Pub Date : 2023-12-04DOI: 10.1021/acsmeasuresciau.3c00045
Yiming Zhang, Zexi Zhang, Miaomiao Wu and Run Zhang*,
Gamma-glutamyltransferase (GGT) is a plasma-membrane-bound enzyme that is involved in the γ-glutamyl cycle, like metabolism of glutathione (GSH). This enzyme plays an important role in protecting cells from oxidative stress, thus being tested as a key biomarker for several medical conditions, such as liver injury, carcinogenesis, and tumor progression. For measuring GGT activity, a number of bioanalytical methods have emerged, such as chromatography, colorimetric, electrochemical, and luminescence analyses. Among these approaches, probes that can specifically respond to GGT are contributing significantly to measuring its activity in vitro and in vivo. This review thus aims to highlight the recent advances in the development of responsive probes for GGT measurement and their practical applications. Responsive probes for fluorescence analysis, including “off–on”, near-infrared (NIR), two-photon, and ratiometric fluorescence response probes, are initially summarized, followed by discussing the advances in the development of other probes, such as bioluminescence, chemiluminescence, photoacoustic, Raman, magnetic resonance imaging (MRI), and positron emission tomography (PET). The practical applications of the responsive probes in cancer diagnosis and treatment monitoring and GGT inhibitor screening are then highlighted. Based on this information, the advantages, challenges, and prospects of responsive probe technology for GGT measurement are analyzed.
{"title":"Advances and Perspectives of Responsive Probes for Measuring γ-Glutamyl Transpeptidase","authors":"Yiming Zhang, Zexi Zhang, Miaomiao Wu and Run Zhang*, ","doi":"10.1021/acsmeasuresciau.3c00045","DOIUrl":"10.1021/acsmeasuresciau.3c00045","url":null,"abstract":"<p >Gamma-glutamyltransferase (GGT) is a plasma-membrane-bound enzyme that is involved in the γ-glutamyl cycle, like metabolism of glutathione (GSH). This enzyme plays an important role in protecting cells from oxidative stress, thus being tested as a key biomarker for several medical conditions, such as liver injury, carcinogenesis, and tumor progression. For measuring GGT activity, a number of bioanalytical methods have emerged, such as chromatography, colorimetric, electrochemical, and luminescence analyses. Among these approaches, probes that can specifically respond to GGT are contributing significantly to measuring its activity in vitro and in vivo. This review thus aims to highlight the recent advances in the development of responsive probes for GGT measurement and their practical applications. Responsive probes for fluorescence analysis, including “off–on”, near-infrared (NIR), two-photon, and ratiometric fluorescence response probes, are initially summarized, followed by discussing the advances in the development of other probes, such as bioluminescence, chemiluminescence, photoacoustic, Raman, magnetic resonance imaging (MRI), and positron emission tomography (PET). The practical applications of the responsive probes in cancer diagnosis and treatment monitoring and GGT inhibitor screening are then highlighted. Based on this information, the advantages, challenges, and prospects of responsive probe technology for GGT measurement are analyzed.</p>","PeriodicalId":29800,"journal":{"name":"ACS Measurement Science Au","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsmeasuresciau.3c00045","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138539139","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-30DOI: 10.1021/acsmeasuresciau.3c00065
Abraham K. Badu-Tawiah*,
{"title":"The Growing Influence of Mass Spectrometry in Measurement Science","authors":"Abraham K. Badu-Tawiah*, ","doi":"10.1021/acsmeasuresciau.3c00065","DOIUrl":"10.1021/acsmeasuresciau.3c00065","url":null,"abstract":"","PeriodicalId":29800,"journal":{"name":"ACS Measurement Science Au","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsmeasuresciau.3c00065","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138539150","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-22DOI: 10.1021/acsmeasuresciau.3c00047
Annina Stuber, Anna Cavaccini, Andreea Manole, Anna Burdina, Yassine Massoud, Tommaso Patriarchi, Theofanis Karayannis and Nako Nakatsuka*,
Aptamer-functionalized biosensors exhibit high selectivity for monitoring neurotransmitters in complex environments. We translated nanoscale aptamer-modified nanopipette sensors to detect endogenous dopamine release in vitro and ex vivo. These sensors employ quartz nanopipettes with nanoscale pores (ca. 10 nm diameter) that are functionalized with aptamers that enable the selective capture of dopamine through target-specific conformational changes. The dynamic behavior of aptamer structures upon dopamine binding leads to the rearrangement of surface charge within the nanopore, resulting in measurable changes in ionic current. To assess sensor performance in real time, we designed a fluidic platform to characterize the temporal dynamics of nanopipette sensors. We then conducted differential biosensing by deploying control sensors modified with nonspecific DNA alongside dopamine-specific sensors in biological milieu. Our results confirm the functionality of aptamer-modified nanopipettes for direct measurements in undiluted complex fluids, specifically in the culture media of human-induced pluripotent stem cell-derived dopaminergic neurons. Moreover, sensor implantation and repeated measurements in acute brain slices was possible, likely owing to the protected sensing area inside nanoscale DNA-filled orifices, minimizing exposure to nonspecific interferents and preventing clogging. Further, differential recordings of endogenous dopamine released through electrical stimulation in the dorsolateral striatum demonstrate the potential of aptamer-modified nanopipettes for ex vivo recordings with unprecedented spatial resolution and reduced tissue damage.
