Pub Date : 2023-10-20DOI: 10.1021/acsmeasuresciau.3c00033
Piliang Xiang, Andrey Liyu, Yumi Kwon, Dehong Hu, Sarah M. Williams, Dušan Veličković, Lye Meng Markillie, William B. Chrisler, Ljiljana Paša-Tolić* and Ying Zhu*,
Multiplexed molecular profiling of tissue microenvironments, or spatial omics, can provide critical insights into cellular functions and disease pathology. The coupling of laser microdissection with mass spectrometry-based proteomics has enabled deep and unbiased mapping of >1000 proteins. However, the throughput of laser microdissection is often limited due to tedious two-step procedures, sequential laser cutting, and sample collection. The two-step procedure also hinders the further improvement of spatial resolution to <10 μm as needed for subcellular proteomics. Herein, we developed a high-throughput and high-resolution spatial proteomics platform by seamlessly coupling deep ultraviolet (DUV) laser ablation (LA) with nanoPOTS (Nanodroplet Processing in One pot for Trace Samples)-based sample preparation. We demonstrated the DUV-LA system can quickly isolate and collect tissue samples at a throughput of ∼30 spots/min and a spatial resolution down to 2 μm from a 10 μm thick human pancreas tissue section. To improve sample recovery, we developed a proximity aerosol collection approach by placing DMSO droplets close to LA spots. We demonstrated the DUV-LA-nanoPOTS platform can detect an average of 1312, 1533, and 1966 proteins from ablation spots with diameters of 7, 13, and 19 μm, respectively. In a proof-of-concept study, we isolated and profiled two distinct subcellular regions of the pancreas tissue revealed by hematoxylin and eosin (H&E) staining. Quantitative proteomics revealed proteins specifically enriched to subcellular compartments.
{"title":"Spatial Proteomics toward Subcellular Resolution by Coupling Deep Ultraviolet Laser Ablation with Nanodroplet Sample Preparation","authors":"Piliang Xiang, Andrey Liyu, Yumi Kwon, Dehong Hu, Sarah M. Williams, Dušan Veličković, Lye Meng Markillie, William B. Chrisler, Ljiljana Paša-Tolić* and Ying Zhu*, ","doi":"10.1021/acsmeasuresciau.3c00033","DOIUrl":"10.1021/acsmeasuresciau.3c00033","url":null,"abstract":"<p >Multiplexed molecular profiling of tissue microenvironments, or spatial omics, can provide critical insights into cellular functions and disease pathology. The coupling of laser microdissection with mass spectrometry-based proteomics has enabled deep and unbiased mapping of >1000 proteins. However, the throughput of laser microdissection is often limited due to tedious two-step procedures, sequential laser cutting, and sample collection. The two-step procedure also hinders the further improvement of spatial resolution to <10 μm as needed for subcellular proteomics. Herein, we developed a high-throughput and high-resolution spatial proteomics platform by seamlessly coupling deep ultraviolet (DUV) laser ablation (LA) with nanoPOTS (Nanodroplet Processing in One pot for Trace Samples)-based sample preparation. We demonstrated the DUV-LA system can quickly isolate and collect tissue samples at a throughput of ∼30 spots/min and a spatial resolution down to 2 μm from a 10 μm thick human pancreas tissue section. To improve sample recovery, we developed a proximity aerosol collection approach by placing DMSO droplets close to LA spots. We demonstrated the DUV-LA-nanoPOTS platform can detect an average of 1312, 1533, and 1966 proteins from ablation spots with diameters of 7, 13, and 19 μm, respectively. In a proof-of-concept study, we isolated and profiled two distinct subcellular regions of the pancreas tissue revealed by hematoxylin and eosin (H&E) staining. Quantitative proteomics revealed proteins specifically enriched to subcellular compartments.</p>","PeriodicalId":29800,"journal":{"name":"ACS Measurement Science Au","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsmeasuresciau.3c00033","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135570253","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-20DOI: 10.1021/acsmeasuresciau.3c00036
Mark A. Klein*, Sergey Lazarev, Charles Gervasi, Cristopher Cowan, Thomas Machleidt and Rachel Friedman Ohana*,
