首页 > 最新文献

Chemosphere最新文献

英文 中文
Integration of Fe-MOF-laccase-magnetic biochar: From Rational Designing of a biocatalyst to aflatoxin B1 decontamination of peanut oil Fe-MOF-漆酶-磁性生物炭的整合:从合理设计生物催化剂到花生油中黄曲霉毒素 B1 的净化。
IF 8.1 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Pub Date : 2024-11-01 DOI: 10.1016/j.chemosphere.2024.143424
Enzymatic degradation of aflatoxins in food commodities has gained significant attention. However, enzyme denaturation in organic media discourages their direct use in oils to remove aflatoxins. For that, enzymes are immobilized or encapsulated for improved stability and reusability under unfavorable conditions. We sandwiched the laccase between a carrier and an outer protective layer. We used spent-mushroom-substrate (SMS) derived porous magnetic biochar as the laccase carrier and coated it with an iron MOF to create a biocomposite, Fe-BTC@Lac@FB. The immobilized laccase demonstrated enhanced chemical, thermal, and storage stability and proficient reusability. Fe-BTC@Lac@FB exhibited 11 times enhanced aflatoxin B1 (AFB1) degradation compared to free laccase (FL). In addition, thermally inactivated Fe-BTC@Lac@FB could adsorb 11.2 mg/g of AFB1 from peanut oil. Multi-aflatoxin removal also proved promising, while Fe-BTC@Lac@FB could retain >85 % of AFB1 removal efficacy after five reusability cycles. Fe-BTC@Lac@FB treatment did not affect peanut oil quality as indicated by different oil quality parameters and proved essentially non-cytotoxic. All these aspects helped recognize Fe-BTC@Lac@FB as an excellent laccase-carrying material with exceptionally higher stability, activity, and reusability.
酶法降解食品中的黄曲霉毒素已受到广泛关注。然而,酶在有机介质中变性,不利于直接用于油类中去除黄曲霉毒素。为此,需要对酶进行固定或封装,以提高其稳定性和在不利条件下的重复使用性。我们将漆酶夹在载体和外保护层之间。我们使用废蘑菇基质(SMS)衍生的多孔磁性生物炭作为漆酶载体,并在其上涂覆铁MOF,从而创建了一种生物复合材料--Fe-BTC@Lac@FB。固定化的漆酶具有更高的化学、热和贮存稳定性以及良好的重复使用性。与游离漆酶(FL)相比,Fe-BTC@Lac@FB 对黄曲霉毒素 B1(AFB1)的降解能力提高了 11 倍。此外,热失活的 Fe-BTC@Lac@FB 能从花生油中吸附 11.2 mg/g 的 AFB1。事实证明,Fe-BTC@Lac@FB 对多种黄曲霉毒素也有很好的去除效果,经过五个重复使用周期后,Fe-BTC@Lac@FB 对 AFB1 的去除率仍大于 85%。从不同的油质参数来看,Fe-BTC@Lac@FB 处理不会影响花生油的质量,而且基本上没有细胞毒性。所有这些方面都表明,Fe-BTC@Lac@FB 是一种具有极高稳定性、活性和可重复使用性的优秀漆包线杆菌载体材料。
{"title":"Integration of Fe-MOF-laccase-magnetic biochar: From Rational Designing of a biocatalyst to aflatoxin B1 decontamination of peanut oil","authors":"","doi":"10.1016/j.chemosphere.2024.143424","DOIUrl":"10.1016/j.chemosphere.2024.143424","url":null,"abstract":"<div><div>Enzymatic degradation of aflatoxins in food commodities has gained significant attention. However, enzyme denaturation in organic media discourages their direct use in oils to remove aflatoxins. For that, enzymes are immobilized or encapsulated for improved stability and reusability under unfavorable conditions. We sandwiched the laccase between a carrier and an outer protective layer. We used spent-mushroom-substrate (SMS) derived porous magnetic biochar as the laccase carrier and coated it with an iron MOF to create a biocomposite, Fe-BTC@Lac@FB. The immobilized laccase demonstrated enhanced chemical, thermal, and storage stability and proficient reusability. Fe-BTC@Lac@FB exhibited 11 times enhanced aflatoxin B<sub>1</sub> (AFB<sub>1</sub>) degradation compared to free laccase (FL). In addition, thermally inactivated Fe-BTC@Lac@FB could adsorb 11.2 mg/g of AFB<sub>1</sub> from peanut oil. Multi-aflatoxin removal also proved promising, while Fe-BTC@Lac@FB could retain &gt;85 % of AFB<sub>1</sub> removal efficacy after five reusability cycles. Fe-BTC@Lac@FB treatment did not affect peanut oil quality as indicated by different oil quality parameters and proved essentially non-cytotoxic. All these aspects helped recognize Fe-BTC@Lac@FB as an excellent laccase-carrying material with exceptionally higher stability, activity, and reusability.</div></div>","PeriodicalId":276,"journal":{"name":"Chemosphere","volume":null,"pages":null},"PeriodicalIF":8.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142378698","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanism of UV photodegradation of fluoroquinolone antibiotic ciprofloxacin in aqueous solutions 氟喹诺酮类抗生素环丙沙星在水溶液中的紫外线光降解机理。
IF 8.1 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Pub Date : 2024-11-01 DOI: 10.1016/j.chemosphere.2024.143643
Mechanism of direct UV photolysis of the zwitterionic and anionic forms of the quinolone antibiotic ciprofloxacin (CIP) was revealed by combination of nanosecond laser flash photolysis, steady-state photolysis coupled with high resolution LC-MS and DFT quantum-chemical calculations. For both forms, the main intermediate is a dissociative triplet state, which loses a fluorine ion to form a triplet carbocation; subsequent solvent attack of the latter leads to the formation of products of hydroxylation both the aromatic ring and the piperazyl substituent. Correspondingly, the quantum yield of photolysis of both CIP forms does not depend on the excitation wavelength, but depends on the concentration of dissolved oxygen. Secondary photolysis leads to a number of products of oxidation of the aromatic system, as well as oxidation, opening and full destruction of the piperazinyl substituent. The results obtained may be important for understanding the fate of quinolone antibiotics in UVC disinfection processes and in natural waters under the action of sunlight.