{"title":"Interfacing Aptamer-Modified Nanopipettes with Neuronal Media and Ex Vivo Brain Tissue","authors":"Annina Stuber, Anna Cavaccini, Andreea Manole, Anna Burdina, Yassine Massoud, Tommaso Patriarchi, Theofanis Karayannis and Nako Nakatsuka*, ","doi":"10.1021/acsmeasuresciau.3c00047","DOIUrl":"10.1021/acsmeasuresciau.3c00047","url":null,"abstract":"<p >Aptamer-functionalized biosensors exhibit high selectivity for monitoring neurotransmitters in complex environments. We translated nanoscale aptamer-modified nanopipette sensors to detect endogenous dopamine release <i>in vitro</i> and <i>ex vivo</i>. These sensors employ quartz nanopipettes with nanoscale pores (ca. 10 nm diameter) that are functionalized with aptamers that enable the selective capture of dopamine through target-specific conformational changes. The dynamic behavior of aptamer structures upon dopamine binding leads to the rearrangement of surface charge within the nanopore, resulting in measurable changes in ionic current. To assess sensor performance in real time, we designed a fluidic platform to characterize the temporal dynamics of nanopipette sensors. We then conducted differential biosensing by deploying control sensors modified with nonspecific DNA alongside dopamine-specific sensors in biological milieu. Our results confirm the functionality of aptamer-modified nanopipettes for direct measurements in undiluted complex fluids, specifically in the culture media of human-induced pluripotent stem cell-derived dopaminergic neurons. Moreover, sensor implantation and repeated measurements in acute brain slices was possible, likely owing to the protected sensing area inside nanoscale DNA-filled orifices, minimizing exposure to nonspecific interferents and preventing clogging. Further, differential recordings of endogenous dopamine released through electrical stimulation in the dorsolateral striatum demonstrate the potential of aptamer-modified nanopipettes for <i>ex vivo</i> recordings with unprecedented spatial resolution and reduced tissue damage.</p>","PeriodicalId":29800,"journal":{"name":"ACS Measurement Science Au","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsmeasuresciau.3c00047","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138539171","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-09DOI: 10.1021/acsmeasuresciau.3c00043
Shan-Chu Yu, Tzu-Yen Huang and Tzu-En Lin*,
This research delves into the development and optimization of MXene nanosheet-based paper electrodes, emphasizing their adaptability in green electronics and diverse applications. Xuan paper, a cellulose-based material, was identified as an ideal substrate for its mechanical attributes and capacity to accommodate MXene, further yielding outstanding electrical conductivity. The MXene paper electrode demonstrated consistent performance under various conditions, showing its potential in the field of wearable electronics and medical devices. Notably, its impressive electrothermal capabilities and environmentally conscious decomposition mechanism make it a promising candidate for future green electronic applications. Overall, this study underscores the electrode’s harmonization of performance and environmental sustainability, paving the way for its integration into futuristic electronic solutions.