Bioluminescence emitted from a luciferase-catalyzed oxidation of luciferin has been broadly utilized to report on biological events, predominantly through relative changes in the light output. Recent advances in protein engineering and synthetic chemistry have yielded bioluminescent systems with markedly improved brightness and bioavailability. These developments have enabled not only the detection of biological events at far lower expression levels but also new opportunities utilizing bioluminescence to power photochemistry in cells. Regardless of the application, bioluminescence analyses have leaned heavily on the use of luminometers to measure the light output of a system. Current luminometers report the light output of a sample in relative units, limiting the ability to compare data between instruments and preventing the absolute power of a bioluminescent system from being quantified. Luminescent solution calibrants comprising luciferases and their cognate luciferins that have been characterized for absolute light output would enable calibration of any given luminometer for absolute photon counting. To this end, we have built a custom light detection apparatus and used it alongside wavelength-matched LED light sources emitting at 450 and 561 nm to characterize the absolute power of a series of NanoLuc and firefly luciferase solutions, respectively. This approach revealed that these two common luciferases produce 3.72 × 10–18 and 7.25 × 10–20 watts/molecule, respectively. Components of these luminescent solution calibrants are commercially available and produce stable bioluminescent signals over 2–5 min, enabling any luminometer to be calibrated for power measurements of bioluminescence emitted by these two luciferases in units of watts or photons per second.
{"title":"Luciferase Calibrants Enable Absolute Quantitation of Bioluminescence Power","authors":"Mark A. Klein*, Sergey Lazarev, Charles Gervasi, Cristopher Cowan, Thomas Machleidt and Rachel Friedman Ohana*, ","doi":"10.1021/acsmeasuresciau.3c00036","DOIUrl":"10.1021/acsmeasuresciau.3c00036","url":null,"abstract":"<p >Bioluminescence emitted from a luciferase-catalyzed oxidation of luciferin has been broadly utilized to report on biological events, predominantly through relative changes in the light output. Recent advances in protein engineering and synthetic chemistry have yielded bioluminescent systems with markedly improved brightness and bioavailability. These developments have enabled not only the detection of biological events at far lower expression levels but also new opportunities utilizing bioluminescence to power photochemistry in cells. Regardless of the application, bioluminescence analyses have leaned heavily on the use of luminometers to measure the light output of a system. Current luminometers report the light output of a sample in relative units, limiting the ability to compare data between instruments and preventing the absolute power of a bioluminescent system from being quantified. Luminescent solution calibrants comprising luciferases and their cognate luciferins that have been characterized for absolute light output would enable calibration of any given luminometer for absolute photon counting. To this end, we have built a custom light detection apparatus and used it alongside wavelength-matched LED light sources emitting at 450 and 561 nm to characterize the absolute power of a series of NanoLuc and firefly luciferase solutions, respectively. This approach revealed that these two common luciferases produce 3.72 × 10<sup>–18</sup> and 7.25 × 10<sup>–20</sup> watts/molecule, respectively. Components of these luminescent solution calibrants are commercially available and produce stable bioluminescent signals over 2–5 min, enabling any luminometer to be calibrated for power measurements of bioluminescence emitted by these two luciferases in units of watts or photons per second.</p>","PeriodicalId":29800,"journal":{"name":"ACS Measurement Science Au","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsmeasuresciau.3c00036","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135618067","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-12DOI: 10.1021/acsmeasuresciau.3c00026
Michael Hlavatsch, Andrea Teuber, Max Eisele and Boris Mizaikoff*,
In this study, we demonstrate the combination of a tunable broadband mid-infrared (MIR) femtosecond laser source separately coupled to a ZnSe crystal horizontal attenuated total reflection (ATR) sensor cell for liquid phase samples and to a substrate-integrated hollow waveguide (iHWG) for gas phase samples. Utilizing this emerging light source technology as an alternative MIR radiation source for Fourier transform infrared (FTIR) spectroscopy opens interesting opportunities for analytical applications. In a first approach, we demonstrate the quantitative analysis of three individual samples, ethanol (liquid), methane (gas), and 2-methyl-1-propene (gas), with limits of detection of 0.3% (ethanol) and 22 ppmv and 74 ppmv (methane and isobutylene), respectively, determined at selected emission wavelengths of the MIR laser source (i.e., 890 cm–1, 1046 and 1305 cm–1). Hence, the applicability of a broadband MIR femtosecond laser source as a bright alternative light source for quantitative analysis via FTIR spectroscopy in various sensing configurations has been demonstrated.