通过结合纳秒激光闪烁光解、稳态光解以及高分辨率液相色谱-质谱和 DFT 量子化学计算,揭示了喹诺酮类抗生素环丙沙星 (CIP) 齐聚物和阴离子形式的直接紫外光解机理。这两种形式的主要中间体都是离解三重态,失去一个氟离子后形成三重碳位;后者随后受到溶剂侵蚀,形成芳香环和哌嗪取代基的羟基化产物。相应地,两种 CIP 形式的光解量子产率并不取决于激发波长,而是取决于溶解氧的浓度。二次光解会产生多种芳香系统氧化产物,以及哌嗪基取代基的氧化、开放和完全破坏。所获得的结果可能对了解喹诺酮类抗生素在紫外线消毒过程中以及在阳光作用下在自然水体中的命运具有重要意义。
{"title":"Mechanism of UV photodegradation of fluoroquinolone antibiotic ciprofloxacin in aqueous solutions","authors":"","doi":"10.1016/j.chemosphere.2024.143643","DOIUrl":"10.1016/j.chemosphere.2024.143643","url":null,"abstract":"<div><div>Mechanism of direct UV photolysis of the zwitterionic and anionic forms of the quinolone antibiotic ciprofloxacin (CIP) was revealed by combination of nanosecond laser flash photolysis, steady-state photolysis coupled with high resolution LC-MS and DFT quantum-chemical calculations. For both forms, the main intermediate is a dissociative triplet state, which loses a fluorine ion to form a triplet carbocation; subsequent solvent attack of the latter leads to the formation of products of hydroxylation both the aromatic ring and the piperazyl substituent. Correspondingly, the quantum yield of photolysis of both CIP forms does not depend on the excitation wavelength, but depends on the concentration of dissolved oxygen. Secondary photolysis leads to a number of products of oxidation of the aromatic system, as well as oxidation, opening and full destruction of the piperazinyl substituent. The results obtained may be important for understanding the fate of quinolone antibiotics in UVC disinfection processes and in natural waters under the action of sunlight.</div></div>","PeriodicalId":276,"journal":{"name":"Chemosphere","volume":null,"pages":null},"PeriodicalIF":8.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142549447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Arsenic sequestration by granular coal gangue functionalized with magnesium: Effects of magnesium and insight of arsenic sorption mechanisms 镁功能化颗粒煤矸石的砷封存作用:镁的影响和对砷吸附机制的认识。
IF 8.1 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Pub Date : 2024-11-01 DOI: 10.1016/j.chemosphere.2024.143583
Leveraging natural waste materials for inorganic contaminant removal in solution offers a novel approach to boost resource recycling and foster sustainable development by enhancing waste use. This research advanced the modest arsenite (As[III]) removal capacity of raw coal gangue through a magnesium-soaking and calcination-based surface modification. Batch experiments showed As(III) removal efficiency was improved from 39.8% to 89.9% after modification, independent of initial pH levels. The Langmuir model estimated the maximum sorption capacity of 0.979 mg/g for the modified coal gangue. Physicochemical analyses confirmed that the modification increased the surface area, pore volume and size of the coal gangue. Furthermore, SEM, and subsequent TEM and SAED analyses identified acicular arsenic trioxide (As2O3) on the modified gangue, enhancing As(III) removal. Variations in sorption kinetics hinted at precipitation, likely due to AsO3 polymer chains formed by As(III)'s sorption onto Mg(OH)2, created from MgO hydration in aqueous conditions. Our findings show that coal gangue has potential applications in the development of sustainable methods for waste recycling.