{"title":"MXene Nanosheets-Decorated Paper as a Green Electronics Material for Biosensing","authors":"Shan-Chu Yu, Tzu-Yen Huang and Tzu-En Lin*, ","doi":"10.1021/acsmeasuresciau.3c00043","DOIUrl":"10.1021/acsmeasuresciau.3c00043","url":null,"abstract":"<p >This research delves into the development and optimization of MXene nanosheet-based paper electrodes, emphasizing their adaptability in green electronics and diverse applications. Xuan paper, a cellulose-based material, was identified as an ideal substrate for its mechanical attributes and capacity to accommodate MXene, further yielding outstanding electrical conductivity. The MXene paper electrode demonstrated consistent performance under various conditions, showing its potential in the field of wearable electronics and medical devices. Notably, its impressive electrothermal capabilities and environmentally conscious decomposition mechanism make it a promising candidate for future green electronic applications. Overall, this study underscores the electrode’s harmonization of performance and environmental sustainability, paving the way for its integration into futuristic electronic solutions.</p>","PeriodicalId":29800,"journal":{"name":"ACS Measurement Science Au","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsmeasuresciau.3c00043","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135241302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Reactions involving sulfhydryl groups play a critical role in maintaining the structure and function of proteins. However, traditional mechanistic studies have mainly focused on reaction rates and the efficiency in bulk solutions. Herein, we have designed a cysteine-mutated nanopore as a biological protein nanoreactor for electrochemical visualization of the thiol substitute reaction. Statistical analysis of characteristic current signals shows that the apparent reaction rate at the single-molecule level in this confined nanoreactor reached 1400 times higher than that observed in bulk solution. This substantial acceleration of thiol substitution reactions within the nanopore offers promising opportunities for advancing the design and optimization of micro/nanoreactors. Moreover, our results could shed light on the understanding of sulfhydryl reactions and the thiol-involved signal transduction mechanisms in biological systems.
{"title":"Electrochemical Visualization of Single-Molecule Thiol Substitution with Nanopore Measurement","authors":"Chao-Nan Yang, Wei Liu, Hao-Tian Liu, Ji-Chang Zhang, Ru-Jia Yu, Yi-Lun Ying* and Yi-Tao Long, ","doi":"10.1021/acsmeasuresciau.3c00046","DOIUrl":"10.1021/acsmeasuresciau.3c00046","url":null,"abstract":"<p >Reactions involving sulfhydryl groups play a critical role in maintaining the structure and function of proteins. However, traditional mechanistic studies have mainly focused on reaction rates and the efficiency in bulk solutions. Herein, we have designed a cysteine-mutated nanopore as a biological protein nanoreactor for electrochemical visualization of the thiol substitute reaction. Statistical analysis of characteristic current signals shows that the apparent reaction rate at the single-molecule level in this confined nanoreactor reached 1400 times higher than that observed in bulk solution. This substantial acceleration of thiol substitution reactions within the nanopore offers promising opportunities for advancing the design and optimization of micro/nanoreactors. Moreover, our results could shed light on the understanding of sulfhydryl reactions and the thiol-involved signal transduction mechanisms in biological systems.</p>","PeriodicalId":29800,"journal":{"name":"ACS Measurement Science Au","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsmeasuresciau.3c00046","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135292396","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-06DOI: 10.1021/acsmeasuresciau.3c00044
D. V. Estrada-Osorio, Ricardo A. Escalona-Villalpando, M. P. Gurrola, Ricardo Chaparro-Sánchez, J. A. Rodríguez-Morales, L. G. Arriaga and J. Ledesma-García*,
This article provides an overview of the work reported in the past decade in the field of microfluidic fuel cells. To develop appropriate research, the most commonly used electrocatalytic materials were considered and a new classification was proposed based on their nature: abiotic, hybrid, or biological. This classification allowed the authors to discern the information collected. In this sense, the types of electrocatalysts used for the oxidation of the most common fuels in different environments, such as glucose, ethanol, methanol, glycerol, and lactate, were presented. There are several phenomena presented in this article. This information gives an overview of where research is heading in the field of materials for electrocatalysis, regardless of the fuel used in the microfluidic fuel cell: the synthesis of abiotic and biological materials to obtain hybrid materials that allow the use of the best properties of each material.