{"title":"Sensing Liquid- and Gas-Phase Hydrocarbons via Mid-Infrared Broadband Femtosecond Laser Source Spectroscopy","authors":"Michael Hlavatsch, Andrea Teuber, Max Eisele and Boris Mizaikoff*, ","doi":"10.1021/acsmeasuresciau.3c00026","DOIUrl":"10.1021/acsmeasuresciau.3c00026","url":null,"abstract":"<p >In this study, we demonstrate the combination of a tunable broadband mid-infrared (MIR) femtosecond laser source separately coupled to a ZnSe crystal horizontal attenuated total reflection (ATR) sensor cell for liquid phase samples and to a substrate-integrated hollow waveguide (iHWG) for gas phase samples. Utilizing this emerging light source technology as an alternative MIR radiation source for Fourier transform infrared (FTIR) spectroscopy opens interesting opportunities for analytical applications. In a first approach, we demonstrate the quantitative analysis of three individual samples, ethanol (liquid), methane (gas), and 2-methyl-1-propene (gas), with limits of detection of 0.3% (ethanol) and 22 ppm<sub>v</sub> and 74 ppm<sub>v</sub> (methane and isobutylene), respectively, determined at selected emission wavelengths of the MIR laser source (i.e., 890 cm<sup>–1</sup>, 1046 and 1305 cm<sup>–1</sup>). Hence, the applicability of a broadband MIR femtosecond laser source as a bright alternative light source for quantitative analysis via FTIR spectroscopy in various sensing configurations has been demonstrated.</p>","PeriodicalId":29800,"journal":{"name":"ACS Measurement Science Au","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsmeasuresciau.3c00026","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136014499","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-09DOI: 10.1021/acsmeasuresciau.3c00032
Zachary R. Sitte, Abel Andre Miranda Buzetta, Sarina J. Jones, Zhi-Wei Lin, Nathan Ashbrook Whitman and Matthew R. Lockett*,
Cell-based assays enable molecular-level studies of cellular responses to drug candidates or potential toxins. Transactivation assays quantify the activation or inhibition of nuclear receptors, key transcriptional regulators of gene targets in mamalian cells. One such assay couples the expression of luciferase to the transcriptional activity of estrogen receptor-alpha (ERα). While this assay is regularly used to screen for agonists and antagonists of the estrogen signaling pathway, the setup relies on monolayer cultures in which cells are plated directly onto the surface of cell-compatible plasticware. The tumor microenvironment is more than a collection of cancerous cells and is profoundly influenced by tissue architecture, the presence of extracellular matrices, and intercellular signaling molecules produced by non-cancerous neighboring cells (e.g., fibroblasts). There exists a need for three-dimensional culture platforms that can be rapidly prototyped to assess new configurations and readily produced in the large numbers needed for translational studies and screening applications. Here, we demonstrate the utility of the paper-based culture platform to probe the effects of intercellular signaling between two cell types. We used paper scaffolds to generate tumor-like environments, forming a defined volume of breast cancer cells suspended in collagen. By placing the paper scaffolds in commercial 96-well plates, we compared monocultures of only breast cancer cells with coculture configurations containing fibroblasts in different locations that mimicked the stages of breast cancer progression. We show that ERα transactivation in the T47D-KBluc cell line is affected by the presence, number, and proximity of fibroblasts, and is a consequence of intercellular signaling molecules. After screening a small library of fibroblast-secreted signaling molecules, we showed that interleukin-6 (IL-6) was the primary driver of reduced estradiol sensitivity. These effects were mitigated in the coculture configurations by the addition of an IL-6 neutralizing antibody. We also assessed estrogen receptor expression and transcriptional regulation, further demonstrating the utility of the paper-based platform for detailed mechanistic studies.