利用天然废料去除溶液中的无机污染物为促进资源循环利用和可持续发展提供了一种新方法。这项研究通过基于镁浸泡和煅烧的表面改性,提高了原煤煤矸石对亚砷酸(As[III])的适度去除能力。批量实验表明,改性后 As(III) 的去除率从 39.8% 提高到 89.9%,与初始 pH 值无关。根据 Langmuir 模型估算,改性煤矸石的最大吸附容量为 0.979 mg/g。理化分析证实,改性增加了煤矸石的表面积、孔体积和尺寸。此外,扫描电子显微镜以及随后的 TEM 和 SAED 分析确定了改性煤矸石上的针状三氧化二砷 (As2O3),从而提高了 As(III) 的去除率。吸附动力学的变化暗示了沉淀的产生,这可能是由于 As(III)吸附到 Mg(OH)2 上形成的 AsO3 聚合物链,而 MgO 在水溶液条件下水合生成了 AsO3 聚合物链。我们的研究结果表明,煤矸石在开发可持续的废物回收方法方面具有潜在的应用价值。
{"title":"Arsenic sequestration by granular coal gangue functionalized with magnesium: Effects of magnesium and insight of arsenic sorption mechanisms","authors":"","doi":"10.1016/j.chemosphere.2024.143583","DOIUrl":"10.1016/j.chemosphere.2024.143583","url":null,"abstract":"<div><div>Leveraging natural waste materials for inorganic contaminant removal in solution offers a novel approach to boost resource recycling and foster sustainable development by enhancing waste use. This research advanced the modest arsenite (As[III]) removal capacity of raw coal gangue through a magnesium-soaking and calcination-based surface modification. Batch experiments showed As(III) removal efficiency was improved from 39.8% to 89.9% after modification, independent of initial pH levels. The Langmuir model estimated the maximum sorption capacity of 0.979 mg/g for the modified coal gangue. Physicochemical analyses confirmed that the modification increased the surface area, pore volume and size of the coal gangue. Furthermore, SEM, and subsequent TEM and SAED analyses identified acicular arsenic trioxide (As<sub>2</sub>O<sub>3</sub>) on the modified gangue, enhancing As(III) removal. Variations in sorption kinetics hinted at precipitation, likely due to AsO<sub>3</sub> polymer chains formed by As(III)'s sorption onto Mg(OH)<sub>2</sub>, created from MgO hydration in aqueous conditions. Our findings show that coal gangue has potential applications in the development of sustainable methods for waste recycling.</div></div>","PeriodicalId":276,"journal":{"name":"Chemosphere","volume":null,"pages":null},"PeriodicalIF":8.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142514646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neurotoxicology of warfare arsenical, diphenylarsinic acid in humans and experimental models 战争用砷、二苯基砷酸在人体和实验模型中的神经毒理学。
IF 8.1 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Pub Date : 2024-11-01 DOI: 10.1016/j.chemosphere.2024.143516
Unused warfare chemical agents, developed in World Wars I/II dumped in the ocean or buried at various sites across the world, pose significant environmental and human health risks. This review provides description of the neurotoxicity of arsenic-based warfare chemicals known as arsenicals. We specifically described the neuropathogenesis of diphenylarsinic acid (DPAA), a chemical warfare-related organoarsenicals and a degradation product of diphenylchloroarsine (DA), diphenylcyanoarsine (DC), also known as Clark I and Clark II respectively. These arsenicals are potent emetics, which were buried at a former naval base in the town of Kamisu, Japan. Several decades after burial, their environmental decay led to contamination of underground water table. Consumption of the contaminated water by the residents manifested a neurological syndrome, which was associated with damage to the cerebellum and brainstem as well as behavioral deficits. We summarized the chronology of this damage as recorded by monitoring the exposed population over time (∼15 years). Several simulating animal studies in primates and murine models demonstrate that DPAA caused this syndrome.
第一次/第二次世界大战中研制的未使用的战争化学剂被倾倒在海洋中或掩埋在世界各地的不同地点,对环境和人类健康构成了重大风险。本综述介绍了以砷为基础的战争化学制剂(又称砷剂)的神经毒性。我们特别介绍了二苯基胂酸(DPAA)的神经发病机理,这是一种与化学战有关的有机胂,也是二苯基氯胂(DA)和二苯基氰胂(DC)的降解产物,分别称为克拉克 I 和克拉克 II。这些砷化物是强效催吐剂,被埋在日本上须镇的一个前海军基地。掩埋几十年后,它们在环境中腐烂,导致地下水位受到污染。居民饮用受污染的水后出现了神经系统综合征,与小脑和脑干受损以及行为障碍有关。我们总结了通过长期(∼15 年)监测暴露人群所记录的这种损害的时间顺序。在灵长类动物和小鼠模型中进行的几项模拟动物研究表明,DPAA 会导致这种综合症。
{"title":"Neurotoxicology of warfare arsenical, diphenylarsinic acid in humans and experimental models","authors":"","doi":"10.1016/j.chemosphere.2024.143516","DOIUrl":"10.1016/j.chemosphere.2024.143516","url":null,"abstract":"<div><div>Unused warfare chemical agents, developed in World Wars I/II dumped in the ocean or buried at various sites across the world, pose significant environmental and human health risks. This review provides description of the neurotoxicity of arsenic-based warfare chemicals known as arsenicals. We specifically described the neuropathogenesis of diphenylarsinic acid (DPAA), a chemical warfare-related organoarsenicals and a degradation product of diphenylchloroarsine (DA), diphenylcyanoarsine (DC), also known as Clark I and Clark II respectively. These arsenicals are potent emetics, which were buried at a former naval base in the town of Kamisu, Japan. Several decades after burial, their environmental decay led to contamination of underground water table. Consumption of the contaminated water by the residents manifested a neurological syndrome, which was associated with damage to the cerebellum and brainstem as well as behavioral deficits. We summarized the chronology of this damage as recorded by monitoring the exposed population over time (∼15 years). Several simulating animal studies in primates and murine models demonstrate that DPAA caused this syndrome.</div></div>","PeriodicalId":276,"journal":{"name":"Chemosphere","volume":null,"pages":null},"PeriodicalIF":8.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142402343","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New insights into the improved contaminants removal in SBR by intermittently weak ultrasound 间歇性弱超声改善 SBR 中污染物去除的新见解。
IF 8.1 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Pub Date : 2024-11-01 DOI: 10.1016/j.chemosphere.2024.143674
The combination of intermittently weak ultrasound and sequencing batch reactor was thoroughly investigated to elucidate the relationship between enhanced contaminants removal and activated sludge characteristics, microbial composition, and regulation of differentially expressed genes (DEGs). At 12 °C, irradiation with an ultrasound intensity of 9.68 W/L, an irradiation time of 10 min, and an interval time of 24 h led to significant increases in COD, NH4+−N, and TP removals with the rates of 93.10 ± 1.51%, 95.75 ± 0.76%, and 92.52 ± 0.95%, respectively. The intermittently weak ultrasound enhanced contaminants removal was primarily attributed to the stimulated microbial metabolism, in which the mechanical oscillation rather than free radical oxidation facilitated the loosening of activated sludge flocs and promoted microorganism proliferation. Elevating the ultrasound intensity or irradiation time could weaken the effect of enhancing ammonia−oxidizing bacteria activity and suppressing nitrite−oxidizing bacteria activity. The results revealed that intermittently weak ultrasound primarily affected the extracellular polymeric substances (EPS), with protein nitrogen playing a more significant role than polysaccharide within EPS against ultrasound−induced stress. Furthermore, ultrasound irradiation elevated the energy barrier in total−binding EPS interaction energy curves, thereby inhibiting activated sludge aggregation. Over prolonged operation, the relative abundance of the prevalent denitrifying genus Thauera increased by 90.3%, whereas that of the fully aerobic denitrifier and nitrite producer Dokdonella increased by 68.7%. The intermittently weak ultrasound induced enhancement of microbial metabolism−related DEGs pathways, which served as the main contributor to the improved contaminants removal. These findings provide novel insights into the mechanisms by which intermittently weak ultrasound enhances the effectiveness of biological wastewater treatment.