{"title":"Abiotic, Hybrid, and Biological Electrocatalytic Materials Applied in Microfluidic Fuel Cells: A Comprehensive Review","authors":"D. V. Estrada-Osorio, Ricardo A. Escalona-Villalpando, M. P. Gurrola, Ricardo Chaparro-Sánchez, J. A. Rodríguez-Morales, L. G. Arriaga and J. Ledesma-García*, ","doi":"10.1021/acsmeasuresciau.3c00044","DOIUrl":"10.1021/acsmeasuresciau.3c00044","url":null,"abstract":"<p >This article provides an overview of the work reported in the past decade in the field of microfluidic fuel cells. To develop appropriate research, the most commonly used electrocatalytic materials were considered and a new classification was proposed based on their nature: abiotic, hybrid, or biological. This classification allowed the authors to discern the information collected. In this sense, the types of electrocatalysts used for the oxidation of the most common fuels in different environments, such as glucose, ethanol, methanol, glycerol, and lactate, were presented. There are several phenomena presented in this article. This information gives an overview of where research is heading in the field of materials for electrocatalysis, regardless of the fuel used in the microfluidic fuel cell: the synthesis of abiotic and biological materials to obtain hybrid materials that allow the use of the best properties of each material.</p>","PeriodicalId":29800,"journal":{"name":"ACS Measurement Science Au","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsmeasuresciau.3c00044","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135634304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-01DOI: 10.1021/acsmeasuresciau.3c00038
Youngho Song, Changyu Tian, Yullim Lee, Minyeong Yoon, Sang Eun Yoon and Soo-Yeon Cho*,
With the definition of therapeutics now encompassing transplanted or engineered cells and their molecular products, there is a growing scientific necessity for analytics to understand this new category of drugs. This Perspective highlights the recent development of new measurement science on label-free single cell analysis, nanosensor chemical cytometry (NCC), and their potential for cellular therapeutics and precision medicine. NCC is based on microfluidics integrated with fluorescent nanosensor arrays utilizing the optical lensing effect of a single cell to real-time extract molecular properties and correlate them with physical attributes of single cells. This new class of cytometry can quantify the heterogeneity of the multivariate physicochemical attributes of the cell populations in a completely label-free and nondestructive way and, thus, suggest the vein-to-vein conditions for the safe therapeutic applications. After the introduction of the NCC technology, we suggest the technological development roadmap for the maturation of the new field: from the sensor/chip design perspective to the system/software development level based on hardware automation and deep learning data analytics. The advancement of this new single cell sensing technology is anticipated to aid rich and multivariate single cell data setting and support safe and reliable cellular therapeutics. This new measurement science can lead to data-driven personalized precision medicine.
{"title":"Nanosensor Chemical Cytometry: Advances and Opportunities in Cellular Therapy and Precision Medicine","authors":"Youngho Song, Changyu Tian, Yullim Lee, Minyeong Yoon, Sang Eun Yoon and Soo-Yeon Cho*, ","doi":"10.1021/acsmeasuresciau.3c00038","DOIUrl":"10.1021/acsmeasuresciau.3c00038","url":null,"abstract":"<p >With the definition of therapeutics now encompassing transplanted or engineered cells and their molecular products, there is a growing scientific necessity for analytics to understand this new category of drugs. This Perspective highlights the recent development of new measurement science on label-free single cell analysis, nanosensor chemical cytometry (NCC), and their potential for cellular therapeutics and precision medicine. NCC is based on microfluidics integrated with fluorescent nanosensor arrays utilizing the optical lensing effect of a single cell to real-time extract molecular properties and correlate them with physical attributes of single cells. This new class of cytometry can quantify the heterogeneity of the multivariate physicochemical attributes of the cell populations in a completely label-free and nondestructive way and, thus, suggest the vein-to-vein conditions for the safe therapeutic applications. After the introduction of the NCC technology, we suggest the technological development roadmap for the maturation of the new field: from the sensor/chip design perspective to the system/software development level based on hardware automation and deep learning data analytics. The advancement of this new single cell sensing technology is anticipated to aid rich and multivariate single cell data setting and support safe and reliable cellular therapeutics. This new measurement science can lead to data-driven personalized precision medicine.</p>","PeriodicalId":29800,"journal":{"name":"ACS Measurement Science Au","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsmeasuresciau.3c00038","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135325564","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-31DOI: 10.1021/acsmeasuresciau.3c00037