{"title":"Paper-Based Coculture Platform to Evaluate the Effects of Fibroblasts on Estrogen Signaling in ER+ Breast Cancers","authors":"Zachary R. Sitte, Abel Andre Miranda Buzetta, Sarina J. Jones, Zhi-Wei Lin, Nathan Ashbrook Whitman and Matthew R. Lockett*, ","doi":"10.1021/acsmeasuresciau.3c00032","DOIUrl":"10.1021/acsmeasuresciau.3c00032","url":null,"abstract":"<p >Cell-based assays enable molecular-level studies of cellular responses to drug candidates or potential toxins. Transactivation assays quantify the activation or inhibition of nuclear receptors, key transcriptional regulators of gene targets in mamalian cells. One such assay couples the expression of luciferase to the transcriptional activity of estrogen receptor-alpha (ERα). While this assay is regularly used to screen for agonists and antagonists of the estrogen signaling pathway, the setup relies on monolayer cultures in which cells are plated directly onto the surface of cell-compatible plasticware. The tumor microenvironment is more than a collection of cancerous cells and is profoundly influenced by tissue architecture, the presence of extracellular matrices, and intercellular signaling molecules produced by non-cancerous neighboring cells (e.g., fibroblasts). There exists a need for three-dimensional culture platforms that can be rapidly prototyped to assess new configurations and readily produced in the large numbers needed for translational studies and screening applications. Here, we demonstrate the utility of the paper-based culture platform to probe the effects of intercellular signaling between two cell types. We used paper scaffolds to generate tumor-like environments, forming a defined volume of breast cancer cells suspended in collagen. By placing the paper scaffolds in commercial 96-well plates, we compared monocultures of only breast cancer cells with coculture configurations containing fibroblasts in different locations that mimicked the stages of breast cancer progression. We show that ERα transactivation in the T47D-KBluc cell line is affected by the presence, number, and proximity of fibroblasts, and is a consequence of intercellular signaling molecules. After screening a small library of fibroblast-secreted signaling molecules, we showed that interleukin-6 (IL-6) was the primary driver of reduced estradiol sensitivity. These effects were mitigated in the coculture configurations by the addition of an IL-6 neutralizing antibody. We also assessed estrogen receptor expression and transcriptional regulation, further demonstrating the utility of the paper-based platform for detailed mechanistic studies.</p>","PeriodicalId":29800,"journal":{"name":"ACS Measurement Science Au","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsmeasuresciau.3c00032","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135141994","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-05DOI: 10.1021/acsmeasuresciau.3c00039
Steven Kutarna, Wanzhen Chen, Ying Xiong, Runzeng Liu, Yufeng Gong and Hui Peng*,
Numerous transformation products are formed indoors, but they are outside the scope of current chemical databases. In this study, an in silico spectral database was established to screen previously unknown indoor transformation products of organophosphorus compounds (OPCs). An R package was developed that incorporated four indoor reactions to predict the transformation products of 712 seed OPCs. By further predicting MS2 fragments, an in silico spectral database was established consisting of 3509 OPCs and 28,812 MS2 fragments. With this database, 40 OPCs were tentatively detected in 23 indoor dust samples. This is the greatest number of OPCs reported to date indoors, among which two novel phosphonates were validated using standards. Twenty-four of the detected OPCs were predicted transformation products in which oxidation from organophosphites plays a major role. To confirm this, the in silico spectral database was expanded to include organophosphites for suspect screening in five types of preproduction plastics. A broad spectrum of 14 organophosphites was detected, with a particularly high abundance in polyvinyl chloride plastics and indoor end-user goods. This demonstrated the significant contribution of organophosphites to indoor organophosphates via oxidation, highlighting the strength of in silico spectral databases for the screening of unknown indoor transformation products.