为了阐明污染物去除率的提高与活性污泥特性、微生物组成以及差异表达基因(DEGs)调控之间的关系,我们对间歇性弱超声波与序批式反应器的结合进行了深入研究。在 12 °C、超声强度为 9.68 W/L、辐照时间为 10 分钟、间隔时间为 24 小时的条件下,COD、NH4+-N 和 TP 的去除率显著提高,分别为 93.10±1.51%、95.75±0.76% 和 92.52±0.95%。间歇性微弱超声波增强污染物去除的主要原因是刺激了微生物的新陈代谢,其中机械振荡而非自由基氧化促进了活性污泥絮体的松动,并促进了微生物的增殖。提高超声波强度或辐照时间可削弱增强氨氧化细菌活性和抑制亚硝酸盐氧化细菌活性的效果。结果表明,间歇性弱超声主要影响胞外聚合物(EPS),EPS 中的蛋白质氮比多糖对超声诱导的应激有更显著的作用。此外,超声辐照提高了 EPS 总结合相互作用能量曲线的能量势垒,从而抑制了活性污泥的聚集。在长时间的运行过程中,盛行的反硝化菌属 Thauera 的相对丰度增加了 90.3%,而完全好氧反硝化菌和亚硝酸盐产生菌 Dokdonella 的相对丰度增加了 68.7%。间歇性微弱超声诱导了微生物代谢相关 DEGs 途径的增强,这是污染物去除率提高的主要原因。这些发现为研究间歇性弱超声增强生物废水处理效果的机制提供了新的视角。
{"title":"New insights into the improved contaminants removal in SBR by intermittently weak ultrasound","authors":"","doi":"10.1016/j.chemosphere.2024.143674","DOIUrl":"10.1016/j.chemosphere.2024.143674","url":null,"abstract":"<div><div>The combination of intermittently weak ultrasound and sequencing batch reactor was thoroughly investigated to elucidate the relationship between enhanced contaminants removal and activated sludge characteristics, microbial composition, and regulation of differentially expressed genes (DEGs). At 12 °C, irradiation with an ultrasound intensity of 9.68 W/L, an irradiation time of 10 min, and an interval time of 24 h led to significant increases in COD, NH<sub>4</sub><sup>+</sup>−N, and TP removals with the rates of 93.10 ± 1.51%, 95.75 ± 0.76%, and 92.52 ± 0.95%, respectively. The intermittently weak ultrasound enhanced contaminants removal was primarily attributed to the stimulated microbial metabolism, in which the mechanical oscillation rather than free radical oxidation facilitated the loosening of activated sludge flocs and promoted microorganism proliferation. Elevating the ultrasound intensity or irradiation time could weaken the effect of enhancing ammonia−oxidizing bacteria activity and suppressing nitrite−oxidizing bacteria activity. The results revealed that intermittently weak ultrasound primarily affected the extracellular polymeric substances (EPS), with protein nitrogen playing a more significant role than polysaccharide within EPS against ultrasound−induced stress. Furthermore, ultrasound irradiation elevated the energy barrier in total−binding EPS interaction energy curves, thereby inhibiting activated sludge aggregation. Over prolonged operation, the relative abundance of the prevalent denitrifying genus <em>Thauera</em> increased by 90.3%, whereas that of the fully aerobic denitrifier and nitrite producer <em>Dokdonella</em> increased by 68.7%. The intermittently weak ultrasound induced enhancement of microbial metabolism−related DEGs pathways, which served as the main contributor to the improved contaminants removal. These findings provide novel insights into the mechanisms by which intermittently weak ultrasound enhances the effectiveness of biological wastewater treatment.</div></div>","PeriodicalId":276,"journal":{"name":"Chemosphere","volume":null,"pages":null},"PeriodicalIF":8.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142570624","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A convenient reduction method for the detection of low concentration free available chlorine——utilizing sodium sulfite as a quencher 一种检测低浓度游离可得氯的简便还原法--利用亚硫酸钠作为淬灭剂。
IF 8.1 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Pub Date : 2024-11-01 DOI: 10.1016/j.chemosphere.2024.143631
Chlorine, serving as the mainstream disinfectant, can react with dissolved organic matter (DOM) to form undeserved disinfection by-products (DBPs). Free available chlorine (FAC) concentration is crucial to ensure effective disinfection while minimizing the formation of toxic DBPs. In this study, we propose a convenient method using sodium sulfite (Na2SO3) to reduce oxidized chlorine in FAC. The molar concentration of reduced chloride ion (Cl) was quantified directly by ion chromatography to reflect FAC concentration. Compared with common FAC detection techniques including DPD colorimetry, iodometry, and UV methods, this novel reduction method exhibits a lower detection limit and is more resistant to interference. Common water matrices, such as DOM and anions did not affect the method accuracy (< 3.6%). Furthermore, carbonaceous DBPs (C-DBPs) like regulated trihalomethanes and halogenacetic acids, unregulated aromatic chlorophenols, did not interfere with the determination of FAC by using this reduction method. This lack of interference can be attributed to the low redox potential of Na2SO3, which does not readily react with these C-DBPs. However, nitrogenated DBPs (N-DBPs) like dichloroacetonitrile displayed slight interference (the effect of common dichloroacetonitrile concentration in water on FAC was less than 0.0007 μM). This suggests that this method is well-suited for determining FAC in chlorination processes where the C-DBPs predominated. Overall, the reduction method enables precise determination of FAC and proves valuable in assessing residual chlorine levels in both laboratory and real disinfected water samples dominated by C-DBPs.