Priyanka Dey*,
Surface enhanced Raman scattering (SERS), since its discovery in the mid-1970s, has taken on many roles in the world of analytical measurement science. From identifying known and unknown chemicals in mixtures such as pharmaceutical and environmental samples to enabling qualitative and quantitative analysis of biomolecules and biomedical disease markers (or biomarkers), furthermore expanding to tracking nanostructures in vivo for medical diagnosis and therapy. This is because SERS combines the inherent power of Raman scattering capable of molecular species identification, topped with tremendous amplification in the Raman signal intensity when the molecule of interest is positioned near plasmonic nanostructures. The higher the SERS signal amplification, the lower the limit of detection (LOD) that could be achieved for the above applications. Therefore, improving SERS sensing efficiencies is vital. The signal reproducibility and SERS enhancement factor (EF) heavily rely on plasmonic nanostructure design, which has led to tremendous work in the field. But SERS signal and EF reproducibility remain key limitations for its wider market usability. This Review will scrutinize factors, some recognized and some often overlooked, that dictate the SERS signal and are of utmost importance to enable reproducible SERS EFs. Most of the factors pertain to colloidal labeled SERS. Some critically reviewed factors include the nanostructure’s surface area as a limiting factor, SERS hot-spots including optimizing the SERS EF within the hot-spot volume and positioning labels, properties of label molecules governing molecule orientation in hot-spots, and resonance effects. A better understanding of these factors will enable improved optimization and control of the experimental SERS, enabling extremely sensitive LODs without overestimating the SERS EFs. These are crucial steps toward identification and reproducible quantification in SERS sensing.
自 20 世纪 70 年代中期发现表面增强拉曼散射(SERS)以来,它在分析测量科学领域发挥了许多作用。从识别医药和环境样品等混合物中的已知和未知化学物质,到对生物大分子和生物医学疾病标志物(或生物标记物)进行定性和定量分析,再到追踪体内纳米结构以进行医学诊断和治疗。这是因为 SERS 结合了拉曼散射固有的分子物种识别能力,当感兴趣的分子靠近等离子纳米结构时,拉曼信号强度会被极大放大。SERS 信号放大率越高,上述应用所能达到的检测限(LOD)就越低。因此,提高 SERS 传感效率至关重要。信号重现性和 SERS 增强因子(EF)在很大程度上依赖于等离子纳米结构的设计,这也导致了该领域的大量研究工作。但是,SERS 信号和 EF 可重复性仍然是其广泛市场应用的关键限制因素。本综述将仔细研究决定 SERS 信号的因素,其中有些是公认的,有些则经常被忽视,而这些因素对于实现 SERS EF 的可重复性至关重要。大多数因素都与胶体标记 SERS 有关。一些重要因素包括作为限制因素的纳米结构表面积、SERS 热点(包括优化热点体积内的 SERS EF 和定位标签)、标签分子在热点中的取向特性以及共振效应。更好地了解这些因素将有助于改进对 SERS 实验的优化和控制,从而在不高估 SERS EF 的情况下实现极其灵敏的 LOD。这些都是在 SERS 传感中实现识别和可重复量化的关键步骤。
{"title":"Aiming for Maximized and Reproducible Enhancements in the Obstacle Race of SERS","authors":"Priyanka Dey*, ","doi":"10.1021/acsmeasuresciau.3c00037","DOIUrl":"10.1021/acsmeasuresciau.3c00037","url":null,"abstract":"<p >Surface enhanced Raman scattering (SERS), since its discovery in the mid-1970s, has taken on many roles in the world of analytical measurement science. From identifying known and unknown chemicals in mixtures such as pharmaceutical and environmental samples to enabling qualitative and quantitative analysis of biomolecules and biomedical disease markers (or biomarkers), furthermore expanding to tracking nanostructures in vivo for medical diagnosis and therapy. This is because SERS combines the inherent power of Raman scattering capable of molecular species identification, topped with tremendous amplification in the Raman signal intensity when the molecule of interest is positioned near plasmonic nanostructures. The higher the SERS signal amplification, the lower the limit of detection (LOD) that could be achieved for the above applications. Therefore, improving SERS sensing efficiencies is vital. The signal reproducibility and SERS enhancement factor (EF) heavily rely on plasmonic nanostructure design, which has led to tremendous work in the field. But SERS signal and EF reproducibility remain key limitations for its wider market usability. This Review will scrutinize factors, some recognized and some often overlooked, that dictate the SERS signal and are of utmost importance to enable reproducible SERS EFs. Most of the factors pertain to colloidal labeled SERS. Some critically reviewed factors include the nanostructure’s surface area as a limiting factor, SERS hot-spots including optimizing the SERS EF within the hot-spot volume and positioning labels, properties of label molecules governing molecule orientation in hot-spots, and resonance effects. A better understanding of these factors will enable improved optimization and control of the experimental SERS, enabling extremely sensitive LODs without overestimating the SERS EFs. These are crucial steps toward identification and reproducible quantification in SERS sensing.</p>","PeriodicalId":29800,"journal":{"name":"ACS Measurement Science Au","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsmeasuresciau.3c00037","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135868722","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-27DOI: 10.1021/acsmeasuresciau.3c00034