{"title":"Screening of Indoor Transformation Products of Organophosphates and Organophosphites with an in Silico Spectral Database","authors":"Steven Kutarna, Wanzhen Chen, Ying Xiong, Runzeng Liu, Yufeng Gong and Hui Peng*, ","doi":"10.1021/acsmeasuresciau.3c00039","DOIUrl":"10.1021/acsmeasuresciau.3c00039","url":null,"abstract":"<p >Numerous transformation products are formed indoors, but they are outside the scope of current chemical databases. In this study, an in silico spectral database was established to screen previously unknown indoor transformation products of organophosphorus compounds (OPCs). An R package was developed that incorporated four indoor reactions to predict the transformation products of 712 seed OPCs. By further predicting MS<sup>2</sup> fragments, an in silico spectral database was established consisting of 3509 OPCs and 28,812 MS<sup>2</sup> fragments. With this database, 40 OPCs were tentatively detected in 23 indoor dust samples. This is the greatest number of OPCs reported to date indoors, among which two novel phosphonates were validated using standards. Twenty-four of the detected OPCs were predicted transformation products in which oxidation from organophosphites plays a major role. To confirm this, the in silico spectral database was expanded to include organophosphites for suspect screening in five types of preproduction plastics. A broad spectrum of 14 organophosphites was detected, with a particularly high abundance in polyvinyl chloride plastics and indoor end-user goods. This demonstrated the significant contribution of organophosphites to indoor organophosphates via oxidation, highlighting the strength of in silico spectral databases for the screening of unknown indoor transformation products.</p>","PeriodicalId":29800,"journal":{"name":"ACS Measurement Science Au","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsmeasuresciau.3c00039","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135482018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-20DOI: 10.1021/acsmeasuresciau.3c00028
Nemira Zilinskaite, Rajendra P. Shukla and Ausra Baradoke*,
This Review provides a comprehensive overview of 3D printing techniques to fabricate implantable microelectrodes for the electrochemical detection of biomarkers in the early diagnosis of cardiovascular and neurodegenerative diseases. Early diagnosis of these diseases is crucial to improving patient outcomes and reducing healthcare systems' burden. Biomarkers serve as measurable indicators of these diseases, and implantable microelectrodes offer a promising tool for their electrochemical detection. Here, we discuss various 3D printing techniques, including stereolithography (SLA), digital light processing (DLP), fused deposition modeling (FDM), selective laser sintering (SLS), and two-photon polymerization (2PP), highlighting their advantages and limitations in microelectrode fabrication. We also explore the materials used in constructing implantable microelectrodes, emphasizing their biocompatibility and biodegradation properties. The principles of electrochemical detection and the types of sensors utilized are examined, with a focus on their applications in detecting biomarkers for cardiovascular and neurodegenerative diseases. Finally, we address the current challenges and future perspectives in the field of 3D-printed implantable microelectrodes, emphasizing their potential for improving early diagnosis and personalized treatment strategies.
{"title":"Use of 3D Printing Techniques to Fabricate Implantable Microelectrodes for Electrochemical Detection of Biomarkers in the Early Diagnosis of Cardiovascular and Neurodegenerative Diseases","authors":"Nemira Zilinskaite, Rajendra P. Shukla and Ausra Baradoke*, ","doi":"10.1021/acsmeasuresciau.3c00028","DOIUrl":"10.1021/acsmeasuresciau.3c00028","url":null,"abstract":"<p >This Review provides a comprehensive overview of 3D printing techniques to fabricate implantable microelectrodes for the electrochemical detection of biomarkers in the early diagnosis of cardiovascular and neurodegenerative diseases. Early diagnosis of these diseases is crucial to improving patient outcomes and reducing healthcare systems' burden. Biomarkers serve as measurable indicators of these diseases, and implantable microelectrodes offer a promising tool for their electrochemical detection. Here, we discuss various 3D printing techniques, including stereolithography (SLA), digital light processing (DLP), fused deposition modeling (FDM), selective laser sintering (SLS), and two-photon polymerization (2PP), highlighting their advantages and limitations in microelectrode fabrication. We also explore the materials used in constructing implantable microelectrodes, emphasizing their biocompatibility and biodegradation properties. The principles of electrochemical detection and the types of sensors utilized are examined, with a focus on their applications in detecting biomarkers for cardiovascular and neurodegenerative diseases. Finally, we address the current challenges and future perspectives in the field of 3D-printed implantable microelectrodes, emphasizing their potential for improving early diagnosis and personalized treatment strategies.</p>","PeriodicalId":29800,"journal":{"name":"ACS Measurement Science Au","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsmeasuresciau.3c00028","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49692743","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-07DOI: 10.1021/acsmeasuresciau.3c00027
Marco Mancini, Valentina Gioia, Federica Simonetti, Alessandro Frugis and Stefano Cinti*,
Since 1940, poly- or perfluorinated alkyl substances (PFAS) have been largely used in many applications, including paints, fire foaming, household items, product packaging, and fabrics. Because of their extremely high persistency, they have been defined as “forever chemicals”. Although the EU is taking action to reduce their use, their widespread occurrence in environmental matrices and their harmful effects on human health require the use of highly performing analytical methods for efficient monitoring. Furthermore, novel PFAS are constantly revealed by both EU and National environmental agencies. The objective of this work is to investigate the cause of the signal decrease during the analysis of a standard PFAS mixture in water-based matrices, by proposing an efficient technical procedure for laboratory specialists. The analyses were carried out on a mixture of 30 PFAS, including both regulated and unknown substances (which are expected to be introduced in the guidelines), characterized by different chemical features, using LC-vials of two different materials, namely, glass and polypropylene, and dissolved in two solvents, namely, water and water–methanol. The temperature of analysis and the concentration of PFAS were also considered through LC-MS analyses at different times, in the 0–15 h range. Depending on the chemical structure and length of the PFAS, sampling and treatment procedures may be adopted to tackle the decrease and the release from the containers, reducing the risk of underestimating PFAS also in real water matrices.