作为主流消毒剂的氯会与溶解有机物 (DOM) 发生反应,形成不应有的消毒副产物 (DBP)。游离可得氯(FAC)的浓度对于确保有效消毒,同时最大限度地减少有毒 DBPs 的形成至关重要。在这项研究中,我们提出了一种使用亚硫酸钠(Na2SO3)还原游离可得氯中氧化氯的简便方法。还原氯离子(Cl-)的摩尔浓度通过离子色谱法直接定量,以反映 FAC 的浓度。与常见的 FAC 检测技术(包括 DPD 比色法、碘测定法和紫外法)相比,这种新型还原法的检测限更低,抗干扰能力更强。常见的水基质(如 DOM 和阴离子)不会影响该方法的准确性(< 3.6%)。此外,采用这种还原法测定碳质 DBP(C-DBP),如受管制的三卤甲烷和卤乙酸、未受管制的芳香族氯酚,也不会对 FAC 的测定产生干扰。这种不干扰可归因于 Na2SO3 的氧化还原电位较低,不易与这些 C-DBPs 发生反应。然而,二氯乙腈等氮化 DBPs(N-DBPs)则显示出轻微的干扰(水中普通二氯乙腈浓度对 FAC 的影响小于 0.0007 μM)。这表明该方法非常适合在氯化过程中测定以 C-DBPs 为主的 FAC。总之,还原法可以精确测定 FAC,对于评估实验室和以 C-DBPs 为主的实际消毒水样中的余氯水平都很有价值。
{"title":"A convenient reduction method for the detection of low concentration free available chlorine——utilizing sodium sulfite as a quencher","authors":"","doi":"10.1016/j.chemosphere.2024.143631","DOIUrl":"10.1016/j.chemosphere.2024.143631","url":null,"abstract":"<div><div>Chlorine, serving as the mainstream disinfectant, can react with dissolved organic matter (DOM) to form undeserved disinfection by-products (DBPs). Free available chlorine (FAC) concentration is crucial to ensure effective disinfection while minimizing the formation of toxic DBPs. In this study, we propose a convenient method using sodium sulfite (Na<sub>2</sub>SO<sub>3</sub>) to reduce oxidized chlorine in FAC. The molar concentration of reduced chloride ion (Cl<sup>−</sup>) was quantified directly by ion chromatography to reflect FAC concentration. Compared with common FAC detection techniques including DPD colorimetry, iodometry, and UV methods, this novel reduction method exhibits a lower detection limit and is more resistant to interference. Common water matrices, such as DOM and anions did not affect the method accuracy (&lt; 3.6%). Furthermore, carbonaceous DBPs (C-DBPs) like regulated trihalomethanes and halogenacetic acids, unregulated aromatic chlorophenols, did not interfere with the determination of FAC by using this reduction method. This lack of interference can be attributed to the low redox potential of Na<sub>2</sub>SO<sub>3</sub>, which does not readily react with these C-DBPs. However, nitrogenated DBPs (N-DBPs) like dichloroacetonitrile displayed slight interference (the effect of common dichloroacetonitrile concentration in water on FAC was less than 0.0007 μM). This suggests that this method is well-suited for determining FAC in chlorination processes where the C-DBPs predominated. Overall, the reduction method enables precise determination of FAC and proves valuable in assessing residual chlorine levels in both laboratory and real disinfected water samples dominated by C-DBPs.</div></div>","PeriodicalId":276,"journal":{"name":"Chemosphere","volume":null,"pages":null},"PeriodicalIF":8.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142514643","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Parabens, triclosan, and triclocarban in aquatic products from Shenzhen, China and the relative health risk 中国深圳水产品中的对羟基苯甲酸酯、三氯生和三氯卡班及其相对健康风险。
IF 8.1 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Pub Date : 2024-11-01 DOI: 10.1016/j.chemosphere.2024.143652
The consumption of contaminated aquatic products may expose humans to residues of parabens, triclosan (TCS), and triclocarban (TCC). Despite its significance, empirical research on this issue remains limited. In this study, we employed high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) to analyze extracts from 245 aquatic product samples collected randomly from local markets in Shenzhen, Guangdong Province. Our analysis detected at least one of the five parabens—methyl 4-hydroxybenzoate (MeP), ethyl 4-hydroxybenzoate (EtP), propyl 4-hydroxybenzoate (PrP), butyl 4-hydroxybenzoate (BuP), and benzyl 4-hydroxybenzoate (BeP)—in 88 samples (35.9%). TCS and TCC were found in 50.6% and 51.4% of the samples, respectively, with MeP being the most frequently detected paraben. Significant negative correlations were observed between TCS and MeP (r = −0.129, p < 0.05) and between TCC and MeP (r = −0.176, p < 0.05), indicating potential different sources for these contaminants. Residue levels varied among different types of aquatic products, with TCS and TCC concentrations being higher in fish compared to crustaceans and bivalves. The health risk associated with consuming these contaminants was found to be minimal for both males and females. This study provides valuable insights into the dietary risks associated with exposure to parabens, TCS, and TCC.