Nabajyoti Kalita, Sudarshan Gogoi, Shelley D. Minteer* and Pranab Goswami*,
The critical performance factors such as selectivity, sensitivity, operational and storage stability, and response time of electrochemical biosensors are governed mainly by the function of their key component, the bioelectrode. Suitable design and fabrication strategies of the bioelectrode interface are essential for realizing the requisite performance of the biosensors for their practical utility. A multifaceted attempt to achieve this goal is visible from the vast literature exploring effective strategies for preparing, immobilizing, and stabilizing biorecognition elements on the electrode surface and efficient transduction of biochemical signals into electrical ones (i.e., current, voltage, and impedance) through the bioelectrode interface with the aid of advanced materials and techniques. The commercial success of biosensors in modern society is also increasingly influenced by their size (and hence portability), multiplexing capability, and coupling in the interface of the wireless communication technology, which facilitates quick data transfer and linked decision-making processes in real-time in different areas such as healthcare, agriculture, food, and environmental applications. Therefore, fabrication of the bioelectrode involves careful selection and control of several parameters, including biorecognition elements, electrode materials, shape and size of the electrode, detection principles, and various fabrication strategies, including microscale and printing technologies. This review discusses recent trends in bioelectrode designs and fabrications for developing electrochemical biosensors. The discussions have been delineated into the types of biorecognition elements and their immobilization strategies, signal transduction approaches, commonly used advanced materials for electrode fabrication and techniques for fabricating the bioelectrodes, and device integration with modern electronic communication technology for developing electrochemical biosensors of commercial interest.
{"title":"Advances in Bioelectrode Design for Developing Electrochemical Biosensors","authors":"Nabajyoti Kalita, Sudarshan Gogoi, Shelley D. Minteer* and Pranab Goswami*, ","doi":"10.1021/acsmeasuresciau.3c00034","DOIUrl":"10.1021/acsmeasuresciau.3c00034","url":null,"abstract":"<p >The critical performance factors such as selectivity, sensitivity, operational and storage stability, and response time of electrochemical biosensors are governed mainly by the function of their key component, the bioelectrode. Suitable design and fabrication strategies of the bioelectrode interface are essential for realizing the requisite performance of the biosensors for their practical utility. A multifaceted attempt to achieve this goal is visible from the vast literature exploring effective strategies for preparing, immobilizing, and stabilizing biorecognition elements on the electrode surface and efficient transduction of biochemical signals into electrical ones (i.e., current, voltage, and impedance) through the bioelectrode interface with the aid of advanced materials and techniques. The commercial success of biosensors in modern society is also increasingly influenced by their size (and hence portability), multiplexing capability, and coupling in the interface of the wireless communication technology, which facilitates quick data transfer and linked decision-making processes in real-time in different areas such as healthcare, agriculture, food, and environmental applications. Therefore, fabrication of the bioelectrode involves careful selection and control of several parameters, including biorecognition elements, electrode materials, shape and size of the electrode, detection principles, and various fabrication strategies, including microscale and printing technologies. This review discusses recent trends in bioelectrode designs and fabrications for developing electrochemical biosensors. The discussions have been delineated into the types of biorecognition elements and their immobilization strategies, signal transduction approaches, commonly used advanced materials for electrode fabrication and techniques for fabricating the bioelectrodes, and device integration with modern electronic communication technology for developing electrochemical biosensors of commercial interest.</p>","PeriodicalId":29800,"journal":{"name":"ACS Measurement Science Au","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsmeasuresciau.3c00034","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136318293","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-23DOI: 10.1021/acsmeasuresciau.3c00029