{"title":"Evaluation of Pure PFAS Decrease in Controlled Settings","authors":"Marco Mancini, Valentina Gioia, Federica Simonetti, Alessandro Frugis and Stefano Cinti*, ","doi":"10.1021/acsmeasuresciau.3c00027","DOIUrl":"10.1021/acsmeasuresciau.3c00027","url":null,"abstract":"<p >Since 1940, poly- or perfluorinated alkyl substances (PFAS) have been largely used in many applications, including paints, fire foaming, household items, product packaging, and fabrics. Because of their extremely high persistency, they have been defined as “forever chemicals”. Although the EU is taking action to reduce their use, their widespread occurrence in environmental matrices and their harmful effects on human health require the use of highly performing analytical methods for efficient monitoring. Furthermore, novel PFAS are constantly revealed by both EU and National environmental agencies. The objective of this work is to investigate the cause of the signal decrease during the analysis of a standard PFAS mixture in water-based matrices, by proposing an efficient technical procedure for laboratory specialists. The analyses were carried out on a mixture of 30 PFAS, including both regulated and unknown substances (which are expected to be introduced in the guidelines), characterized by different chemical features, using LC-vials of two different materials, namely, glass and polypropylene, and dissolved in two solvents, namely, water and water–methanol. The temperature of analysis and the concentration of PFAS were also considered through LC-MS analyses at different times, in the 0–15 h range. Depending on the chemical structure and length of the PFAS, sampling and treatment procedures may be adopted to tackle the decrease and the release from the containers, reducing the risk of underestimating PFAS also in real water matrices.</p>","PeriodicalId":29800,"journal":{"name":"ACS Measurement Science Au","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsmeasuresciau.3c00027","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47299679","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-24DOI: 10.1021/acsmeasuresciau.3c00025
Ashley E. Lenhart, and , Robert T. Kennedy*,
Microfluidic devices are becoming an important tool for bioanalysis with applications including studying cell secretion, cell growth, and drug delivery. Small molecules such as drugs, cell products, or nutrients may partition into polydimethylsiloxane (PDMS), a commonly used material for microfluidic devices, potentially leading to poor recovery or inaccurate delivery of such chemicals. To decrease small-molecule partitioning, surface and bulk PDMS treatments have been developed; however, these have been tested on few analytes, or their biocompatibility are unknown. Studies often focus on one analyte, whereas a diversity of chemicals are of interest and possibly affected. In this study, 11 device treatments are tested and applied to 21 biologically relevant small molecules with a variety of chemical structures. Device treatments are characterized using water contact angle measurements and evaluated by measuring recovery of the 21 target analytes using liquid chromatography–mass spectrometry. 1,5-Dimethyl-1,5-diazaundecamethylene polymethobromide (polybrene), a positively charged polymer, produced the least hydrophilic surface and was found to provide the best recovery with most of the analytes having >50% recovery and up to 92% recovery; however, recovery varied by analyte highlighting the importance of analyte diversity rather than targeting a single analyte in evaluating treatments. A polybrene-treated device was applied to investigate secretion from pancreatic islets, which are micro-organs involved in glucose homeostasis and diabetes. Islets secrete small molecules that have been shown to modulate the secretion of islets’ main functional products, glucose-regulating hormones. The polybrene treatment enabled the detection of 20 target analytes from islets-on-chip during isosmotic and hypo-osmotic glucose perfusions and resulted in detection of more significant secretion changes compared to untreated PDMS.