食用受污染的水产品可能会使人类接触到对羟基苯甲酸酯、三氯生(TCS)和三氯卡班(TCC)的残留物。尽管其意义重大,但有关这一问题的实证研究仍然有限。在这项研究中,我们采用高效液相色谱-串联质谱法(HPLC-MS/MS)分析了从广东省深圳市当地市场随机采集的 245 份水产品样品的提取物。我们的分析在 88 个样品(35.9%)中检测到至少一种对羟基苯甲酸酯--4-羟基苯甲酸甲酯(MeP)、4-羟基苯甲酸乙酯(EtP)、4-羟基苯甲酸丙酯(PrP)、4-羟基苯甲酸丁酯(BuP)和 4-羟基苯甲酸苄酯(BeP)。在 50.6% 和 51.4% 的样品中分别发现了对羟基苯甲酸三辛酯和对羟基苯甲酸三CC,其中 MeP 是最常检测到的对羟基苯甲酸酯。TCS 和 MeP 之间(r = -0.129,p < 0.05)以及 TCC 和 MeP 之间(r = -0.176,p < 0.05)呈显著负相关,表明这些污染物的潜在来源不同。不同类型水产品的残留水平各不相同,与甲壳类动物和双壳类动物相比,鱼类体内的三氯碳氢化合物和三氯苯甲醚浓度较高。研究发现,摄入这些污染物对男性和女性造成的健康风险都很小。这项研究为了解与接触对羟基苯甲酸酯、三氯碳氢化合物和三氯苯甲醚有关的膳食风险提供了宝贵的见解。
{"title":"Parabens, triclosan, and triclocarban in aquatic products from Shenzhen, China and the relative health risk","authors":"","doi":"10.1016/j.chemosphere.2024.143652","DOIUrl":"10.1016/j.chemosphere.2024.143652","url":null,"abstract":"<div><div>The consumption of contaminated aquatic products may expose humans to residues of parabens, triclosan (TCS), and triclocarban (TCC). Despite its significance, empirical research on this issue remains limited. In this study, we employed high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) to analyze extracts from 245 aquatic product samples collected randomly from local markets in Shenzhen, Guangdong Province. Our analysis detected at least one of the five parabens—methyl 4-hydroxybenzoate (MeP), ethyl 4-hydroxybenzoate (EtP), propyl 4-hydroxybenzoate (PrP), butyl 4-hydroxybenzoate (BuP), and benzyl 4-hydroxybenzoate (BeP)—in 88 samples (35.9%). TCS and TCC were found in 50.6% and 51.4% of the samples, respectively, with MeP being the most frequently detected paraben. Significant negative correlations were observed between TCS and MeP (<em>r</em> = −0.129, <em>p</em> &lt; 0.05) and between TCC and MeP (<em>r</em> = −0.176, <em>p</em> &lt; 0.05), indicating potential different sources for these contaminants. Residue levels varied among different types of aquatic products, with TCS and TCC concentrations being higher in fish compared to crustaceans and bivalves. The health risk associated with consuming these contaminants was found to be minimal for both males and females. This study provides valuable insights into the dietary risks associated with exposure to parabens, TCS, and TCC.</div></div>","PeriodicalId":276,"journal":{"name":"Chemosphere","volume":null,"pages":null},"PeriodicalIF":8.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142549459","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Role of polylactic acid microplastics during anaerobic co-digestion of cow manure and Chinese cabbage waste enhanced by nanobubble 纳米气泡强化的聚乳酸微塑料在牛粪和大白菜废弃物厌氧共消化过程中的作用
IF 8.1 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Pub Date : 2024-11-01 DOI: 10.1016/j.chemosphere.2024.143639
With the increasing use of plastic products globally, environmental pollution by plastic waste is becoming increasingly problematic. This study investigated the impacts of two types of polylactic acid microplastics, clear microplastics and aluminised film microplastics, on methane yield, microbial community, and volatile fatty acid accumulation during anaerobic co-digestion of cow manure and Chinese cabbage waste under different temperature conditions. The influence of the addition of air nanobubbles on microplastic degradation in the anaerobic digestion system we also examined. The results revealed that under thermophilic conditions, clear and aluminised film microplastics increased the methane yield, with the latter resulting in greater improvement. Conversely, under mesophilic conditions, the presence of microplastics reduced the methane yield, but the addition of air-nanobubble partially mitigated this effect. Microplastics also affected the microbial community, with specific species showing correlations with methane yield. Methanothermobacter, which is linked to lactic acid conversion, was positively correlated with methane yield, whereas Methanomassiliicoccus levels increased in the presence of microplastics, particularly in the inhibited state of the digester. These results suggest that, under thermophilic conditions, microplastics may increase the cumulative methane yield by facilitating the degradation of lactic acid monomers. Furthermore, the aluminised film on microplastics could serve as an electrically conductive material during anaerobic digestion, potentially increasing the methane yield.
