title":"Cytotoxicity assessment of HDPE microplastic on Tetrahymena thermophila (Protozoa, Ciliate): Assuring quality and FAIR data","authors":"Valentina Perc ,&nbsp;Veno Kononenko ,&nbsp;Nina Jeliazkova ,&nbsp;Matej Hočevar ,&nbsp;Slavko Kralj ,&nbsp;Darko Makovec ,&nbsp;Maja Caf ,&nbsp;Damjana Drobne ,&nbsp;Sara Novak","doi":"10.1016/j.chemosphere.2024.143714","DOIUrl":"10.1016/j.chemosphere.2024.143714","url":null,"abstract":"<div><div>Microplastics is recognized as an emerging pollutant and adapting and harmonizing existing test methods is essential to advancing research. The aim of our work was to provide a case study on how to ensure quality and FAIR data in the assessment of microplastic hazards with the unicellular organism <em>Tetrahymena thermophila</em> (Protozoa, Ciliata). We selected high density polyethylene (HDPE) microplastics as a model material. In the study design we followed the quality criteria recommended for studies on particle effects, specifically emphasizing the reporting of experimental design and data. Our experimental work was based on ISO 4988 (2022) multigeneration tests with <em>T. thermophila</em> that was upgraded with additional cytotoxicity tests (protocols have been made available on Zenodo). In addition, we used microscopy to inspect material-organism interaction. The results show that 24 h exposure of <em>T. thermophila</em> to HDPE microparticles did not induce changes in metabolic activity, viability, or proliferation up to exposure concentration 100 mg/L. Microscopy analyses confirmed ingestion of the test material but no adsorption of HDPE particles to the cell surfaces confirming that HDPE microplastics present a low hazard to <em>T. thermophila</em>. To maximize the impact of the generated data, we made all the produced data FAIR via the eNanoMapper repository.</div></div>","PeriodicalId":276,"journal":{"name":"Chemosphere","volume":"368 ","pages":"Article 143714"},"PeriodicalIF":8.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142634467","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Chemosphere
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1