{"title":"Evaluation of Surface Treatments of PDMS Microfluidic Devices for Improving Small-Molecule Recovery with Application to Monitoring Metabolites Secreted from Islets of Langerhans","authors":"Ashley E. Lenhart, and , Robert T. Kennedy*, ","doi":"10.1021/acsmeasuresciau.3c00025","DOIUrl":"10.1021/acsmeasuresciau.3c00025","url":null,"abstract":"<p >Microfluidic devices are becoming an important tool for bioanalysis with applications including studying cell secretion, cell growth, and drug delivery. Small molecules such as drugs, cell products, or nutrients may partition into polydimethylsiloxane (PDMS), a commonly used material for microfluidic devices, potentially leading to poor recovery or inaccurate delivery of such chemicals. To decrease small-molecule partitioning, surface and bulk PDMS treatments have been developed; however, these have been tested on few analytes, or their biocompatibility are unknown. Studies often focus on one analyte, whereas a diversity of chemicals are of interest and possibly affected. In this study, 11 device treatments are tested and applied to 21 biologically relevant small molecules with a variety of chemical structures. Device treatments are characterized using water contact angle measurements and evaluated by measuring recovery of the 21 target analytes using liquid chromatography–mass spectrometry. 1,5-Dimethyl-1,5-diazaundecamethylene polymethobromide (polybrene), a positively charged polymer, produced the least hydrophilic surface and was found to provide the best recovery with most of the analytes having >50% recovery and up to 92% recovery; however, recovery varied by analyte highlighting the importance of analyte diversity rather than targeting a single analyte in evaluating treatments. A polybrene-treated device was applied to investigate secretion from pancreatic islets, which are micro-organs involved in glucose homeostasis and diabetes. Islets secrete small molecules that have been shown to modulate the secretion of islets’ main functional products, glucose-regulating hormones. The polybrene treatment enabled the detection of 20 target analytes from islets-on-chip during isosmotic and hypo-osmotic glucose perfusions and resulted in detection of more significant secretion changes compared to untreated PDMS.</p>","PeriodicalId":29800,"journal":{"name":"ACS Measurement Science Au","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsmeasuresciau.3c00025","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44358558","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-13DOI: 10.1021/acsmeasuresciau.3c00022
Benjamin H. R. Gerroll, Krista M. Kulesa, Charles A. Ault and Lane A. Baker*,
Electrochemical arrays promise utility for accelerated hypothesis testing and breakthrough discoveries. Herein, we report a new high-throughput electrochemistry platform, colloquially called “Legion,” for applications in electroanalysis and electrosynthesis. Legion consists of 96 electrochemical cells dimensioned to match common 96-well plates that are independently controlled with a field-programmable gate array. We demonstrate the utility of Legion by measuring model electrochemical probes, pH-dependent electron transfers, and electrocatalytic dehalogenation reactions. We consider advantages and disadvantages of this new instrumentation, with the hope of expanding the electrochemical toolbox.