随着全球塑料产品使用量的不断增加,塑料垃圾对环境的污染问题日益严重。本研究调查了两种聚乳酸微塑料(透明微塑料和镀铝膜微塑料)在不同温度条件下厌氧协同消化牛粪和大白菜废弃物过程中对甲烷产量、微生物群落和挥发性脂肪酸积累的影响。我们还研究了在厌氧消化系统中添加纳米气泡对微塑料降解的影响。结果显示,在嗜热条件下,透明膜和镀铝膜微塑料增加了甲烷产量,后者的改善幅度更大。相反,在中嗜热条件下,微塑料的存在降低了甲烷产量,但空气纳米气泡的加入部分缓解了这种影响。微塑料还影响了微生物群落,特定物种与甲烷产量相关。与乳酸转化有关的甲烷热杆菌与甲烷产量呈正相关,而甲烷纤毛球菌的含量在微塑料存在时有所增加,尤其是在消化器的抑制状态下。这些结果表明,在嗜热条件下,微塑料可通过促进乳酸单体的降解来增加累积甲烷产量。此外,在厌氧消化过程中,微塑料上的镀铝膜可作为导电材料,从而有可能增加甲烷产量。
{"title":"Role of polylactic acid microplastics during anaerobic co-digestion of cow manure and Chinese cabbage waste enhanced by nanobubble","authors":"","doi":"10.1016/j.chemosphere.2024.143639","DOIUrl":"10.1016/j.chemosphere.2024.143639","url":null,"abstract":"<div><div>With the increasing use of plastic products globally, environmental pollution by plastic waste is becoming increasingly problematic. This study investigated the impacts of two types of polylactic acid microplastics, clear microplastics and aluminised film microplastics, on methane yield, microbial community, and volatile fatty acid accumulation during anaerobic co-digestion of cow manure and Chinese cabbage waste under different temperature conditions. The influence of the addition of air nanobubbles on microplastic degradation in the anaerobic digestion system we also examined. The results revealed that under thermophilic conditions, clear and aluminised film microplastics increased the methane yield, with the latter resulting in greater improvement. Conversely, under mesophilic conditions, the presence of microplastics reduced the methane yield, but the addition of air-nanobubble partially mitigated this effect. Microplastics also affected the microbial community, with specific species showing correlations with methane yield. <em>Methanothermobacter</em>, which is linked to lactic acid conversion, was positively correlated with methane yield, whereas <em>Methanomassiliicoccus</em> levels increased in the presence of microplastics, particularly in the inhibited state of the digester. These results suggest that, under thermophilic conditions, microplastics may increase the cumulative methane yield by facilitating the degradation of lactic acid monomers. Furthermore, the aluminised film on microplastics could serve as an electrically conductive material during anaerobic digestion, potentially increasing the methane yield.</div></div>","PeriodicalId":276,"journal":{"name":"Chemosphere","volume":null,"pages":null},"PeriodicalIF":8.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142570647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluating the impact of residual low chlorine concentration on phytoplankton communities by flow cytometry 通过流式细胞仪评估低浓度余氯对浮游植物群落的影响。
IF 8.1 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Pub Date : 2024-11-01 DOI: 10.1016/j.chemosphere.2024.143634
Chlorination is widely used to prevent biological fouling in power station cooling water systems. It may impact non-target organisms both within the cooling system and after discharge (primary and secondary entrainment). However, there is a lack of data on the impacts of the low chlorine concentrations that occur in the discharged plume on marine phytoplankton community structure and function.
We examine the impacts on natural phytoplankton communities of single and multiple exposures to chlorination at concentrations between 0.02 and 0.1 mg/L total residual oxidants (TRO). Low-level chlorination causes limited changes in diversity and has no impact on total biomass. However, changes in size structure and functional diversity quantified using flow cytometry do show a reduction in smaller cells, particularly eukaryote picophytoplankton.
These impacts are not detectable using chlorophyll a concentration alone, so flow cytometry provides important additional information over more standard ecotoxicological methods.
The effects are likely to be localised in the vicinity of the discharges (mixing zone) where the environmental quality standard (EQS) of 10 μg/L for chlorine is exceeded, but impacts on coastal food webs and biogeochemical cycles should be further evaluated.
氯化被广泛用于防止电站冷却水系统中的生物污垢。它可能会对冷却系统内和排放后(一次和二次夹带)的非目标生物产生影响。然而,关于排放羽流中低浓度氯对海洋浮游植物群落结构和功能的影响,目前还缺乏相关数据。我们研究了单次和多次暴露于 0.02 至 0.1 毫克/升总残留氧化剂 (TRO) 浓度的氯化对自然浮游植物群落的影响。低浓度氯化对多样性的影响有限,对总生物量也没有影响。不过,使用流式细胞仪量化的大小结构和功能多样性的变化确实显示出较小细胞的减少,尤其是真核浮游微藻。仅使用叶绿素 a 浓度无法检测到这些影响,因此流式细胞仪提供了比标准生态毒理学方法更重要的额外信息。这些影响很可能局限在排放口附近(混合区),那里的氯含量超过了 10 μg/L 的环境质量标准 (EQS),但对沿岸食物网和生物地球化学循环的影响还需进一步评估。
{"title":"Evaluating the impact of residual low chlorine concentration on phytoplankton communities by flow cytometry","authors":"","doi":"10.1016/j.chemosphere.2024.143634","DOIUrl":"10.1016/j.chemosphere.2024.143634","url":null,"abstract":"<div><div>Chlorination is widely used to prevent biological fouling in power station cooling water systems. It may impact non-target organisms both within the cooling system and after discharge (primary and secondary entrainment). However, there is a lack of data on the impacts of the low chlorine concentrations that occur in the discharged plume on marine phytoplankton community structure and function.</div><div>We examine the impacts on natural phytoplankton communities of single and multiple exposures to chlorination at concentrations between 0.02 and 0.1 mg/L total residual oxidants (TRO). Low-level chlorination causes limited changes in diversity and has no impact on total biomass. However, changes in size structure and functional diversity quantified using flow cytometry do show a reduction in smaller cells, particularly eukaryote picophytoplankton.</div><div>These impacts are not detectable using chlorophyll <em>a</em> concentration alone, so flow cytometry provides important additional information over more standard ecotoxicological methods.</div><div>The effects are likely to be localised in the vicinity of the discharges (mixing zone) where the environmental quality standard (EQS) of 10 μg/L for chlorine is exceeded, but impacts on coastal food webs and biogeochemical cycles should be further evaluated.</div></div>","PeriodicalId":276,"journal":{"name":"Chemosphere","volume":null,"pages":null},"PeriodicalIF":8.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142559735","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Towards harmonization of metal(loid)s determination in conventional and compostable plastics: Comparison of acid digestion protocols in LDPE and PBAT/TPS blends 统一传统塑料和可堆肥塑料中的金属(loid)分析:低密度聚乙烯和 PBAT/TPS 混合物中酸性消化方案的比较。
IF 8.1 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Pub Date : 2024-11-01 DOI: 10.1016/j.chemosphere.2024.143581
The determination of metal-containing additives in plastic materials via acid digestion protocols has attracted growing interest to address potential environmental implications. However, the lack of protocol harmonization hinders data comparability within the literature. Here, six acid digestion protocols were employed to determine the metal(loid) content in plastics: these included three different acid mixtures (HNO3 combined with H2SO4, HCl or H2O2) for microwave-assisted digestion, with or without an additional room-temperature digestion step with H2O2.