Kun-Hung Lee, Ming-Hung Hsu, Hsin-Hsien Chen and Shieh-Yueh Yang*,
By utilizing a high-temperature superconducting quantum interference device (high-Tc SQUID) magnetometer, an alternating current (AC) magnetosusceptometer, referred to as an analyzer, was developed for ultrasensitive immunoassays. The analyzer has been applied to assay biomarkers in human plasma associated with Alzheimer’s disease (AD) and Parkinson’s disease (PD). The involved assay methodology is the so-called immunomagnetic reduction (IMR). Such an analyzer has been approved for clinical use in Taiwan and Europe. The mass production of the analyzer is needed for clinical utilities. The issue of exploring analyzer-to-analyzer variations in the performances becomes critical. Unfortunately, there is no standard characterization to determine the variations in performances among analyzers. In this study, key characterizations, such as output signal stability, signal-to-noise ratio, measured concentrations of a control sample, etc., are proposed. In total, three analyzers are characterized in this work. The detected biomarkers include amyloid peptides, total tau protein, phosphorylated tau protein, and α-synuclein protein for AD and PD. Through one-way ANOVA for any of the characterizations among the three analyzers, it was found that there was no significant difference in any of these characterizations among the analyzers (p > 0.05). Furthermore, the three analyzers are applied to assay biomolecules for AD and PD in reference samples. High correlations (r > 0.8) in measured concentrations of any of these biomarkers in reference samples were obtained among the three analyzers. The results demonstrate that the proposed characterizations are feasible for achieving consistent performance among high-Tc SQUID-based AC magnetosusceptometers for assaying biomolecules.
{"title":"Analyzer-to-Analyzer Variations in Assaying Ultralow Concentrated Biomarkers Associated with Neurodegenerative Diseases Using Immunomagnetic Reduction","authors":"Kun-Hung Lee, Ming-Hung Hsu, Hsin-Hsien Chen and Shieh-Yueh Yang*, ","doi":"10.1021/acsmeasuresciau.3c00029","DOIUrl":"10.1021/acsmeasuresciau.3c00029","url":null,"abstract":"<p >By utilizing a high-temperature superconducting quantum interference device (high-<i>T</i><sub>c</sub> SQUID) magnetometer, an alternating current (AC) magnetosusceptometer, referred to as an analyzer, was developed for ultrasensitive immunoassays. The analyzer has been applied to assay biomarkers in human plasma associated with Alzheimer’s disease (AD) and Parkinson’s disease (PD). The involved assay methodology is the so-called immunomagnetic reduction (IMR). Such an analyzer has been approved for clinical use in Taiwan and Europe. The mass production of the analyzer is needed for clinical utilities. The issue of exploring analyzer-to-analyzer variations in the performances becomes critical. Unfortunately, there is no standard characterization to determine the variations in performances among analyzers. In this study, key characterizations, such as output signal stability, signal-to-noise ratio, measured concentrations of a control sample, etc., are proposed. In total, three analyzers are characterized in this work. The detected biomarkers include amyloid peptides, total tau protein, phosphorylated tau protein, and α-synuclein protein for AD and PD. Through one-way ANOVA for any of the characterizations among the three analyzers, it was found that there was no significant difference in any of these characterizations among the analyzers (<i>p</i> > 0.05). Furthermore, the three analyzers are applied to assay biomolecules for AD and PD in reference samples. High correlations (<i>r</i> > 0.8) in measured concentrations of any of these biomarkers in reference samples were obtained among the three analyzers. The results demonstrate that the proposed characterizations are feasible for achieving consistent performance among high-<i>T</i><sub>c</sub> SQUID-based AC magnetosusceptometers for assaying biomolecules.</p>","PeriodicalId":29800,"journal":{"name":"ACS Measurement Science Au","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsmeasuresciau.3c00029","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135366559","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}