{"title":"Legion: An Instrument for High-Throughput Electrochemistry","authors":"Benjamin H. R. Gerroll, Krista M. Kulesa, Charles A. Ault and Lane A. Baker*, ","doi":"10.1021/acsmeasuresciau.3c00022","DOIUrl":"10.1021/acsmeasuresciau.3c00022","url":null,"abstract":"<p >Electrochemical arrays promise utility for accelerated hypothesis testing and breakthrough discoveries. Herein, we report a new high-throughput electrochemistry platform, colloquially called “Legion,” for applications in electroanalysis and electrosynthesis. Legion consists of 96 electrochemical cells dimensioned to match common 96-well plates that are independently controlled with a field-programmable gate array. We demonstrate the utility of Legion by measuring model electrochemical probes, pH-dependent electron transfers, and electrocatalytic dehalogenation reactions. We consider advantages and disadvantages of this new instrumentation, with the hope of expanding the electrochemical toolbox.</p>","PeriodicalId":29800,"journal":{"name":"ACS Measurement Science Au","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsmeasuresciau.3c00022","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47988235","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-10DOI: 10.1021/acsmeasuresciau.3c00019
Kelsey Cremin, Gabriel N. Meloni, Dimitrios Valavanis, Orkun S. Soyer* and Patrick R. Unwin*,
Ultramicroelectrode (UME), or, equivalently, microelectrode, probes are increasingly used for single-cell measurements of cellular properties and processes, including physiological activity, such as metabolic fluxes and respiration rates. Major challenges for the sensitivity of such measurements include: (i) the relative magnitude of cellular and UME fluxes (manifested in the current); and (ii) issues around the stability of the UME response over time. To explore the extent to which these factors impact the precision of electrochemical cellular measurements, we undertake a systematic analysis of measurement conditions and experimental parameters for determining single cell respiration rates via the oxygen consumption rate (OCR) in single HeLa cells. Using scanning electrochemical microscopy (SECM), with a platinum UME as the probe, we employ a self-referencing measurement protocol, rarely employed in SECM, whereby the UME is repeatedly approached from bulk solution to a cell, and a short pulse to oxygen reduction reaction (ORR) potential is performed near the cell and in bulk solution. This approach enables the periodic tracking of the bulk UME response to which the near-cell response is repeatedly compared (referenced) and also ensures that the ORR near the cell is performed only briefly, minimizing the effect of the electrochemical process on the cell. SECM experiments are combined with a finite element method (FEM) modeling framework to simulate oxygen diffusion and the UME response. Taking a realistic range of single cell OCR to be 1 × 10–18 to 1 × 10–16 mol s–1, results from the combination of FEM simulations and self-referencing SECM measurements show that these OCR values are at, or below, the present detection sensitivity of the technique. We provide a set of model-based suggestions for improving these measurements in the future but highlight that extraordinary improvements in the stability and precision of SECM measurements will be required if single cell OCR measurements are to be realized.
{"title":"Can Single Cell Respiration be Measured by Scanning Electrochemical Microscopy (SECM)?","authors":"Kelsey Cremin, Gabriel N. Meloni, Dimitrios Valavanis, Orkun S. Soyer* and Patrick R. Unwin*, ","doi":"10.1021/acsmeasuresciau.3c00019","DOIUrl":"10.1021/acsmeasuresciau.3c00019","url":null,"abstract":"<p >Ultramicroelectrode (UME), or, equivalently, microelectrode, probes are increasingly used for single-cell measurements of cellular properties and processes, including physiological activity, such as metabolic fluxes and respiration rates. Major challenges for the sensitivity of such measurements include: (i) the relative magnitude of cellular and UME fluxes (manifested in the current); and (ii) issues around the stability of the UME response over time. To explore the extent to which these factors impact the precision of electrochemical cellular measurements, we undertake a systematic analysis of measurement conditions and experimental parameters for determining single cell respiration rates via the oxygen consumption rate (OCR) in single HeLa cells. Using scanning electrochemical microscopy (SECM), with a platinum UME as the probe, we employ a self-referencing measurement protocol, rarely employed in SECM, whereby the UME is repeatedly approached from bulk solution to a cell, and a short pulse to oxygen reduction reaction (ORR) potential is performed near the cell and in bulk solution. This approach enables the periodic tracking of the bulk UME response to which the near-cell response is repeatedly compared (referenced) and also ensures that the ORR near the cell is performed only briefly, minimizing the effect of the electrochemical process on the cell. SECM experiments are combined with a finite element method (FEM) modeling framework to simulate oxygen diffusion and the UME response. Taking a realistic range of single cell OCR to be 1 × 10<sup>–18</sup> to 1 × 10<sup>–16</sup> mol s<sup>–1</sup>, results from the combination of FEM simulations and self-referencing SECM measurements show that these OCR values are at, or below, the present detection sensitivity of the technique. We provide a set of model-based suggestions for improving these measurements in the future but highlight that extraordinary improvements in the stability and precision of SECM measurements will be required if single cell OCR measurements are to be realized.</p>","PeriodicalId":29800,"journal":{"name":"ACS Measurement Science Au","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsmeasuresciau.3c00019","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49692742","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}