Each protocol was first validated for seven metal(loid)s (As, Cd, Cr, Pb, Sb, Sn and Zn) using a low-density polyethylene (LDPE) certified reference material (ERM®-EC681m). Then, validated protocols were applied on end-use materials, including conventional (i.e., LDPE) and compostable (i.e., PBAT/TPS) plastics.
The combination of H2SO4 and HNO3 with a further digestion step with H2O2 was the most suitable protocol: it successfully passed validation thresholds for all metal(loid)s (recoveries in the range 98.6–101.0 %) and yielded the highest concentrations in end-use materials. All other protocols resulted in a less efficient digestion of the sample matrix, leading to lower recoveries and the formation of solid residues. Notably, end-use plastics showed a great variability in metal(loid) concentrations, likely due to their additive-rich composition, in contrast to the minimal content of acid-soluble additives of the reference material.
This study represents an initial step towards the harmonization of acid digestion protocols and highlights new challenges in accurately analyzing end-use plastic materials, due to their complex additive composition.
通过酸消化规程分析塑料材料中的含金属添加剂以解决潜在的环境影响问题已引起越来越多的关注。然而,由于缺乏统一的方案,妨碍了文献中数据的可比性。在此,我们采用了六种酸消解方案来测定塑料中的金属(loid)含量:其中包括三种不同的酸混合物(HNO3 与 H2SO4、HCl 或 H2O2 混合),用于微波辅助消解,可选择是否使用 H2O2 进行额外的室温消解步骤。首先使用低密度聚乙烯(LDPE)认证参考材料(ERM®-EC681m)对每种方案的七种金属(惰性气体)(砷、镉、铬、铅、锑、锡和锌)进行验证。然后,将经过验证的方案应用于最终使用材料,包括传统塑料(即 LDPE)和可堆肥塑料(即 PBAT/TPS)。H2SO4 和 HNO3 的组合以及 H2O2 的进一步消化步骤是最合适的方案:它成功地通过了所有金属(loid)的验证阈值(回收率在 98.6 - 101.0 % 之间),并在最终使用材料中产生了最高的浓度。所有其他方案都会降低样品基质的消化效率,导致回收率降低并形成固体残留物。值得注意的是,最终使用塑料中的金属(loid)浓度变化很大,这可能是由于其成分中含有大量添加剂,而参照材料中的酸溶性添加剂含量极低。这项研究为统一酸消化规程迈出了第一步,同时也凸显了由于塑料添加剂成分复杂,准确分析最终使用塑料材料所面临的新挑战。
{"title":"Towards harmonization of metal(loid)s determination in conventional and compostable plastics: Comparison of acid digestion protocols in LDPE and PBAT/TPS blends","authors":"","doi":"10.1016/j.chemosphere.2024.143581","DOIUrl":"10.1016/j.chemosphere.2024.143581","url":null,"abstract":"<div><div>The determination of metal-containing additives in plastic materials via acid digestion protocols has attracted growing interest to address potential environmental implications. However, the lack of protocol harmonization hinders data comparability within the literature. Here, six acid digestion protocols were employed to determine the metal(loid) content in plastics: these included three different acid mixtures (HNO<sub>3</sub> combined with H<sub>2</sub>SO<sub>4</sub>, HCl or H<sub>2</sub>O<sub>2</sub>) for microwave-assisted digestion, with or without an additional room-temperature digestion step with H<sub>2</sub>O<sub>2</sub>.</div><div>Each protocol was first validated for seven metal(loid)s (As, Cd, Cr, Pb, Sb, Sn and Zn) using a low-density polyethylene (LDPE) certified reference material (ERM®-EC681m). Then, validated protocols were applied on end-use materials, including conventional (i.e., LDPE) and compostable (i.e., PBAT/TPS) plastics.</div><div>The combination of H<sub>2</sub>SO<sub>4</sub> and HNO<sub>3</sub> with a further digestion step with H<sub>2</sub>O<sub>2</sub> was the most suitable protocol: it successfully passed validation thresholds for all metal(loid)s (recoveries in the range 98.6–101.0 %) and yielded the highest concentrations in end-use materials. All other protocols resulted in a less efficient digestion of the sample matrix, leading to lower recoveries and the formation of solid residues. Notably, end-use plastics showed a great variability in metal(loid) concentrations, likely due to their additive-rich composition, in contrast to the minimal content of acid-soluble additives of the reference material.</div><div>This study represents an initial step towards the harmonization of acid digestion protocols and highlights new challenges in accurately analyzing end-use plastic materials, due to their complex additive composition.</div></div>","PeriodicalId":276,"journal":{"name":"Chemosphere","volume":null,"pages":null},"PeriodicalIF":8.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142483119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Chemosphere
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1